Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
scipy / linalg / _fblas.so
Size: Mime:
ELF>­@8=@8@4«4« ­­$­$   ­ ­$ ­$ààÈÈÈ$$Påtd€|€|€|¤¤QåtdRåtd­­$­$øøGNU±ÍÉ÷²ْèRÞs-?²O‰CÍ	0@‡ œ‚

ˆ@€&IÅ @
Œ5&€p	0Ä(`h”ˆ1ÁFiÍÏÑÓÕÖØÙÚßàâãäæçéêìíïñòóô÷ùûýþÿ

J©öãYFx‘Ââ7j¾åND½åüYàD½åE?»þPºÔ!}²ߢ÷ï?B½å1yߢTE^{Ö|hüPº.ÎÏpø± ¬т}²õ@½å…qëÓï†C…Cg¼åyÖ|U½幍ñô¦Î%%:'[¿HÂ8÷~7@ÒtoßSn¼å5Ae½å½sŠh,üHޗj¾å¨ð��up 8ç˜ã>®Ž)ÁÕ1áä'˜ÁÐïqP$3®uED
½åñD>x۴=P@½åýwÍ?½åR’fT#Có
½å/vÿ=½åŒ'TÔrÀó–«îÙFåt1¥÷ï	ð¥¨	(<&»	=&¯	(<&Š3ÐÎuæx	rß	 8	ÃgTÁ¨¥
@â¡í. Ì)ÖçqÊš7Cƒ»\ïaŒð–„%&	#‚u±uJ	ønÄzÑr…ÔÈ’\	›±ðÆ8W*#“Ó.²§_ù º5,G­Õá7›®Û	µKócA	MñÀûS	cS;ç|¡ô̯¶•Ì	YF3¨1ñd¼¡­Ãg÷㽉Ða oIËDjþU÷}/	FŸ‰Mé®Û7ß[”††¡8 <nðÃn	s?»R"	ÿƒÞ`Ø{7[Ÿuw	e	¸ rÙ@TDŠ@rd	0pR	pW`mI	àoz màl>0q;ðl@	Àokr§ n
/àpM
Ðl-må lh€m\Àq;7	 o`p6s•àm6 mv	PpMpqM	 o	ð¥?0mQpdŽpVœ
ÈÀrïoOPmm	@pƒ°m
	@o
Â`nüTÝ™`r[	 p©€r! p6ÿÀCqqmdz r_pm¹@nû°l°0n

	0o
žnæànÌàST.	o
ÝÀn%	poš=&ŒÀmøoÔ n	PoF@m×àr( :&ˆË€n%m__gmon_start___init_fini_ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_Jv_RegisterClassesfreePyComplex_TypePyType_IsSubtype_npy_f2py_ARRAY_APIPyComplex_AsCComplexPyFloat_TypePySequence_CheckPyErr_OccurredPyErr_SetStringPyLong_AsDoublePySequence_GetItemPyExc_TypeErrorPyNumber_IntPyObject_GetAttrStringPyErr_Clear_Py_NoneStructPyArg_ParseTupleAndKeywordsarray_from_pyobj__sprintf_chkPy_BuildValue__stack_chk_failPyNumber_FloatPyComplex_FromDoublesmallocmemsetinit_fblasPy_InitModule4_64PyType_TypePyFortran_TypePyImport_ImportModulePyCObject_TypePyExc_RuntimeErrorPyExc_ImportErrorPyErr_PrintPyCObject_AsVoidPtrPyModule_GetDictPyString_FromStringPyErr_NewExceptionPyFortranObject_NewAsAttrPyDict_GetItemStringF2PyCapsule_FromVoidPtrPyObject_SetAttrStringPyErr_FormatPyExc_AttributeErrorsrotg_drotg_crotg_zrotg_srotmg_drotmg_csrot_zdrot_srotm_drotm_sswap_dswap_cswap_zswap_cscal_zscal_csscal_zdscal_scopy_dcopy_ccopy_zcopy_saxpy_daxpy_caxpy_zaxpy_f2pywrapsdot_f2pywrapddot_f2pywrapcdotu_f2pywrapzdotu_f2pywrapcdotc_f2pywrapzdotc_f2pywrapsnrm2_f2pywrapscnrm2_f2pywrapdnrm2_f2pywrapdznrm2_f2pywrapsasum_f2pywrapscasum_f2pywrapdasum_f2pywrapdzasum_isamax_idamax_icamax_izamax_sgemv_dgemv_cgemv_zgemv_ssymv_dsymv_chemv_zhemv_strmv_dtrmv_ctrmv_ztrmv_sger_dger_cgeru_zgeru_cgerc_zgerc_ssyr_dsyr_csyr_zsyr_cher_zher_ssyr2_dsyr2_cher2_zher2_sgemm_dgemm_cgemm_zgemm_ssymm_dsymm_csymm_zsymm_chemm_zhemm_ssyrk_dsyrk_csyrk_zsyrk_cherk_zherk_ssyr2k_dsyr2k_csyr2k_zsyr2k_cher2k_zher2k_strmm_dtrmm_ctrmm_ztrmm_stderr__fprintf_chkfwritePyString_AsStringPyString_FromFormatPyMem_FreeF2PyDict_SetItemString_PyObject_NewPyDict_NewPyFortranObject_New__strcat_chkPyExc_ValueErrorstrcmpmemcpyPyDict_DelItemStringcopy_ND_arrayPyCObject_FromVoidPtrPy_FindMethodstrlenPyString_FromStringAndSizePyString_ConcatAndDelPyMem_MallocPyOS_snprintfPyErr_NoMemoryF2PyCapsule_AsVoidPtrF2PyCapsule_Checkwcdotc_wcdotu_wzdotc_wzdotu_wcladiv_wzladiv_wsdot_wsdsdot_wsasum_wsnrm2_wscasum_wscnrm2_wclangb_wclange_wclangt_wclanhb_wclanhe_wclanhp_wclanhs_wclanht_wclansb_wclansp_wclansy_wclantb_wclantp_wclantr_wscsum1_wslangb_wslange_wslangt_wslanhs_wslansb_wslansp_wslanst_wslansy_wslantb_wslantp_wslantr_wslapy2_wslapy3_wslamch_wslamc3_liblapack.so.3libf77blas.so.3libc.so.6_edata__bss_start_endGLIBC_2.14GLIBC_2.4GLIBC_2.2.5GLIBC_2.3.4ž	”‘–À	ii
Ë	ui	Õ	ti	á	­$°­­$p­ ³$ ³$@†%é”H†%•`†%é”h†%•€†%锈†%• †%锨†%•%”Ȇ%„”І%‡”؆%Š”‡%”‡%„”‡%‡”‡%Š”@‡%«”H‡%·”P‡%•X‡%í“`‡%l|h‡%”p‡%’”x‡%—”€‡%œ”ˆ‡%¡”‡%­” ‡%«”¨‡%·”°‡%•¸‡%í“%l|ȇ%”Ї%’”؇%—”à‡%œ”è‡%¡”ð‡%­”ˆ%«”ˆ%·”ˆ%•ˆ%í“ ˆ%l|(ˆ%”0ˆ%’”8ˆ%—”@ˆ%œ”Hˆ%¡”Pˆ%­”`ˆ%«”hˆ%·”pˆ%•xˆ%í“€ˆ%l|ˆˆ%”ˆ%’”˜ˆ%—” ˆ%œ”¨ˆ%¡”°ˆ%­”%«”Ȉ%·”Ј%¹”؈%l|àˆ%”èˆ%’”ðˆ%—”øˆ%œ”‰%¡”‰%­” ‰%«”(‰%·”0‰%¹”8‰%l|@‰%”H‰%’”P‰%—”X‰%œ”`‰%¡”h‰%­”€‰%«”ˆ‰%·”‰%l|˜‰%” ‰%’”¨‰%—”°‰%œ”	%«”ȉ%·”Љ%l|؉%”à‰%’”è‰%—”ð‰%œ”Š%«”Š%·”Š%l|Š%” Š%’”(Š%—”0Š%œ”@Š%«”HŠ%·”PŠ%l|XŠ%”`Š%’”hŠ%—”pŠ%œ”€Š%锈Š%«”Š%l|˜Š%” Š%’”
%é”Ȋ%«”Њ%l|؊%”àŠ%’”‹%锋%«”‹%l|‹%” ‹%’”@‹%é”H‹%«”P‹%l|X‹%”`‹%’”€‹%锈‹%«”‹%l|˜‹%” ‹%’”¨‹%¡”%é”ȋ%«”Ћ%l|؋%”à‹%’”è‹%¡”Œ%«”Œ%·”Œ%l|Œ%” Œ%’”(Œ%—”0Œ%œ”@Œ%«”HŒ%·”PŒ%l|XŒ%”`Œ%’”hŒ%—”pŒ%œ”€Œ%«”ˆŒ%·”Œ%l|˜Œ%” Œ%’”¨Œ%—”°Œ%œ”%«”Ȍ%·”Ќ%l|،%”àŒ%’”èŒ%—”ðŒ%œ”%«”%·”%l|%é” %”(%’”0%—”8%œ”`%«”h%·”p%l|x%销%”ˆ%’”%—”˜%œ”
%«”ȍ%·”Ѝ%l|؍%é”à%”è%’”ð%—”ø%œ” Ž%«”(Ž%·”0Ž%l|8Ž%é”@Ž%”HŽ%’”PŽ%—”XŽ%œ”€Ž%«”ˆŽ%·”Ž%l|˜Ž%” Ž%’”¨Ž%—”°Ž%œ”%«”Ȏ%·”Ў%l|؎%”àŽ%’”èŽ%—”ðŽ%œ”%«”%·”%l|%” %’”(%—”0%œ”@%«”H%·”P%l|X%”`%’”h%—”p%œ”€%«”ˆ%·”%l|˜%” %’”¨%—”°%œ”%«”ȏ%·”Џ%l|؏%”à%’”è%—”ð%œ”%«”%l|%”%’”@%«”H%l|P%”X%’”€%«”ˆ%l|%”˜%’”%«”Ȑ%l|А%”ؐ%’”‘%«”‘%l|‘%”‘%’”@‘%«”H‘%l|P‘%”X‘%’”€‘%«”ˆ‘%l|‘%”˜‘%’”%«”ȑ%l|Б%”ؑ%’”’%«”’%l|’%”’%’”@’%«”H’%l|P’%”X’%’”€’%«”ˆ’%l|’%”˜’%’”%«”Ȓ%l|В%”ؒ%’”“%¿”“%锓%«”“%Ŕ “%·”(“%”0“%’”8“%—”@“%œ”H“%ʔP“%­”`“%¿”h“%é”p“%«”x“%Ŕ€“%·”ˆ“%”“%’”˜“%—” “%œ”¨“%ʔ°“%­”%¿”ȓ%é”Г%«”ؓ%Ŕà“%·”è“%”ð“%’”ø“%—””%œ””%ʔ”%­” ”%¿”(”%é”0”%«”8”%Ŕ@”%·”H”%”P”%’”X”%—”`”%œ”h”%ʔp”%­”€”%¿”ˆ”%锐”%«”˜”%Ŕ ”%·”¨”%”°”%’”¸”%—”%œ”Ȕ%ДД%­”à”%¿”è”%é”ð”%«”ø”%Ŕ•%·”•%”•%’”•%—” •%œ”(•%Д0•%­”@•%¿”H•%é”P•%«”X•%Ŕ`•%·”h•%”p•%’”x•%—”€•%œ”ˆ•%Д•%­” •%¿”¨•%é”°•%«”¸•%Ŕ%·”ȕ%”Е%’”ؕ%—”à•%œ”è•%Дð•%­”–%é”–%«”–%”–%’” –%Д(–%ʔ0–%֔8–%¡”`–%é”h–%«”p–%”x–%’”€–%Дˆ–%ʔ–%֔˜–%¡”%é”Ȗ%«”Ж%”ؖ%’”à–%Дè–%ʔð–%֔ø–%¡” —%é”(—%«”0—%”8—%’”@—%ДH—%ʔP—%֔X—%¡”€—%¿”ˆ—%«”—%·”˜—%’” —%œ”¨—%é”°—%¡”¸—%­”%ߔà—%¿”è—%«”ð—%·”ø—%’”˜%œ”˜%锘%¡”˜%­” ˜%ߔ@˜%¿”H˜%«”P˜%·”X˜%’”`˜%œ”h˜%é”p˜%¡”x˜%­”€˜%ߔ ˜%¿”¨˜%«”°˜%·”¸˜%’”%œ”Ș%é”И%¡”ؘ%­”à˜%ߔ™%¿”™%«”™%·”™%’” ™%œ”(™%é”0™%¡”8™%­”@™%ߔ`™%¿”h™%«”p™%·”x™%’”€™%œ”ˆ™%锐™%¡”˜™%­” ™%ߔ%¿”ș%«”Й%Дؙ%’”à™%”è™%l|ð™%锸™%ߔ š%¿”(š%«”0š%Д8š%’”@š%”Hš%l|Pš%é”Xš%ߔ€š%¿”ˆš%«”š%Д˜š%’” š%”¨š%l|°š%锸š%ߔàš%¿”èš%«”ðš%Дøš%’”›%”›%l|›%é”›%ߔ@›%¿”H›%«”P›%ДX›%’”`›%”h›%l|p›%é”x›%ߔ ›%¿”¨›%«”°›%Д¸›%’”%”ț%l|Л%é”؛%ߔœ%¿”œ%«”œ%·”œ%Д œ%’”(œ%”0œ%œ”8œ%—”@œ%l|Hœ%é”Pœ%ߔ`œ%¿”hœ%«”pœ%·”xœ%Д€œ%’”ˆœ%”œ%œ”˜œ%—” œ%l|¨œ%é”°œ%ߔ%¿”Ȝ%«”М%·”؜%Дàœ%’”èœ%”ðœ%œ”øœ%—”%l|%锝%ߔ %¿”(%«”0%·”8%Д@%’”H%”P%œ”X%—”`%l|h%é”p%ߔ€%¿”ˆ%锐%•˜%Ŕ %•¨%ë”°%󔸝%û”à%¿”è%é”ð%•ø%Ŕž%•ž%딞%ó”ž%û”@ž%¿”Hž%é”Pž%•Xž%Ŕ`ž%•hž%ë”pž%ó”xž%û” ž%¿”¨ž%é”°ž%•¸ž%Ŕ%•Ȟ%ë”О%ó”؞%û”Ÿ%¿”Ÿ%锟%•Ÿ%Ŕ Ÿ%•(Ÿ%•0Ÿ%Д8Ÿ%û”`Ÿ%¿”hŸ%é”pŸ%•xŸ%Ŕ€Ÿ%•ˆŸ%•Ÿ%Д˜Ÿ%û”%¿”ȟ%é”П%•؟%ŔàŸ%•èŸ%•ðŸ%ДøŸ%û”  %¿”( %é”0 %•8 %Ŕ@ %•H %•P %ДX %û”€ %¿”ˆ %锐 %•˜ %Ŕ  %•¨ %•° %Д¸ %û”à %¿”è %é”ð %•ø %Ŕ¡%•¡%•¡%Д¡%û”@¡%¿”H¡%é”P¡%ŔX¡%•`¡%ʔh¡%Дp¡%û”€¡%¿”ˆ¡%锐¡%Ŕ˜¡%• ¡%ʔ¨¡%Д°¡%û”!%¿”ȡ%é”С%Ŕء%•à¡%ʔè¡%Дð¡%û”¢%¿”¢%锢%Ŕ¢%• ¢%ʔ(¢%Д0¢%û”@¢%¿”H¢%é”P¢%ŔX¢%•`¢%ʔh¢%Дp¢%û”€¢%¿”ˆ¢%锐¢%Ŕ˜¢%• ¢%ʔ¨¢%Д°¢%û”"%¿”Ȣ%é”Т%•آ%Ŕà¢%•è¢%ʔð¢%Дø¢%û” £%¿”(£%é”0£%•8£%Ŕ@£%•H£%ʔP£%ДX£%û”€£%¿”ˆ£%锐£%•˜£%Ŕ £%•¨£%ʔ°£%Д¸£%û”à£%¿”è£%é”ð£%•ø£%Ŕ¤%•¤%ʔ¤%Д¤%û”@¤%¿”H¤%é”P¤%•X¤%Ŕ`¤%•h¤%ʔp¤%Дx¤%û” ¤%¿”¨¤%é”°¤%•¸¤%Ŕ$%•Ȥ%ʔФ%Дؤ%û”¥%¿”¥%锥%•¥%• ¥%Д(¥%ë”0¥%ڔ8¥%•`¥%¿”h¥%é”p¥%•x¥%•€¥%Дˆ¥%딐¥%ڔ˜¥%•%%¿”ȥ%é”Х%•إ%•à¥%Дè¥%ë”ð¥%ڔø¥%• ¦%¿”(¦%é”0¦%•8¦%•@¦%ДH¦%ë”P¦%ڔX¦%•€¦%ʇà§%è§% …%ð§%·‡P©%`X©%…%`©%FŒ*% €Ȫ%`„%Ъ%6Œ0¬%`{8¬%%@¬%ò‡ ­%¨­%à‚%°­%߇¯%Я%‚% ¯%€Š€°%€Qˆ°%@%°%3‰ð±%°8ø±%€|%²%Š`³%Ih³%Ày%p³%ž‰д%à@ش%w%à´%€@¶% qH¶% t%P¶%°·%€j¸·%@q%7%  ¹%e(¹% o%0¹%³~º%€_˜º%m% º%F~¼%Z¼%àj%¼%Ö}p½%€Tx½%Àh%€½%Nˆà¾%à(è¾%@g%ð¾%ˆPÀ%°#XÀ%Àe%`À%ZŒÀÁ%P…ÈÁ%@d%ÐÁ%¡Œ0Ã%Ќ8Ã%Àb%@Ã%∠Ä%`3¨Ä%a%°Ä%–ˆÆ% .Æ%@_% Æ%i}€Ç%ðNˆÇ%@]%Ç%ü|ðÈ%`IøÈ%@[%É%|`Ê%ÐChÊ%@Y%pÊ%"|ÐË%0>ØË%@W%àË%ý‚@Í%²HÍ%U%PÍ%4…°Î%0â¸Î%ÀR%ÀÎ%¢… Ð%`è(Ð%€P%0Ð%µ{Ñ%à7˜Ñ%@N% Ñ%LÓ%?Ó%`L%Ó%êŒpÔ% ”xÔ%€J%€Ô%rŽàÕ%±èÕ% H%ðÕ%ߎP×%`¸X×%ÀF%`×%ŽÀØ%)ÈØ%àD%ÐØ%˜0Ú%`¢8Ú%C%@Ú%k{ Û%`4¨Û% A%°Û%!{Ý%à0Ý%@@% Ý%Ûz€Þ%`-ˆÞ%à>%Þ%‘zðß%à)øß%€=%à%Kz`á%`&há% <%pá%zÐâ%à"Øâ%À:%àâ%»y@ä%`Hä%`9%Pä%qy°å%à¸å%8%Àå%'y ç%€(ç% 6%0ç%Ýxè% ˜è%@5% è%“xê%Àê%à3%ê%Gxpë%`xë%€2%€ë%¯‚àì%p©èì%à/%ðì%æ„Pî%ÐÙXî%@-%`î%ï‹Àï%ÀrÈï%€*%Ðï%ýw0ñ%8ñ%À'%@ñ%^‚ ò%¡¨ò% %%°ò%•„ô% Ñô%€"% ô%ž‹€õ%°jˆõ%À%õ%¬wðö%àýøö%%÷%#w`ø%°÷hø%À%pø%vÐù%€ñØù%€%àù%v@û%PëHû%@%Pû%‘u°ü% å¸ü%%Àü%Ԓ þ%(þ%€%0þ%
“ÿ%`"˜ÿ%% ÿ%F“& *&€%&‚“p&3x&
%€&¾“à&P;è&€%ð&8’P&àX&%`&ûÀ&PÎÈ&à%Ð&´0&@Ç8&À%@&А 	& ã¨	& þ$°	&R&`›&€ü$ &‰€& Üˆ&`ú$&Bð
& Õø
&@ø$&v’`& h& õ$p&ڑÐ&þØ&ò$à&z‘@&PôH&àî$P&‘°& ê¸&Àë$À&‚ &Й(&€é$0&B„&àʘ&@ç$ &K‹& c&å$&Aup&`Þx&Àâ$€&à&“è& à$ð&÷ƒP&pÄX&€Þ$`&s‡À&pÈ&@Ü$Ð&öt0&ð×8&Ú$@&ˆ†  & ú¨ &À×$° &«t"&€Ñ"&€Õ$ "&ƒ€#&pˆ#&€Ó$#&ºƒð$& ¿ø$&€Ñ$%&†`&&àîh&&€Ï$p&&ntÐ'&@ÌØ'&€Í$à'&K†@)&ÀôH)&€Ë$P)&2t°*&Ǹ*&€É$À*&4 ,& †(,&`Ç$0,&kƒ-& ¸˜-&@Å$ -&ӆ/&/&Ã$/&ãsp0&Àx0&ÀÀ$€0&#‡à1&€è1&€¾$ð1&“sP3& ºX3&@¼$`3&рÀ4&p€È4& º$Ð4&n€06&`z86&¸$@6&芠7& ]¨7&àµ$°7&0s9& ´9&3$¸:&f|Ð:&@Sà:& dè:&aø:& R ;&pS¯$¯$¯$¯$# ¯$/(¯$80¯$:8¯$;@¯$DH¯$KP¯$PX¯$_`¯$ch¯$p¯$rx¯$t€¯$wˆ¯$†¯$Œ˜¯$ ¯$™¨¯$š°¯$›¸¯$œ/$žȯ$¡Я$®د$´à¯$ºè¯$½ð¯$Æø¯$Èا%…H©%¸ª%(¬%B˜­%?¯%¤x°%²è±%X³%Gȴ%28¶%W¨·%)¹%|ˆº%ø»%€h½%ؾ%~HÀ%H¸Á%—(Ã%C˜Ä%Æ%XxÇ%kèÈ%XÊ%ªÈË%Q8Í%“¨Î% Ð%”ˆÑ%ÃøÒ%âhÔ%øØÕ%ÛH×%Ö¸Ø%ç(Ú%à˜Û%ÙÝ%üxÞ%Ïèß%õXá%÷Èâ%Í8ä%í¨å%ç%zˆè%0øé%¢hë%¿Øì%Hî%¸ï%O(ñ%]˜ò%Vô%Uxõ%Šèö%SXø%»Èù%¦8û%©¨ü%þ%¯ˆÿ%1ø&’h&¶Ø&<H&{¸&À(&˜˜	&&&‚x&Mè
&ŽX&[È&j8&m¨&&ˆ&(ø&Eh&ÄØ&H&¸&(&}˜ &u"&£x#&¾è$&•X&&4È'&-8)&7¨*&b,&ˆ-&yø.&+h0&nØ1&xH3&Ǹ4&p(6&Ÿ˜7&'9&
°$ °$ê(°$0°$	8°$
@°$H°$ßP°$X°$`°$h°$p°$x°$û€°$׈°$°$˜°$ °$¨°$ °°$!¸°$"0$#Ȱ$$а$%ذ$*à°$,è°$.ð°$ïø°$3±$5±$6±$±$9 ±$ì(±$;0±$=8±$>@±$@H±$AP±$ÒX±$F`±$Ih±$Jp±$Kx±$L€±$Nˆ±$ܐ±$P˜±$R ±$T¨±$Y°±$Z¸±$\1$^ȱ$_б$`ر$Õà±$aè±$dð±$eø±$f²$g²$h²$i²$l ²$o(²$q0²$s8²$t@²$vH²$ÎP²$ƒX²$„`²$†h²$‡p²$ˆx²$‰€²$ýˆ²$‹²$Œ˜²$ ²$‘¨²$–°²$™¸²$œ2$¡Ȳ$¥в$§ز$¨à²$«è²$¬ð²$­ø²$®³$°³$±³$³³$µ ³$·(³$¸0³$¹8³$º@³$¼H³$½P³$ÁX³$Å`³$Æh³$Ép³$Êx³$ˀ³$ÌHƒìH‹]	$H…Àtè{HƒÄÃÿ5ò	$ÿ%ô	$@ÿ%ò	$héàÿÿÿÿ%ê	$héÐÿÿÿÿ%â	$héÀÿÿÿÿ%Ú	$hé°ÿÿÿÿ%Ò	$hé ÿÿÿÿ%Ê	$héÿÿÿÿ%Â	$hé€ÿÿÿÿ%º	$hépÿÿÿÿ%²	$hé`ÿÿÿÿ%ª	$h	éPÿÿÿÿ%¢	$h
é@ÿÿÿÿ%š	$hé0ÿÿÿÿ%’	$hé ÿÿÿÿ%Š	$h
éÿÿÿÿ%‚	$héÿÿÿÿ%z	$héðþÿÿÿ%r	$héàþÿÿÿ%j	$héÐþÿÿÿ%b	$héÀþÿÿÿ%Z	$hé°þÿÿÿ%R	$hé þÿÿÿ%J	$héþÿÿÿ%B	$hé€þÿÿÿ%:	$hépþÿÿÿ%2	$hé`þÿÿÿ%*	$héPþÿÿÿ%"	$hé@þÿÿÿ%	$hé0þÿÿÿ%	$hé þÿÿÿ%
	$héþÿÿÿ%	$héþÿÿÿ%ú$héðýÿÿÿ%ò$h éàýÿÿÿ%ê$h!éÐýÿÿÿ%â$h"éÀýÿÿÿ%Ú$h#é°ýÿÿÿ%Ò$h$é ýÿÿÿ%Ê$h%éýÿÿÿ%Â$h&é€ýÿÿÿ%º$h'épýÿÿÿ%²$h(é`ýÿÿÿ%ª$h)éPýÿÿÿ%¢$h*é@ýÿÿÿ%š$h+é0ýÿÿÿ%’$h,é ýÿÿÿ%Š$h-éýÿÿÿ%‚$h.éýÿÿÿ%z$h/éðüÿÿÿ%r$h0éàüÿÿÿ%j$h1éÐüÿÿÿ%b$h2éÀüÿÿÿ%Z$h3é°üÿÿÿ%R$h4é üÿÿÿ%J$h5éüÿÿÿ%B$h6é€üÿÿÿ%:$h7épüÿÿÿ%2$h8é`üÿÿÿ%*$h9éPüÿÿÿ%"$h:é@üÿÿÿ%$h;é0üÿÿÿ%$h<é üÿÿÿ%
$h=éüÿÿÿ%$h>éüÿÿÿ%ú$h?éðûÿÿÿ%ò$h@éàûÿÿÿ%ê$hAéÐûÿÿÿ%â$hBéÀûÿÿÿ%Ú$hCé°ûÿÿÿ%Ò$hDé ûÿÿÿ%Ê$hEéûÿÿÿ%Â$hFé€ûÿÿÿ%º$hGépûÿÿÿ%²$hHé`ûÿÿÿ%ª$hIéPûÿÿÿ%¢$hJé@ûÿÿÿ%š$hKé0ûÿÿÿ%’$hLé ûÿÿÿ%Š$hMéûÿÿÿ%‚$hNéûÿÿÿ%z$hOéðúÿÿÿ%r$hPéàúÿÿÿ%j$hQéÐúÿÿÿ%b$hRéÀúÿÿÿ%Z$hSé°úÿÿÿ%R$hTé úÿÿÿ%J$hUéúÿÿÿ%B$hVé€úÿÿÿ%:$hWépúÿÿÿ%2$hXé`úÿÿÿ%*$hYéPúÿÿÿ%"$hZé@úÿÿÿ%$h[é0úÿÿÿ%$h\é úÿÿÿ%
$h]éúÿÿÿ%$h^éúÿÿÿ%ú$h_éðùÿÿÿ%ò$h`éàùÿÿÿ%ê$haéÐùÿÿÿ%â$hbéÀùÿÿÿ%Ú$hcé°ùÿÿÿ%Ò$hdé ùÿÿÿ%Ê$heéùÿÿÿ%Â$hfé€ùÿÿÿ%º$hgépùÿÿÿ%²$hhé`ùÿÿÿ%ª$hiéPùÿÿÿ%¢$hjé@ùÿÿÿ%š$hké0ùÿÿÿ%’$hlé ùÿÿÿ%Š$hméùÿÿH(%H=%UH)øH‰åHƒøw]ÃH‹Ü$H…Àtò]ÿà@HñŽ%H=êŽ%UH)øH‰åHÁøH‰ÂHÁê?HÐHÑøu]ÃH‹w$H…Òtò]H‰Æÿâ@€=Ɏ%u'Hƒ=g$UH‰åtH‹=$èíþÿÿèhÿÿÿ]Æ Ž%óÃfffff.„Hƒ=`ÿ#t&H‹ç$H…ÀtUH=Jÿ#H‰åÿÐ]éWÿÿÿ€éKÿÿÿf.„H‹™Ž%Hc=‚Ž%H…À„SH‹‰Ž%H…Û„ðH‹5iŽ%H…ö„à‹Q‰HcÒH;tƒD»ü‹^Ž%…ÒHEÃ[ÃfDƒÿ޳HcHH‹VHƒêH9Ñ… 1ҹë f„L‹TVLcLHƒÂMBÿM9Áu!ƒÁ9ùuâH‰ÇèÊ÷ÿÿH‰ßèÂ÷ÿÿ1À[ÃfD…É~3A‰ù‰úH‰ÆA)Éf„LcƒêHƒÆBÇDƒüÇFüD9ÊuáHcÑ)σHcÿƒD»üé7ÿÿÿ1À[Ãt¹ë§1ÀÄAVAUATUH‰ýSH‰óHƒì0H‹~H‹5$H9÷„rI‰ÕèRüÿÿ…À…bL‹5$H‹{I‹H‹°ˆH9÷„Ìè'üÿÿA‰ÄH‹{I‹E…ä…´H‹pPH9÷t;èüÿÿ…ÀH‹{I‹u+H‹pH9÷t
èíûÿÿ…À„…‹C…À…zH‹{I‹H‹pH9þtèÂûÿÿ…ÀI‹„ç¿L‹¨ˆÿh1ÒH‰ÆH‰ßAÿÕH…À„ÁH‹PA¼òòEH‹@ò@D‰àòEHƒÄ0[]A\A]A^ÃH‹°H9þ„“èKûÿÿ…À…ƒI‹H‹{H‹°H9÷tè+ûÿÿ…ÀI‹„¨Ht$H‰ßA¼ÿðÛl$D‰àÝ]Ûl$ Ý]HƒÄ0[]A\A]A^ÃfDH‰ßA¼èêúÿÿòEòMHƒÄ0D‰à[]A\A]A^ÃI‹Ht$H‰ßA¼ÿðóT$ó\$D‰àZÒZÛòUò]HƒÄ0[]A\A]A^ÃDH‰îH‰ßA¼ÿðë”@HÇEH‹5¹ý#H‹{H9÷„”è?úÿÿ…ÀA‰Ä…„H‹CH‹€¨©€…ƒ©H‰ß…ˆè»ôÿÿ…ÀtH‹CH÷€¨„ˆè=øÿÿH…À„ÊL‰îH‰Çèöÿÿéÿÿÿ@L‹¨è¿ÿhH‰ßH‰ÆAÿÕéþÿÿòCA¼òEéËþÿÿòH*CA´òEé¸þÿÿèÃøÿÿòEE1äèÆ÷ÿÿH…ÀA”Äéšþÿÿ1öH‰ßè€öÿÿH…ÀH‰Ã„bÿÿÿL‰êH‰ÆH‰ïèÆüÿÿ…ÀH‹t4HƒèA¼H…ÀH‰…YþÿÿH‹CH‰ßÿP0éJþÿÿH‹£ü#H‹é'ÿÿÿHƒèH…ÀH‰…	ÿÿÿH‹CH‰ßÿP0éúþÿÿfff.„ATUH‰ýSH‹FH‰óö€ª€tH‹F‰¸[]A\Ãf„H‰÷I‰ÔèÅ÷ÿÿH…Àt0H‹P‰UH‹HQÿH…ÒH‰t
[]¸A\ÃH‹PH‰ÇÿR0ëê@H‹{H‹5ü#H9÷t@è[øÿÿ…Àu7H‹CH÷€¨„™èöÿÿH…ÀHDB‰%L‰æH‰Çègôÿÿ1ÀébÿÿÿH5‰¿H‰ßè‘óÿÿH‰ÃH…ÛtÇè”õÿÿL‰âH‰ÞH‰ïèÿÿÿ…ÀH‹t'HƒèH…ÀH‰…UÿÿÿH‹CH‰ßÿP0¸é
ÿÿÿHƒèH…ÀH‰…vÿÿÿH‹CH‰ßÿP0égÿÿÿH‰ßèQòÿÿ…À„WÿÿÿH‰ß1öè¯ôÿÿH‰Ãéyÿÿÿ€AWH‰÷H‰ÖHð¾AVAUATI‰ÌH
áñ$USHìˆH‹1û#dH‹%(H‰„$x1ÀHD$`HDŽ$8ÇD$@DŽ$ÌÇD$PLŒ$àH‰D$(H„$0H‰œ$ÐHDŽ$PÿÿÿÿHDŽ$XÿÿÿÿL„$ÐH‰D$ H„$ H‰œ$àHDŽ$`ÿÿÿÿHDŽ$hÿÿÿÿÇD$`H‰œ$ðÇD$pDŽ$€DŽ$H‰œ$DŽ$ H‰œ$DŽ$°H‰œ$ DŽ$ÀH‰œ$0H‰D$H„$H‰D$H„$H‰D$H„$ðH‰$1Àèñÿÿ1҅À„L‹„$àH´$P¹²¿èlòÿÿH…ÀH‰Å„H‹´$L‹hH9Þ„ËH¼$ HtßèÇüÿÿ‰„$̋„$̅ÀuUH;¬$àtHƒm„˜H‹„$8H‹”$8H‹Œ$xdH3%(H‰Ð…ÏHĈ[]A\A]A^A_Ã@D‹Œ$ AƒùvRHœ$pL+ßH
²¼H‰ߺ¾1Àè(öÿÿH‹=†%H‰Þè9ñÿÿé_ÿÿÿ@DŽ$ é@ÿÿÿƒ|$`L‹„$ðH´$`º¿Ƀá ƒÁèDñÿÿH…ÀI‰Ç„CH‹´$ L‹pH9Þ„H¼$°HßèŸûÿÿ‰„$̋„$̅À„ÔþÿÿD‹Œ$°Aƒù‡×H‹´$0H9Þ„œH¼$ÀHGßèRûÿÿ‰„$̋„$̅À„‡þÿÿD‹Œ$ÀAƒù†ËHœ$pLKßH
²»éÓþÿÿ€H‹EH‰ïÿP0éYþÿÿf„èòÿÿH…À…BþÿÿH‹=˄%H5,Ýèïïÿÿé*þÿÿDŽ$Àéoÿÿÿf.„DŽ$°éÿÿÿHœ$pLAÞH
»éIþÿÿè°ñÿÿH…À…ÂýÿÿH‹=`„%H5‰Ýè„ïÿÿéªýÿÿH„$@H‹´$ÐH°ÞH‰ÇH‰D$8è›öÿÿ‰„$̋„$̅À„pýÿÿH‹´$H9ÞtSH¼$HÁÞèúÿÿ‰„$̋„$̅À„9ýÿÿD‹Œ$Aƒùv(Hœ$pLÉÞH
zºé‰ýÿÿDŽ$ë»H‹„$`E…ÉHÅH
ô¹‰„$€H‹„$P‰D$pH‹„$h‰D$PD„$Xƒ¼$À‰D$@‹„$°HDʅÀtƒøH¬¹H£¹HEЃ¼$ H”¹H5‡¹H=ˆ¹LD$@L‰t$L‰l$HEðE…ÉLL$PHDøH„$€H‰D$ HD$pH‰D$H‹D$8H‰$AÿÔèðÿÿH…ÀtDŽ$̋„$̅À„üÿÿH=2ÄL‰þ1ÀèÄïÿÿH‰„$8éòûÿÿè¢íÿÿfAWH‰÷H‰ÖHS¹AVAUATI‰ÌH
aê$USHìˆH‹1õ#dH‹%(H‰„$x1ÀHD$`HDŽ$ÇD$@DŽ$¬ÇD$PLŒ$ÀH‰D$(H„$H‰œ$°HDŽ$0ÿÿÿÿHDŽ$8ÿÿÿÿL„$°H‰D$ H„$H‰œ$ÀHDŽ$@ÿÿÿÿHDŽ$HÿÿÿÿH‰œ$ÐH‰œ$àHDŽ$`ÿÿÿÿHDŽ$hÿÿÿÿÇD$`H‰œ$ðÇD$pH‰œ$DŽ$€H‰œ$DŽ$DŽ$ H‰D$H„$ðH‰D$H„$àH‰D$H„$ÐH‰$1Àèëÿÿ1҅À„ L‹„$ÀH´$0¹²¿èjìÿÿH…ÀH‰Å„L‹„$ÐH´$@¹º¿L‹hè6ìÿÿH…ÀI‰Ç„
H‹´$L‹pH9Þ„ÝH¼$€HfÜè‘öÿÿ‰„$¬‹„$¬…ÀtKD‹Œ$€Aƒù†½Hœ$pLnÜH
1·¾H‰ߺ1ÀèCðÿÿH‹=,€%H‰ÞèTëÿÿL;¼$Ðt
Iƒ/„0H;¬$ÀtHƒm„H‹„$H‹”$H‹Œ$xdH3%(H‰Ð…ºHĈ[]A\A]A^A_ÀDŽ$€é.ÿÿÿ„H‹´$àH9Þ„H¼$PHØÛèëñÿÿ‰„$¬‹„$¬…À„AÿÿÿH„$ H‹´$°HîÛH‰ÇH‰D$8è±ñÿÿ‰„$¬‹„$¬…À„ÿÿÿH‹´$H9Þ„ÇH|$pHþÛèõÿÿ‰„$¬‹„$¬…À„ÏþÿÿD‹L$pHœ$pLÜH
ֵAƒù‡‡þÿÿH‹”$@H‹„$0E…ÉH‹´$HH‹Œ$8‰”$ ‰„$„Q9‰D$P…o‰ȃ|$`L‹„$ðH´$`‰D$@ºH˜¿H‰„$`H‰„$hɃá EèÄéÿÿH…ÀH‰Ã„ðHcT$@L‹@H‹„$`H9ÐuH;„$h„H‹=
~%H5îÛè1éÿÿéØýÿÿ@H‹EH‰ïÿP0éîýÿÿf„I‹GL‰ÿÿP0éÁýÿÿèëÿÿH…À…ÇýÿÿH‹=»}%H5ôØèßèÿÿé¯ýÿÿf.„èÛêÿÿH…À…‚ýÿÿH‹=‹}%H5Ùè¯èÿÿéjýÿÿf.„HDŽ$PHDŽ$XéßýÿÿÇD$péDþÿÿ9ñ‰L$P„±þÿÿA‰ÉHœ$pLÚH
3´éÕüÿÿA‰Áëàè"èÿÿ‹D$pH5‹¾…ÀtƒøH5b³HY³HEðƒ¼$€HD³H=C³HT$@HL$PL‰D$ M‰éL‹D$8L‰t$H‰T$(HDøH„$PH‰D$H„$ H‰D$H„$H‰$AÿÔèÅéÿÿH…ÀtDŽ$¬‹„$¬…À„BüÿÿH=ã½H‰Þ1ÀèuéÿÿH‰„$é$üÿÿèƒéÿÿH…À…üÿÿH‹=3|%H5ÄÙèWçÿÿéþûÿÿfAWH‰÷H‰ÖH3³AVAUATI‰ÌH
1ã$USHìˆH‹Áî#dH‹%(H‰„$x1ÀHD$`HDŽ$ÇD$@DŽ$¬ÇD$PLŒ$ÀH‰D$(H„$H‰œ$°HDŽ$0ÿÿÿÿHDŽ$8ÿÿÿÿL„$°H‰D$ H„$H‰œ$ÀHDŽ$@ÿÿÿÿHDŽ$HÿÿÿÿH‰œ$ÐH‰œ$àHDŽ$`ÿÿÿÿHDŽ$hÿÿÿÿÇD$`H‰œ$ðÇD$pH‰œ$DŽ$€H‰œ$DŽ$DŽ$ H‰D$H„$ðH‰D$H„$àH‰D$H„$ÐH‰$1Àè•äÿÿ1҅À„ L‹„$ÀH´$0¹²¿èúåÿÿH…ÀH‰Å„L‹„$ÐH´$@¹º¿L‹hèÆåÿÿH…ÀI‰Ç„
H‹´$L‹pH9Þ„ÝH¼$€HÞØè!ðÿÿ‰„$¬‹„$¬…ÀtKD‹Œ$€Aƒù†½Hœ$pLþÕH
±¾H‰ߺ1ÀèÓéÿÿH‹=¼y%H‰ÞèääÿÿL;¼$Ðt
Iƒ/„0H;¬$ÀtHƒm„H‹„$H‹”$H‹Œ$xdH3%(H‰Ð…ºHĈ[]A\A]A^A_ÀDŽ$€é.ÿÿÿ„H‹´$àH9Þ„H¼$PHØè{ëÿÿ‰„$¬‹„$¬…À„AÿÿÿH„$ H‹´$°H.ØH‰ÇH‰D$8èAëÿÿ‰„$¬‹„$¬…À„ÿÿÿH‹´$H9Þ„ÇH|$pH>Øè©îÿÿ‰„$¬‹„$¬…À„ÏþÿÿD‹L$pHœ$pLŸÕH
¶¯Aƒù‡‡þÿÿH‹”$@H‹„$0E…ÉH‹´$HH‹Œ$8‰”$ ‰„$„Q9‰D$P…o‰ȃ|$`L‹„$ðH´$`‰D$@ºH˜¿H‰„$`H‰„$hɃá EèTãÿÿH…ÀH‰Ã„ðHcT$@L‹@H‹„$`H9ÐuH;„$h„H‹=w%H5~ÕèÁâÿÿéØýÿÿ@H‹EH‰ïÿP0éîýÿÿf„I‹GL‰ÿÿP0éÁýÿÿè›äÿÿH…À…ÇýÿÿH‹=Kw%H5lÕèoâÿÿé¯ýÿÿf.„èkäÿÿH…À…‚ýÿÿH‹=w%H5ŒÕè?âÿÿéjýÿÿf.„HDŽ$PHDŽ$XéßýÿÿÇD$péDþÿÿ9ñ‰L$P„±þÿÿA‰ÉHœ$pL ÔH
®éÕüÿÿA‰Áëàè²áÿÿ‹D$pH5¸…ÀtƒøH5ò¬Hé¬HEðƒ¼$€HԬH=ӬHT$@HL$PL‰D$ M‰éL‹D$8L‰t$H‰T$(HDøH„$PH‰D$H„$ H‰D$H„$H‰$AÿÔèUãÿÿH…ÀtDŽ$¬‹„$¬…À„BüÿÿH=s·H‰Þ1ÀèãÿÿH‰„$é$üÿÿèãÿÿH…À…üÿÿH‹=Ãu%H5œÕèçàÿÿéþûÿÿfAVH‰÷H‰ÖH­AUATI‰ÌH
cÛ$USHì@H‹Sè#dH‹%(H‰„$81ÀHD$PLŒ$ L„$HDŽ$èÇD$0H‰D$ H„$àDŽ$ŒÇD$@H‰œ$H‰D$H„$ÐHDŽ$ÿÿÿÿHDŽ$ÿÿÿÿH‰œ$ H‰D$H„$ÀH‰œ$°HDŽ$ ÿÿÿÿHDŽ$(ÿÿÿÿH‰D$H„$°ÇD$PH‰œ$ÀÇD$`H‰$1ÀH‰œ$ÐÇD$pH‰œ$àDŽ$€èbÞÿÿ1҅À„ŠL‹„$ H´$¹²¿èÇßÿÿH…ÀH‰Å„kH‹´$àL‹hH9Þ„ÆH|$pHšÔè%êÿÿ‰„$Œ‹„$Œ…ÀuSH;¬$ tHƒm„H‹„$èH‹”$èH‹Œ$8dH3%(H‰Ð…HÄ@[]A\A]A^Ã@D‹L$pAƒùvUHœ$0L¶ÏH
«H‰ߺ¾1Àè‹ãÿÿH‹=ts%H‰ÞèœÞÿÿédÿÿÿ€ÇD$péEÿÿÿH‹´$°H9Þ„ŸH¼$HðÓè›åÿÿ‰„$Œ‹„$Œ…À„ÿÿÿL´$ðH‹´$HÔL‰÷èfåÿÿ‰„$Œ‹„$Œ…À„ÝþÿÿH‹´$ÐH9Þ„LH|$`HÔèÎèÿÿ‰„$Œ‹„$Œ…À„¥þÿÿD‹L$`Aƒù‡#H‹Œ$H‹„$E…ɉ„$€‰Êt‰‰ȃ|$PL‹„$ÀH´$ ‰T$@‰D$0ºH˜¿H‰„$ H‰„$(Ƀá Eè®ÝÿÿH…ÀH‰Ã„€HcT$0L‹@H‹„$ H9ÐuH;„$(„£H‹=÷q%H5ØÏèÝÿÿéãýÿÿfDH‹EH‰ïÿP0éãýÿÿèßÿÿH…À…ÔýÿÿH‹=»q%H5äÑèßÜÿÿé¼ýÿÿf.„HDŽ$HDŽ$é_þÿÿÇD$`é¿þÿÿHœ$0L—ÎH
û¨éÌýÿÿ‹D$`H5Բ…ÀtƒøH5«§H¢§HEð‹D$pH=—§HT$0HL$@L‰D$M‰éH‰T$M‰ð…ÀHn§HDøH„$H‰D$H„$€H‰$AÿÔè$ÞÿÿH…ÀtDŽ$Œ‹„$Œ…À„ÂüÿÿH=B²H‰Þ1ÀèÔÝÿÿH‰„$èé¤üÿÿè²ÛÿÿèÝÝÿÿH…À…‘üÿÿH‹=p%H5Òè±Ûÿÿéyüÿÿfff.„AVH‰÷H‰ÖH¨AUATI‰ÌH
£Õ$USHì@H‹ã#dH‹%(H‰„$81ÀHD$PLŒ$ L„$HDŽ$èÇD$0H‰D$ H„$àDŽ$ŒÇD$@H‰œ$H‰D$H„$ÐHDŽ$ÿÿÿÿHDŽ$ÿÿÿÿH‰œ$ H‰D$H„$ÀH‰œ$°HDŽ$ ÿÿÿÿHDŽ$(ÿÿÿÿH‰D$H„$°ÇD$PH‰œ$ÀÇD$`H‰$1ÀH‰œ$ÐÇD$pH‰œ$àDŽ$€è"Ùÿÿ1҅À„ŠL‹„$ H´$¹²¿è‡ÚÿÿH…ÀH‰Å„kH‹´$àL‹hH9Þ„ÆH|$pH
Ñèåäÿÿ‰„$Œ‹„$Œ…ÀuSH;¬$ tHƒm„H‹„$èH‹”$èH‹Œ$8dH3%(H‰Ð…HÄ@[]A\A]A^Ã@D‹L$pAƒùvUHœ$0LvÊH
¦H‰ߺ¾1ÀèKÞÿÿH‹=4n%H‰Þè\Ùÿÿédÿÿÿ€ÇD$péEÿÿÿH‹´$°H9Þ„ŸH¼$H`Ðè[àÿÿ‰„$Œ‹„$Œ…À„ÿÿÿL´$ðH‹´$HvÐL‰÷è&àÿÿ‰„$Œ‹„$Œ…À„ÝþÿÿH‹´$ÐH9Þ„LH|$`H‹ÐèŽãÿÿ‰„$Œ‹„$Œ…À„¥þÿÿD‹L$`Aƒù‡#H‹Œ$H‹„$E…ɉ„$€‰Êt‰‰ȃ|$PL‹„$ÀH´$ ‰T$@‰D$0ºH˜¿H‰„$ H‰„$(Ƀá EènØÿÿH…ÀH‰Ã„€HcT$0L‹@H‹„$ H9ÐuH;„$(„£H‹=·l%H5˜ÊèÛ×ÿÿéãýÿÿfDH‹EH‰ïÿP0éãýÿÿèËÙÿÿH…À…ÔýÿÿH‹={l%H5TÎèŸ×ÿÿé¼ýÿÿf.„HDŽ$HDŽ$é_þÿÿÇD$`é¿þÿÿHœ$0LWÉH
÷£éÌýÿÿ‹D$`H5”­…ÀtƒøH5k¢Hb¢HEð‹D$pH=W¢HT$0HL$@L‰D$M‰éH‰T$M‰ð…ÀH.¢HDøH„$H‰D$H„$€H‰$AÿÔèäØÿÿH…ÀtDŽ$Œ‹„$Œ…À„ÂüÿÿH=­H‰Þ1Àè”ØÿÿH‰„$èé¤üÿÿèrÖÿÿèØÿÿH…À…‘üÿÿH‹=Mk%H5ŽÎèqÖÿÿéyüÿÿfff.„AWH‰÷H‰ÖH£AVAUATI‰ÌH
AÏ$USHìˆH‹ÑÝ#dH‹%(H‰„$x1ÀHD$`HDŽ$ÇD$@DŽ$¬ÇD$PLŒ$ÀH‰D$(H„$H‰œ$°HDŽ$0ÿÿÿÿHDŽ$8ÿÿÿÿL„$°H‰D$ H„$H‰œ$ÀHDŽ$@ÿÿÿÿHDŽ$HÿÿÿÿH‰œ$ÐH‰œ$àHDŽ$`ÿÿÿÿHDŽ$hÿÿÿÿÇD$`H‰œ$ðÇD$pH‰œ$DŽ$€H‰œ$DŽ$DŽ$ H‰D$H„$ðH‰D$H„$àH‰D$H„$ÐH‰$1Àè¥Óÿÿ1҅À„ L‹„$ÀH´$0¹²¿è
ÕÿÿH…ÀH‰Å„>L‹„$ÐH´$@¹º¿L‹hèÖÔÿÿH…ÀI‰Ç„:H‹´$L‹pH9Þ„ÝH¼$€HVÍè1ßÿÿ‰„$¬‹„$¬…ÀtKD‹Œ$€Aƒù†½Hœ$pLÅH
è ¾H‰ߺ1ÀèãØÿÿH‹=Ìh%H‰ÞèôÓÿÿL;¼$Ðt
Iƒ/„`H;¬$ÀtHƒm„;H‹„$H‹”$H‹Œ$xdH3%(H‰Ð…ÆHĈ[]A\A]A^A_ÀDŽ$€é.ÿÿÿ„H‹´$àH9Þ„OH¼$PHÌè‹Úÿÿ‰„$¬‹„$¬…À„AÿÿÿH„$ H‹´$°H¦ÌH‰ÇH‰D$8èQÚÿÿ‰„$¬‹„$¬…À„ÿÿÿH‹´$H9Þ„÷H|$pH¶Ìè¹Ýÿÿ‰„$¬‹„$¬…À„ÏþÿÿD‹L$pAƒù†ÎHœ$pL½ÌH
‚Ÿé‚þÿÿf„H‹EH‰ïÿP0é¶þÿÿI‹GL‰ÿÿP0é‘þÿÿè{ÔÿÿH…À…—þÿÿH‹=+g%H5´ÊèOÒÿÿéþÿÿf.„èKÔÿÿH…À…RþÿÿH‹=ûf%H5ÔÊèÒÿÿé:þÿÿf.„HDŽ$PHDŽ$Xé¯þÿÿÇD$péÿÿÿH‹„$@H‹”$0E…ÉH‹´$HH‹Œ$8‰„$ ‰”$„¡9։D$@‰L$P@•ÇLcÉ@„ÿ…Ÿƒ|$`L‹„$ðH´$`H˜º¿H‰„$`L‰Œ$hɃá Eè¤ÑÿÿH…ÀH‰Ã„(L‹@HcD$@H9„$`uHcD$PH9„$htPH‹=ïe%H5ØËèÑÿÿéýÿÿ9IT$@‰t$P@•ÇLcΉÐéXÿÿÿHœ$pL/ËH
֝éÄüÿÿè¶Ðÿÿƒ¼$€HœH5õ›H=ö›HT$@HL$PL‰D$ M‰éL‹D$8H‰T$(L‰t$HEðƒ|$pHDøH„$PH‰D$H„$ H‰D$H„$H‰$AÿÔèmÒÿÿH…ÀtDŽ$¬‹„$¬…À„JüÿÿH=‹¦H‰Þ1ÀèÒÿÿH‰„$é,üÿÿè+ÒÿÿH…À…üÿÿH‹=Ûd%H5|ÊèÿÏÿÿéüÿÿf.„AWH‰÷H‰ÖHæœAVAUATI‰ÌH
È$USHìˆH‹a×#dH‹%(H‰„$x1ÀHD$`HDŽ$ÇD$@DŽ$¬ÇD$PLŒ$ÀH‰D$(H„$H‰œ$°HDŽ$0ÿÿÿÿHDŽ$8ÿÿÿÿL„$°H‰D$ H„$H‰œ$ÀHDŽ$@ÿÿÿÿHDŽ$HÿÿÿÿH‰œ$ÐH‰œ$àHDŽ$`ÿÿÿÿHDŽ$hÿÿÿÿÇD$`H‰œ$ðÇD$pH‰œ$DŽ$€H‰œ$DŽ$DŽ$ H‰D$H„$ðH‰D$H„$àH‰D$H„$ÐH‰$1Àè5Íÿÿ1҅À„ L‹„$ÀH´$0¹²¿èšÎÿÿH…ÀH‰Å„>L‹„$ÐH´$@¹º¿L‹hèfÎÿÿH…ÀI‰Ç„:H‹´$L‹pH9Þ„ÝH¼$€H†ÉèÁØÿÿ‰„$¬‹„$¬…ÀtKD‹Œ$€Aƒù†½Hœ$pLž¾H
Ú¾H‰ߺ1ÀèsÒÿÿH‹=\b%H‰Þè„ÍÿÿL;¼$Ðt
Iƒ/„`H;¬$ÀtHƒm„;H‹„$H‹”$H‹Œ$xdH3%(H‰Ð…ÆHĈ[]A\A]A^A_ÀDŽ$€é.ÿÿÿ„H‹´$àH9Þ„OH¼$PHÀÈèÔÿÿ‰„$¬‹„$¬…À„AÿÿÿH„$ H‹´$°HÖÈH‰ÇH‰D$8èáÓÿÿ‰„$¬‹„$¬…À„ÿÿÿH‹´$H9Þ„÷H|$pHæÈèI×ÿÿ‰„$¬‹„$¬…À„ÏþÿÿD‹L$pAƒù†ÎHœ$pLMÆH
]™é‚þÿÿf„H‹EH‰ïÿP0é¶þÿÿI‹GL‰ÿÿP0é‘þÿÿèÎÿÿH…À…—þÿÿH‹=»`%H5äÆèßËÿÿéþÿÿf.„èÛÍÿÿH…À…RþÿÿH‹=‹`%H5Çè¯Ëÿÿé:þÿÿf.„HDŽ$PHDŽ$Xé¯þÿÿÇD$péÿÿÿH‹„$@H‹”$0E…ÉH‹´$HH‹Œ$8‰„$ ‰”$„¡9։D$@‰L$P@•ÇLcÉ@„ÿ…Ÿƒ|$`L‹„$ðH´$`H˜º¿H‰„$`L‰Œ$hɃá Eè4ËÿÿH…ÀH‰Ã„(L‹@HcD$@H9„$`uHcD$PH9„$htPH‹=_%H5hÅè£Êÿÿéýÿÿ9IT$@‰t$P@•ÇLcΉÐéXÿÿÿHœ$pL¿ÄH
±—éÄüÿÿèFÊÿÿƒ¼$€H’•H5…•H=†•HT$@HL$PL‰D$ M‰éL‹D$8H‰T$(L‰t$HEðƒ|$pHDøH„$PH‰D$H„$ H‰D$H„$H‰$AÿÔèýËÿÿH…ÀtDŽ$¬‹„$¬…À„JüÿÿH= H‰Þ1Àè­ËÿÿH‰„$é,üÿÿè»ËÿÿH…À…üÿÿH‹=k^%H5LÆèÉÿÿéüÿÿf.„AWH‰÷H‰ÖHVAVAUI‰ÍH
#À$ATUSHì˜H‹ñÐ#dH‹%(H‰„$ˆ1ÀHD$pHDŽ$(ÇD$@DŽ$¼ÇD$PLŒ$ÐH‰D$(H„$ ÇD$`H‰œ$ÀHDŽ$@ÿÿÿÿL„$ÀHDŽ$HÿÿÿÿH‰œ$ÐHDŽ$PÿÿÿÿHDŽ$XÿÿÿÿH‰œ$àH‰œ$ðHDŽ$pÿÿÿÿHDŽ$xÿÿÿÿÇD$pH‰œ$DŽ$€H‰œ$DŽ$H‰œ$ DŽ$ DŽ$°H‰D$ H„$H‰D$H„$H‰D$H„$ðH‰D$H„$àH‰$1ÀèºÆÿÿ1҅À„rL‹„$ÐH´$@¹²¿èÈÿÿH…ÀH‰Å„³L‹„$àH´$P¹º¿L‹pèëÇÿÿH…ÀI‰Ä„H‹´$L‹xH9Þ„*H¼$€HÅèFÒÿÿ‰„$¼‹„$¼…À„ D‹Œ$€Aƒù‡^H‹´$ H9Þ„íH¼$HþÄèùÑÿÿ‰„$¼‹„$¼…ÀtWD‹Œ$Aƒù‡µH‹´$ðH9Þ„ÄH¼$`H5ÅèÎÿÿ‰„$¼‹„$¼…À…f.„L;¤$àtIƒ,$tH;¬$ÐtHƒmt^H‹„$(H‹”$(H‹Œ$ˆdH3%(H‰Ð…oHĘ[]A\A]A^A_ÃfDŽ$€éáþÿÿDŽ$éÿÿÿH‹EH‰ïÿP0ë–@I‹D$L‰çÿP0éqÿÿÿèÈÿÿH…À…tÿÿÿH‹=ËZ%H5ôÂèïÅÿÿé\ÿÿÿf.„Hœ$€La´H
1“H‰ߺ¾1Àè–ÊÿÿH‹=Z%H‰Þè§ÅÿÿéòþÿÿfHœ$0H‹´$ÀH1ÄH‰ßèÁÌÿÿ‰„$¼‹„$¼…À„»þÿÿ‹¼$€H‹´$HH‹„$PH‹”$@L‹Œ$X…ÿ‰ñ‰„$°‰”$ t‰щò‹´$‰L$`‰T$@…ö„D9ÉA‰Á•DÉD‰L$P…ƒ|$pL‹„$HcÒH´$pH‰”$pMcɺ¿L‰Œ$xɃá Eè
ÅÿÿH…ÀI‰Â„¾L‹@HcD$@H9„$puHcD$PH9„$x„ªH‹=QY%H5:¿èuÄÿÿéÀýÿÿè{ÆÿÿH…À…ÃýÿÿH‹=+Y%H5¤ÁèOÄÿÿé«ýÿÿf.„Hœ$€LQÂH
¦‘é[þÿÿDHDŽ$`HDŽ$hé:ýÿÿ9Á•ÁéíþÿÿHœ$€LâÂH
t‘éþÿÿ‹„$H5$š…ÀtƒøH5ûŽHòŽHEð‹„$€H=ý™…ÀtƒøH=ԎHˎHEøH„$`HT$@L‰T$8HL$PL‰D$(I‰ÙH‰D$ H„$°H‰T$0LD$`L‰|$L‰4$H‰D$H„$ H‰D$AÿÕèGÅÿÿH…ÀL‹T$8tDŽ$¼‹„$¼…À„cüÿÿH=`™L‰Ö1ÀèòÄÿÿH‰„$(éEüÿÿèÐÂÿÿèûÄÿÿH…À…2üÿÿH‹=«W%H5üÁèÏÂÿÿéüÿÿf.„AWH‰÷H‰ÖHQAVAUATI‰ÌH
á±$USHìHH‹1Ê#dH‹%(H‰„$81ÀHD$@LŒ$ÀL„$ HDŽ$ÇD$0H‰D$(H„$DŽ$œHDŽ$ ÿÿÿÿHDŽ$(ÿÿÿÿH‰D$ H„$H‰œ$ HDŽ$°ÿÿÿÿÇD$@H‰D$H„$ðH‰œ$ÀÇD$PH‰œ$ÐH‰D$H„$àÇD$`H‰œ$àÇD$pH‰D$H„$ÐH‰œ$ðDŽ$€H‰œ$DŽ$H‰œ$H‰$1Àè,Àÿÿ1҅Àt{L‹„$ H´$ ¹²¿è•ÁÿÿH…ÀH‰Å„‘L‹hH‹„$(H9„$ tkH‹=ìU%H5ÕÀèÁÿÿH;¬$ tHƒm„ËH‹„$H‹”$H‹Œ$8dH3%(H‰Ð…ÏHÄH[]A\A]A^A_ÀH‹´$ðH9Þ„‡H|$pH“ÀèvËÿÿ‰„$œ‹„$œ…À„pÿÿÿD‹L$pAƒùveHœ$0LžÀH
ŽH‰ߺ¾1Àè+ÅÿÿH‹=U%H‰Þè<Àÿÿé'ÿÿÿ€H‹EH‰ïÿP0é&ÿÿÿÇD$pë‡fDH‹´$H9Þ„H¼$H`ÀèËÊÿÿ‰„$œ‹„$œ…À„ÅþÿÿD‹Œ$AƒùvWHœ$0LhÀH
{éMÿÿÿ@è³ÁÿÿH…À…ŸþÿÿH‹=cT%H5ü¾臿ÿÿé‡þÿÿfDŽ$ëH‹´$àH9Þ„H|$`HCÀè.Êÿÿ‰„$œ‹„$œ…À„(þÿÿ‹D$`…À„áƒ|$@L‹„$ÀH´$°º¿Ƀá ƒÁèP¿ÿÿH…ÀI‰Æ„H‹´$L‹xH9Þ„²H¼$€H€Àè«Éÿÿ‰„$œ‹„$œ…À„¥ýÿÿD‹Œ$€Aƒù‡†H‹´$ÐH9Þ„°H|$PH®ÀèaÉÿÿ‰„$œ‹„$œ…À„[ýÿÿD‹L$PE…Ɉ`H‹¼$°IcñH9þLD‹D$`H‹„$ ‹L$`AÁøPÿ‰D$0D1ÁD)Á¯ÑDÊHcÒH9׎fHÁæ‹„$€H8‰I÷ƒ¼$H5E”HDօÀtƒøH5‰H‰HEðƒ|$pHýˆH=üˆHL$0M‰èL‰<$I‰ÉHDøHD$`H‰D$AÿÔ謿ÿÿH…ÀtDŽ$œ‹„$œ…À„müÿÿH=ʓL‰ö1Àè\¿ÿÿH‰„$éOüÿÿ€ÇD$`éþÿÿHœ$0E1ÉLi¾H
‹éÎüÿÿDŽ$€éYþÿÿHœ$0Lþ¾H
ùŠé£üÿÿèݼÿÿHœ$0LV¿H
ìŠéƒüÿÿÇD$Pé[þÿÿèà¾ÿÿH…À…·ûÿÿH‹=Q%H5¾贼ÿÿéŸûÿÿHœ$0A‰ÁL=¿H
­Šé2üÿÿAWH‰÷H‰ÖH§ŠAVAUATI‰ÌH
Q«$USHìHH‹Ä#dH‹%(H‰„$81ÀHD$@LŒ$ÀL„$ HDŽ$ÇD$0H‰D$(H„$DŽ$œHDŽ$ ÿÿÿÿHDŽ$(ÿÿÿÿH‰D$ H„$H‰œ$ HDŽ$°ÿÿÿÿÇD$@H‰D$H„$ðH‰œ$ÀÇD$PH‰œ$ÐH‰D$H„$àÇD$`H‰œ$àÇD$pH‰D$H„$ÐH‰œ$ðDŽ$€H‰œ$DŽ$H‰œ$H‰$1Àèü¹ÿÿ1҅Àt{L‹„$ H´$ ¹²¿èe»ÿÿH…ÀH‰Å„‘L‹hH‹„$(H9„$ tkH‹=¼O%H5¥ºèàºÿÿH;¬$ tHƒm„ËH‹„$H‹”$H‹Œ$8dH3%(H‰Ð…ÇHÄH[]A\A]A^A_ÀH‹´$ðH9Þ„‡H|$pH“½èFÅÿÿ‰„$œ‹„$œ…À„pÿÿÿD‹L$pAƒùveHœ$0LnºH
lˆH‰ߺ¾1Àèû¾ÿÿH‹=äN%H‰Þèºÿÿé'ÿÿÿ€H‹EH‰ïÿP0é&ÿÿÿÇD$pë‡fDH‹´$H9Þ„H¼$H(½è›Äÿÿ‰„$œ‹„$œ…À„ÅþÿÿD‹Œ$AƒùvWHœ$0L8ºH
чéMÿÿÿ@胻ÿÿH…À…ŸþÿÿH‹=3N%H54¼èW¹ÿÿé‡þÿÿfDŽ$ëH‹´$àH9Þ„ÿH|$`H˼èþÃÿÿ‰„$œ‹„$œ…À„(þÿÿ‹D$`…À„Ùƒ|$@L‹„$ÀH´$°º¿Ƀá ƒÁè ¹ÿÿH…ÀI‰Æ„H‹´$L‹xH9Þ„ªH¼$€Hؼè{Ãÿÿ‰„$œ‹„$œ…À„¥ýÿÿD‹Œ$€Aƒù‡~H‹´$ÐH9Þ„¨H|$PHμè1Ãÿÿ‰„$œ‹„$œ…À„[ýÿÿD‹L$PE…ɈXH‹¼$°IcñH9þDD‹D$`H‹„$ ‹L$`AÁøPÿ‰D$0D1ÁD)Á¯ÑDÊHcÒH9׎^ƒ¼$‹„$€M÷HƒH5ŽHDօÀtƒøH5ë‚Hâ‚HEðƒ|$pHЂH=ςHL$0L‰$M‰èI‰ÉHDøHD$`H‰D$AÿÔè¹ÿÿH…ÀtDŽ$œ‹„$œ…À„püÿÿH=L‰ö1Àè/¹ÿÿH‰„$éRüÿÿfÇD$`éþÿÿHœ$0E1ÉLA¸H
p…éÖüÿÿDŽ$€éaþÿÿHœ$0LָH
W…é«üÿÿ赶ÿÿHœ$0L.¹H
J…é‹üÿÿÇD$Pécþÿÿ踸ÿÿH…À…¿ûÿÿH‹=hK%H5yº茶ÿÿé§ûÿÿHœ$0A‰ÁL¹H
…é:üÿÿf„AWH‰÷H‰ÖHý„AVAUATI‰ÌH
d$USHìHH‹ѽ#dH‹%(H‰„$81ÀHD$@LŒ$ÀL„$ HDŽ$ÇD$0H‰D$(H„$DŽ$œHDŽ$ ÿÿÿÿHDŽ$(ÿÿÿÿH‰D$ H„$H‰œ$ HDŽ$°ÿÿÿÿÇD$@H‰D$H„$ðH‰œ$ÀÇD$PH‰œ$ÐH‰D$H„$àÇD$`H‰œ$àÇD$pH‰D$H„$ÐH‰œ$ðDŽ$€H‰œ$DŽ$H‰œ$H‰$1Àè̳ÿÿ1҅Àt{L‹„$ H´$ ¹²¿è5µÿÿH…ÀH‰Å„‘L‹hH‹„$(H9„$ tkH‹=ŒI%H5u´谴ÿÿH;¬$ tHƒm„ËH‹„$H‹”$H‹Œ$8dH3%(H‰Ð…ÇHÄH[]A\A]A^A_ÀH‹´$ðH9Þ„‡H|$pHC¹è¿ÿÿ‰„$œ‹„$œ…À„pÿÿÿD‹L$pAƒùveHœ$0L>´H
‚H‰ߺ¾1Àè˸ÿÿH‹=´H%H‰Þèܳÿÿé'ÿÿÿ€H‹EH‰ïÿP0é&ÿÿÿÇD$pë‡fDH‹´$H9Þ„H¼$Hظèk¾ÿÿ‰„$œ‹„$œ…À„ÅþÿÿD‹Œ$AƒùvWHœ$0L´H
'‚éMÿÿÿ@èSµÿÿH…À…ŸþÿÿH‹=H%H5ä·è'³ÿÿé‡þÿÿfDŽ$ëH‹´$àH9Þ„ÿH|$`H{¸èνÿÿ‰„$œ‹„$œ…À„(þÿÿ‹D$`…À„Ùƒ|$@L‹„$ÀH´$°º¿Ƀá ƒÁèð²ÿÿH…ÀI‰Æ„H‹´$L‹xH9Þ„ªH¼$€Hˆ¸èK½ÿÿ‰„$œ‹„$œ…À„¥ýÿÿD‹Œ$€Aƒù‡~H‹´$ÐH9Þ„¨H|$PH~¸è½ÿÿ‰„$œ‹„$œ…À„[ýÿÿD‹L$PE…ɈXH‹¼$°IcñH9þDD‹D$`H‹„$ ‹L$`AÁøPÿ‰D$0D1ÁD)Á¯ÑDÊHcÒH9׎^ƒ¼$‹„$€M÷HÐ|H5è‡HDօÀtƒøH5»|H²|HEðƒ|$pH |H=Ÿ|HL$0L‰$M‰èI‰ÉHDøHD$`H‰D$AÿÔèO³ÿÿH…ÀtDŽ$œ‹„$œ…À„püÿÿH=m‡L‰ö1Àèÿ²ÿÿH‰„$éRüÿÿfÇD$`éþÿÿHœ$0E1ÉL²H
ÆéÖüÿÿDŽ$€éaþÿÿHœ$0L¦²H
­é«üÿÿ腰ÿÿHœ$0Lþ²H
 é‹üÿÿÇD$Pécþÿÿ舲ÿÿH…À…¿ûÿÿH‹=8E%H5)¶è\°ÿÿé§ûÿÿHœ$0A‰ÁLå²H
aé:üÿÿf„AWH‰÷H‰ÖHSAVAUATI‰ÌH
1ž$USHìHH‹¡·#dH‹%(H‰„$81ÀHD$@LŒ$ÀL„$ HDŽ$ÇD$0H‰D$(H„$DŽ$œHDŽ$ ÿÿÿÿHDŽ$(ÿÿÿÿH‰D$ H„$H‰œ$ HDŽ$°ÿÿÿÿÇD$@H‰D$H„$ðH‰œ$ÀÇD$PH‰œ$ÐH‰D$H„$àÇD$`H‰œ$àÇD$pH‰D$H„$ÐH‰œ$ðDŽ$€H‰œ$DŽ$H‰œ$H‰$1À蜭ÿÿ1҅Àt{L‹„$ H´$ ¹²¿è¯ÿÿH…ÀH‰Å„‘L‹hH‹„$(H9„$ tkH‹=\C%H5E®耮ÿÿH;¬$ tHƒm„ËH‹„$H‹”$H‹Œ$8dH3%(H‰Ð…ÇHÄH[]A\A]A^A_ÀH‹´$ðH9Þ„‡H|$pHó´èæ¸ÿÿ‰„$œ‹„$œ…À„pÿÿÿD‹L$pAƒùveHœ$0L®H
}H‰ߺ¾1À蛲ÿÿH‹=„B%H‰Þ謭ÿÿé'ÿÿÿ€H‹EH‰ïÿP0é&ÿÿÿÇD$pë‡fDH‹´$H9Þ„H¼$Hˆ´è;¸ÿÿ‰„$œ‹„$œ…À„ÅþÿÿD‹Œ$AƒùvWHœ$0LحH
}|éMÿÿÿ@è#¯ÿÿH…À…ŸþÿÿH‹=ÓA%H5”³è÷¬ÿÿé‡þÿÿfDŽ$ëH‹´$àH9Þ„ÿH|$`H+´螷ÿÿ‰„$œ‹„$œ…À„(þÿÿ‹D$`…À„Ùƒ|$@L‹„$ÀH´$°º¿Ƀá ƒÁè,ÿÿH…ÀI‰Æ„H‹´$L‹xH9Þ„ªH¼$€H8´è·ÿÿ‰„$œ‹„$œ…À„¥ýÿÿD‹Œ$€Aƒù‡~H‹´$ÐH9Þ„¨H|$PH.´èѶÿÿ‰„$œ‹„$œ…À„[ýÿÿD‹L$PE…ɈXH‹¼$°IcñH9þDD‹D$`H‹„$ ‹L$`AÁøPÿ‰D$0D1ÁD)Á¯ÑDÊHcÒH9׎^ƒ¼$‹„$€M·H vH5¸HDօÀtƒøH5‹vH‚vHEðƒ|$pHpvH=ovHL$0L‰$M‰èI‰ÉHDøHD$`H‰D$AÿÔè­ÿÿH…ÀtDŽ$œ‹„$œ…À„püÿÿH==L‰ö1ÀèϬÿÿH‰„$éRüÿÿfÇD$`éþÿÿHœ$0E1ÉLá«H
zéÖüÿÿDŽ$€éaþÿÿHœ$0Lv¬H
zé«üÿÿèUªÿÿHœ$0LάH
öyé‹üÿÿÇD$PécþÿÿèX¬ÿÿH…À…¿ûÿÿH‹=?%H5ٱè,ªÿÿé§ûÿÿHœ$0A‰ÁLµ¬H
·yé:üÿÿf„AWH‰÷H‰ÖH©yAVAUATI‰ÌH
¡—$USHìÈH‹q±#dH‹%(H‰„$¸1ÀHD$`HDŽ$xÇD$PDŽ$¼H‰œ$ÀLŒ$ÐH‰D$@H„$pHDŽ$ÿÿÿÿHDŽ$˜ÿÿÿÿH‰œ$ÐL„$ÀHDŽ$àÿÿÿÿH‰œ$ðH‰œ$HDŽ$ÿÿÿÿÇD$`H‰œ$ ÇD$pH‰œ$0DŽ$€H‰œ$@DŽ$H‰œ$PDŽ$ H‰œ$`DŽ$°H‰œ$pH‰D$8H„$`H‰D$0H„$PH‰D$(H„$@H‰D$ H„$0H‰D$H„$ H‰D$H„$H‰D$H„$ðH‰$1Àè§ÿÿ1҅Àt{L‹„$ÐH´$¹²¿脨ÿÿH…ÀH‰Å„hL‹hH‹„$˜H9„$tjH‹=Û<%H5̰èÿ§ÿÿH;¬$ÐtHƒm„ÊH‹„$xH‹”$xH‹Œ$¸dH3%(H‰Ð…¹HÄÈ[]A\A]A^A_ÃfDH‹´$pH9Þ„‡H¼$°Hˆ°èc²ÿÿ‰„$¼‹„$¼…À„nÿÿÿD‹Œ$°Aƒùv_Hœ$°L°H
wH‰ߺ¾1Àè¬ÿÿH‹=þ;%H‰Þè&§ÿÿé"ÿÿÿH‹EH‰ïÿP0é'ÿÿÿDŽ$°é„ÿÿÿH‹´$@H9Þ„_H¼$€HX°軱ÿÿ‰„$¼‹„$¼…À„Æþÿÿ‹”$€…Ò„6H‹´$`H9Þ„CH¼$ H~°èq±ÿÿ‰„$¼‹„$¼…À„|þÿÿ‹„$ …À„H‹´$PH9Þ„'H¼$H¤°è'±ÿÿ‰„$¼‹„$¼…À„2þÿÿH‹´$H9Þ„üH¼$ H©°èL­ÿÿ‰„$¼‹„$¼…À„÷ýÿÿL¼$€H‹´$ÀH¿°L‰ÿè­ÿÿ‰„$¼‹„$¼…À„ÂýÿÿH‹´$0H9Þ„®H|$pH԰è°ÿÿ‰„$¼‹„$¼…À„ŠýÿÿH‹„$L‹„$ðH´$๺¿‰D$P詥ÿÿH…ÀI‰Æ„*L‹H‹D$P‹¼$€HcT$pH‹´$àHÿ‹„$€Áÿ1ø)ø¯ÁÐH˜H9ÆŽÕ…Òx	H9֏H‹=Ì9%H5í°èð¤ÿÿL;´$ð„ãüÿÿIƒ.…ÙüÿÿI‹FL‰÷ÿP0éÊüÿÿf„è˦ÿÿH…À…ÈüÿÿH‹={9%H5­蟤ÿÿé°üÿÿf.„DŽ$€é¬ýÿÿHœ$°E1ÉL&®H
LtéýÿÿDŽ$ éÈýÿÿHœ$°E1ÉLh®H
0téëüÿÿDŽ$éäýÿÿHDŽ$ HDŽ$¨éþÿÿèâ£ÿÿÇD$pé]þÿÿL‹„$ ƒÈÿI9Ø„"ƒ|$`H´$H˜º¿L‰L$HH‰„$Ƀá €Ʌèþ£ÿÿH…ÀH‰ÃL‹L$H„¸‹´$ ‹”$ H‹xHc„$H‹Œ$Áþ1ò)ò‹t$Pƒî¯ÖÂHcÒH9Ñ~c…Àx	H9Á¼H‹=8%H5õ¯è@£ÿÿéKþÿÿH‹=8%H5í®è(£ÿÿé3þÿÿè.¥ÿÿH…À…ûÿÿH‹=Þ7%H5w®è£ÿÿéþúÿÿH‹=Æ7%H5g¯èê¢ÿÿéõýÿÿèð¤ÿÿH…À…çýÿÿH‹= 7%H5ù®èĢÿÿéÏýÿÿ‹”$ ‹„$ Áú1Ð)Ћ”$¯MDé¶þÿÿHÁàH
ÁmHt$PHHcD$pH=²mI‰ðH‰T$H”$ HÁàƒ¼$°H‰T$H”$€H‰$L‰úHDùHŒ$ IÁH‰L$L‰éAÿÔè8¤ÿÿH…ÀtDŽ$¼‹„$¼…À„ýÿÿH=VxH‰Þ1Àèè£ÿÿH‰„$xéûüÿÿff.„AWH‰÷H‰ÖHÚqAVAUATUSH‰ËH
ÿ$HìèL‹=Q©#dH‹%(H‰„$Ø1ÀH„$€HDŽ$˜ÇD$`DŽ$ÜÇD$pLŒ$ðL‰¼$àHDŽ$°ÿÿÿÿL„$àHDŽ$¸ÿÿÿÿL‰¼$ðHDŽ$ÿÿÿÿL‰¼$L‰¼$ HDŽ$0ÿÿÿÿDŽ$€L‰¼$@DŽ$L‰¼$PDŽ$ L‰¼$`DŽ$°L‰¼$pDŽ$ÀL‰¼$€DŽ$ÐL‰¼$H‰D$@H„$H‰D$8H„$€H‰D$0H„$pH‰D$(H„$`H‰D$ H„$PH‰D$H„$@H‰D$H„$ H‰D$H„$H‰$1Àèêžÿÿ1҅À„¨L‹„$ðH´$°¹²¿èO ÿÿH…ÀI‰Æ„+H‹´$`H‹hL9þ„–H¼$ H­說ÿÿ‰„$܋„$܅À„‹¼$ …ÿ„•H‹´$€L9þ„tH¼$ÀHý¬è`ªÿÿ‰„$܋„$܅À„Ò‹´$À…ö„»H‹´$pL9þ„ÊH¼$°Hó¬èªÿÿ‰„$܋„$܅À„ˆH‹´$ L9þ„ŸH¼$ÀHø¬è;¦ÿÿ‰„$܋„$܅À„ML¤$ H‹´$àH­L‰çè¦ÿÿ‰„$܋„$܅À„H‹´$L9þ„LH¼$ÐH ­èk©ÿÿ‰„$܋„$܅À„ÝD‹Œ$ÐAƒù‡ H‹´$PL9þ„/H¼$HK­è©ÿÿ‰„$܋„$܅À„H‹”$°‹Œ$ÐH´$H‹„$¸L‹„$¿…ɉщT$`DȉD$pD‰L$Tº¹‰D$Pè#žÿÿH…ÀI‰Å„ä‹´$ ‹”$ H‹@‹|$TH‹Œ$Áþ1òƒïH‰D$X)òHc„$¯úHcÒH9ÑŽ……ÀˆeH9ÁŽ\L‹„$@ƒÈÿM9ø„}ƒ¼$€H´$0H˜º¿H‰„$0Ƀá €ɅèzÿÿH…ÀI‰Ç„o‹´$À‹”$ÀD‹D$PH‹xHc„$°H‹Œ$0Áþ1òAƒè)òD¯ÂAHcÒH9ÑŽâ…Àx	H9ÁH‹=”1%H5m©踜ÿÿL;¬$tIƒmuI‹EL‰ïÿP0DL;´$ðtIƒ.tXH‹„$˜H‹”$˜H‹œ$ØdH3%(H‰Ð…6HÄè[]A\A]A^A_Ã@DŽ$ éuüÿÿ„I‹FL‰÷ÿP0ëœ@DŽ$Àé—üÿÿHœ$ÐL¹¥H
lE1ÉH‰ߺ¾1ÀèàÿÿH‹=¬0%H‰Þèԛÿÿé7ÿÿÿ€èӝÿÿH…À…2ÿÿÿH‹=ƒ0%H5”¨觛ÿÿéÿÿÿfHœ$ÐE1ÉL¶¥H
¼këŽDDŽ$°éAüÿÿHDŽ$ÀHDŽ$Èé_üÿÿDŽ$Ðé¿üÿÿHœ$ÐLªH
tké1ÿÿÿè›ÿÿDŽ$éÜüÿÿH‹=Ü/%H5ý¦è›ÿÿéCþÿÿH‹=Ä/%H5…ªèèšÿÿé+þÿÿèîœÿÿH…À…=þÿÿH‹=ž/%H5ªèšÿÿé%þÿÿHÁà‹”$ÐHHc„$H=ópHÁàHD$X…ÒtƒúH=ÁeH¸eHEúH‰L$HŒ$ÀHt$`L„$ÀHT$pH‰$H‰L$HŒ$ I‰ñL‰D$ I‰èH‰L$L‰áÿÓèCœÿÿH…ÀtDŽ$܋„$܅À„\ýÿÿH=apL‰þ1Àèó›ÿÿH‰„$˜é>ýÿÿH‹=¿.%H5ªèã™ÿÿé&ýÿÿ‹Œ$À‹”$À‹D$PÁù1ʃè)ʯ‹”$°DéTüÿÿ躛ÿÿH…À…éüÿÿH‹=j.%H5k©莙ÿÿéÑüÿÿf„AUH‰÷H‰ÖHËiATI‰ÌH
E„$USHì¨H‹õ #dH‹%(H‰„$˜1ÀH„$€LL$@LD$`HDŽ$ˆÇD$H‰D$HD$pÇD$<H‰\$@HÇD$PÿÿÿÿH‰$1ÀH‰\$`ÇD$ H‰\$pÇD$0H‰œ$€菗ÿÿ1҅À„›L‹D$`Ht$P¹²¿èú˜ÿÿH…ÀH‰Å„.H‹´$€L‹hH9Þ„‰H|$0H-©èX£ÿÿ‰D$<‹D$<…À„ ‹D$0…À„ŒH‹t$pH9Þ„nH|$ Hb©è£ÿÿ‰D$<‹D$<…À„åD‹L$ E…Ɉ—H‹D$PIcÑH9†H‹t$@H9Þ„¶H|$HŒ©èϢÿÿ‰D$<‹D$<…À„—‹L$0‹D$0D‹L$Hct$ H‹T$PÁù1È)ÈAIÿH)ò¯ÁH˜H9ÂHœ$Ly©H
.héÞHÁæHT$0H|$LîAÿԉÃ芙ÿÿH…ÀtÇD$<‹T$<…ÒtsÿH=ÿg1ÀèD™ÿÿH‰„$ˆ@H;l$`tHƒmtJH‹„$ˆH‹”$ˆH‹Œ$˜dH3%(H‰Ð…éHĨ[]A\A]ÃfÇD$0éþÿÿH‹EH‰ïÿP0ëª@ÇD$ éšþÿÿHœ$L±§H
(gE1ÉH‰ߺ¾1À胛ÿÿH‹=l+%H‰Þ蔖ÿÿéGÿÿÿ€Hœ$L٧H
ófë¹è{˜ÿÿH…À…(ÿÿÿH‹=++%H5´¦èO–ÿÿéÿÿÿH)ЋT$0‹L$0Áú1Ñ)ÑH™HcÉH÷ù‰D$é<þÿÿè–ÿÿfAUH‰÷H‰ÖH·fATI‰ÌH
¥€$USHì¨H‹•#dH‹%(H‰„$˜1ÀH„$€LL$@LD$`HDŽ$ˆÇD$H‰D$HD$pÇD$<H‰\$@HÇD$PÿÿÿÿH‰$1ÀH‰\$`ÇD$ H‰\$pÇD$0H‰œ$€è/”ÿÿ1҅À„›L‹D$`Ht$P¹²¿蚕ÿÿH…ÀH‰Å„.H‹´$€L‹hH9Þ„‰H|$0H}§èøŸÿÿ‰D$<‹D$<…À„ ‹D$0…À„ŒH‹t$pH9Þ„nH|$ H‚§轟ÿÿ‰D$<‹D$<…À„åD‹L$ E…Ɉ—H‹D$PIcÑH9†H‹t$@H9Þ„¶H|$Ht§èoŸÿÿ‰D$<‹D$<…À„—‹L$0‹D$0D‹L$Hct$ H‹T$PÁù1È)ÈAIÿH)ò¯ÁH˜H9ÂHœ$L¦H
eéÞHT$0ItõH|$AÿԉÃè,–ÿÿH…ÀtÇD$<‹T$<…ÒtsÿH=¡d1Àèæ•ÿÿH‰„$ˆfDH;l$`tHƒmtJH‹„$ˆH‹”$ˆH‹Œ$˜dH3%(H‰Ð…éHĨ[]A\A]ÃfÇD$0éþÿÿH‹EH‰ïÿP0ëª@ÇD$ éšþÿÿHœ$LQ¤H
dE1ÉH‰ߺ¾1Àè#˜ÿÿH‹=(%H‰Þè4“ÿÿéGÿÿÿ€Hœ$Ly¤H
ßcë¹è•ÿÿH…À…(ÿÿÿH‹=Ë'%H5¥èï’ÿÿéÿÿÿH)ЋT$0‹L$0Áú1Ñ)ÑH™HcÉH÷ù‰D$é<þÿÿ袒ÿÿfAUH‰÷H‰ÖH¡cATI‰ÌH
}$USHì¨H‹5š#dH‹%(H‰„$˜1ÀH„$€LL$@LD$`HDŽ$ˆÇD$H‰D$HD$pÇD$<H‰\$@HÇD$PÿÿÿÿH‰$1ÀH‰\$`ÇD$ H‰\$pÇD$0H‰œ$€èϐÿÿ1҅À„›L‹D$`Ht$P¹²¿è:’ÿÿH…ÀH‰Å„.H‹´$€L‹hH9Þ„‰H|$0H-¥蘜ÿÿ‰D$<‹D$<…À„ ‹D$0…À„ŒH‹t$pH9Þ„nH|$ H2¥è]œÿÿ‰D$<‹D$<…À„åD‹L$ E…Ɉ—H‹D$PIcÑH9†H‹t$@H9Þ„¶H|$H$¥èœÿÿ‰D$<‹D$<…À„—‹L$0‹D$0D‹L$Hct$ H‹T$PÁù1È)ÈAIÿH)ò¯ÁH˜H9ÂHœ$L¹¢H
béÞHT$0ItõH|$AÿԉÃè̒ÿÿH…ÀtÇD$<‹T$<…ÒtsÿH=Aa1À膒ÿÿH‰„$ˆfDH;l$`tHƒmtJH‹„$ˆH‹”$ˆH‹Œ$˜dH3%(H‰Ð…éHĨ[]A\A]ÃfÇD$0éþÿÿH‹EH‰ïÿP0ëª@ÇD$ éšþÿÿHœ$Lñ H
þ`E1ÉH‰ߺ¾1ÀèÔÿÿH‹=¬$%H‰ÞèԏÿÿéGÿÿÿ€Hœ$L¡H
É`ë¹軑ÿÿH…À…(ÿÿÿH‹=k$%H5´¢菏ÿÿéÿÿÿH)ЋT$0‹L$0Áú1Ñ)ÑH™HcÉH÷ù‰D$é<þÿÿèBÿÿfAUH‰÷H‰ÖH‹`ATI‰ÌH
ey$USHì¨H‹Ֆ#dH‹%(H‰„$˜1ÀH„$€LL$@LD$`HDŽ$ˆÇD$H‰D$HD$pÇD$<H‰\$@HÇD$PÿÿÿÿH‰$1ÀH‰\$`ÇD$ H‰\$pÇD$0H‰œ$€èoÿÿ1҅À„›L‹D$`Ht$P¹²¿èڎÿÿH…ÀH‰Å„.H‹´$€L‹hH9Þ„‰H|$0Hݢè8™ÿÿ‰D$<‹D$<…À„ ‹D$0…À„ŒH‹t$pH9Þ„nH|$ Hâ¢èý˜ÿÿ‰D$<‹D$<…À„åD‹L$ E…Ɉ—H‹D$PIcÑH9†H‹t$@H9Þ„¶H|$HԢ诘ÿÿ‰D$<‹D$<…À„—‹L$0‹D$0D‹L$Hct$ H‹T$PÁù1È)ÈAIÿH)ò¯ÁH˜H9ÂHœ$LYŸH
î^éÞHT$0ItµH|$AÿԉÃèlÿÿH…ÀtÇD$<‹T$<…ÒtsÿH=á]1Àè&ÿÿH‰„$ˆfDH;l$`tHƒmtJH‹„$ˆH‹”$ˆH‹Œ$˜dH3%(H‰Ð…éHĨ[]A\A]ÃfÇD$0éþÿÿH‹EH‰ïÿP0ëª@ÇD$ éšþÿÿHœ$L‘H
è]E1ÉH‰ߺ¾1Àèc‘ÿÿH‹=L!%H‰ÞètŒÿÿéGÿÿÿ€Hœ$L¹H
³]ë¹è[ŽÿÿH…À…(ÿÿÿH‹=!%H5d è/ŒÿÿéÿÿÿH)ЋT$0‹L$0Áú1Ñ)ÑH™HcÉH÷ù‰D$é<þÿÿèâ‹ÿÿfAUH‰÷H‰ÖHu]ATI‰ÌH
Åu$USHì¸H‹u“#dH‹%(H‰„$¨1ÀH„$LL$PLD$pHDŽ$˜HÇD$@H‰D$H„$€ÇD$<ÇD$H‰\$PH‰$1ÀHÇD$`ÿÿÿÿH‰\$pÇD$ H‰œ$€ÇD$0H‰œ$èŠÿÿ1҅À„¬L‹D$pHt$`¹²¿èk‹ÿÿH…ÀH‰Å„?H‹´$L‹hH9Þ„šH|$0H~ èɕÿÿ‰D$<‹D$<…À„1‹D$0…À„H‹´$€H9Þ„|H|$ H€ 苕ÿÿ‰D$<‹D$<…À„óD‹L$ E…Ɉ¥H‹D$`IcÑH9”H‹t$PH9Þ„ÄH|$Hr è=•ÿÿ‰D$<‹D$<…À„¥‹L$0‹D$0D‹L$Hct$ H‹T$`Áù1È)ÈAIÿH)ò¯ÁH˜H9ÂHœ$ Lç›H
Æ[éìH‰òHL$0Ht$HÁâH|$@LêAÿÔèò‹ÿÿH…ÀtÇD$<‹D$<…Àt%òD$@H=Dm¸見ÿÿH‰„$˜fDH;l$ptHƒmtJH‹„$˜H‹”$˜H‹Œ$¨dH3%(H‰Ð…éHĸ[]A\A]ÃfÇD$0énþÿÿH‹EH‰ïÿP0ëª@ÇD$ éŒþÿÿHœ$ LšH
²ZE1ÉH‰ߺ¾1ÀèãÿÿH‹=Ì%H‰ÞèôˆÿÿéGÿÿÿ€Hœ$ L9šH
}Zë¹èۊÿÿH…À…(ÿÿÿH‹=‹%H5ô诈ÿÿéÿÿÿH)ЋT$0‹L$0Áú1Ñ)ÑH™HcÉH÷ù‰D$é.þÿÿèbˆÿÿfAUH‰÷H‰ÖH?ZATI‰ÌH
r$USHì¸H‹õ#dH‹%(H‰„$¨1ÀH„$LL$PLD$pHDŽ$˜HÇD$@H‰D$H„$€ÇD$<ÇD$H‰\$PH‰$1ÀHÇD$`ÿÿÿÿH‰\$pÇD$ H‰œ$€ÇD$0H‰œ$耆ÿÿ1҅À„¤L‹D$pHt$`¹²¿èë‡ÿÿH…ÀH‰Å„?H‹´$L‹hH9Þ„šH|$0HžèI’ÿÿ‰D$<‹D$<…À„)‹D$0…À„H‹´$€H9Þ„|H|$ Hžè’ÿÿ‰D$<‹D$<…À„ëD‹L$ E…Ɉ¥H‹D$`IcÑH9”H‹t$PH9Þ„ÄH|$Hž轑ÿÿ‰D$<‹D$<…À„‹L$0‹D$0D‹L$Hct$ H‹T$`Áù1È)ÈAIÿH)ò¯ÁH˜H9ÂHœ$ Lg˜H
XéìITõHL$0Ht$H|$@AÿÔèwˆÿÿH…ÀtÇD$<‹D$<…Àt"òD$@H=Éi¸è+ˆÿÿH‰„$˜H;l$ptHƒmtRH‹„$˜H‹”$˜H‹Œ$¨dH3%(H‰Ð…ñHĸ[]A\A]Ãf.„ÇD$0énþÿÿH‹EH‰ïÿP0ë¢@ÇD$ éŒþÿÿHœ$ L‘–H
{WE1ÉH‰ߺ¾1ÀècŠÿÿH‹=L%H‰Þèt…ÿÿé?ÿÿÿ€Hœ$ L¹–H
EWë¹è[‡ÿÿH…À… ÿÿÿH‹=%H5„›è/…ÿÿéÿÿÿH)ЋT$0‹L$0Áú1Ñ)ÑH™HcÉH÷ù‰D$é.þÿÿèâ„ÿÿfAUH‰÷H‰ÖHWATI‰ÌH
En$USHì¸H‹uŒ#dH‹%(H‰„$¨1ÀH„$LL$PLD$pHDŽ$˜ÇD$H‰D$H„$€ÇD$LÇD$ H‰\$PH‰$1ÀHÇD$`ÿÿÿÿH‰\$pÇD$0H‰œ$€ÇD$@H‰œ$èƒÿÿ1҅À„¥L‹D$pHt$`¹²¿èl„ÿÿH…ÀH‰Å„@H‹´$L‹hH9Þ„›H|$@HŸ›èʎÿÿ‰D$L‹D$L…À„*‹D$@…À„žH‹´$€H9Þ„}H|$0H¡›茎ÿÿ‰D$L‹D$L…À„ìD‹L$0E…Ɉ¦H‹D$`IcÑH9•H‹t$PH9Þ„ÅH|$ H“›è>Žÿÿ‰D$L‹D$L…À„ž‹L$@‹D$@D‹L$ Hct$0H‹T$`Áù1È)ÈAIÿH)ò¯ÁH˜H9ÂHœ$ Lè”H
WUéíITõHL$@Ht$ H|$AÿÔèø„ÿÿH…ÀtÇD$L‹D$L…Àt#óD$H=·b¸ZÀ詄ÿÿH‰„$˜H;l$ptHƒmtRH‹„$˜H‹”$˜H‹Œ$¨dH3%(H‰Ð…ñHĸ[]A\A]Ãf.„ÇD$@émþÿÿH‹EH‰ïÿP0ë¢@ÇD$0é‹þÿÿHœ$ L“H
BTE1ÉH‰ߺ¾1Àèã†ÿÿH‹=Ì%H‰Þèôÿÿé?ÿÿÿ€Hœ$ L9“H

Të¹èۃÿÿH…À… ÿÿÿH‹=‹%H5™证ÿÿéÿÿÿH)ЋT$@‹L$@Áú1Ñ)ÑH™HcÉH÷ù‰D$ é-þÿÿèbÿÿfAUH‰÷H‰ÖHÏSATI‰ÌH
…j$USHì¸H‹õˆ#dH‹%(H‰„$¨1ÀH„$LL$PLD$pHDŽ$˜ÇD$H‰D$H„$€ÇD$LÇD$ H‰\$PH‰$1ÀHÇD$`ÿÿÿÿH‰\$pÇD$0H‰œ$€ÇD$@H‰œ$èÿÿ1҅À„¥L‹D$pHt$`¹²¿èì€ÿÿH…ÀH‰Å„@H‹´$L‹hH9Þ„›H|$@H/™èJ‹ÿÿ‰D$L‹D$L…À„*‹D$@…À„žH‹´$€H9Þ„}H|$0H1™è‹ÿÿ‰D$L‹D$L…À„ìD‹L$0E…Ɉ¦H‹D$`IcÑH9•H‹t$PH9Þ„ÅH|$ H#™辊ÿÿ‰D$L‹D$L…À„ž‹L$@‹D$@D‹L$ Hct$0H‹T$`Áù1È)ÈAIÿH)ò¯ÁH˜H9ÂHœ$ Lh‘H
RéíITµHL$@Ht$ H|$AÿÔèxÿÿH…ÀtÇD$L‹D$L…Àt#óD$H=7_¸ZÀè)ÿÿH‰„$˜H;l$ptHƒmtRH‹„$˜H‹”$˜H‹Œ$¨dH3%(H‰Ð…ñHĸ[]A\A]Ãf.„ÇD$@émþÿÿH‹EH‰ïÿP0ë¢@ÇD$0é‹þÿÿHœ$ L‘H
QE1ÉH‰ߺ¾1ÀècƒÿÿH‹=L%H‰Þèt~ÿÿé?ÿÿÿ€Hœ$ L¹H
ÕPë¹è[€ÿÿH…À… ÿÿÿH‹=%H5¤–è/~ÿÿéÿÿÿH)ЋT$@‹L$@Áú1Ñ)ÑH™HcÉH÷ù‰D$ é-þÿÿèâ}ÿÿfAUH‰÷H‰ÖH•PATI‰ÌH
Åf$USHì¸H‹u…#dH‹%(H‰„$¨1ÀH„$LL$PLD$pHDŽ$˜HÇD$@H‰D$H„$€ÇD$<ÇD$H‰\$PH‰$1ÀHÇD$`ÿÿÿÿH‰\$pÇD$ H‰œ$€ÇD$0H‰œ$è|ÿÿ1҅À„¬L‹D$pHt$`¹²¿èk}ÿÿH…ÀH‰Å„?H‹´$L‹hH9Þ„šH|$0H¾–èɇÿÿ‰D$<‹D$<…À„1‹D$0…À„H‹´$€H9Þ„|H|$ H苇ÿÿ‰D$<‹D$<…À„óD‹L$ E…Ɉ¥H‹D$`IcÑH9”H‹t$PH9Þ„ÄH|$H²–è=‡ÿÿ‰D$<‹D$<…À„¥‹L$0‹D$0D‹L$Hct$ H‹T$`Áù1È)ÈAIÿH)ò¯ÁH˜H9ÂHœ$ LçH
æNéìH‰òHL$0Ht$HÁâH|$@LêAÿÔèò}ÿÿH…ÀtÇD$<‹D$<…Àt%òD$@H=D_¸è¦}ÿÿH‰„$˜fDH;l$ptHƒmtJH‹„$˜H‹”$˜H‹Œ$¨dH3%(H‰Ð…éHĸ[]A\A]ÃfÇD$0énþÿÿH‹EH‰ïÿP0ëª@ÇD$ éŒþÿÿHœ$ LŒH
ÒME1ÉH‰ߺ¾1ÀèãÿÿH‹=Ì%H‰ÞèôzÿÿéGÿÿÿ€Hœ$ L9ŒH
Më¹èÛ|ÿÿH…À…(ÿÿÿH‹=‹%H54”è¯zÿÿéÿÿÿH)ЋT$0‹L$0Áú1Ñ)ÑH™HcÉH÷ù‰D$é.þÿÿèbzÿÿfAUH‰÷H‰ÖH_MATI‰ÌH
c$USHì¸H‹õ#dH‹%(H‰„$¨1ÀH„$LL$PLD$pHDŽ$˜HÇD$@H‰D$H„$€ÇD$<ÇD$H‰\$PH‰$1ÀHÇD$`ÿÿÿÿH‰\$pÇD$ H‰œ$€ÇD$0H‰œ$è€xÿÿ1҅À„¤L‹D$pHt$`¹²¿èëyÿÿH…ÀH‰Å„?H‹´$L‹hH9Þ„šH|$0HN”èI„ÿÿ‰D$<‹D$<…À„)‹D$0…À„H‹´$€H9Þ„|H|$ HP”è„ÿÿ‰D$<‹D$<…À„ëD‹L$ E…Ɉ¥H‹D$`IcÑH9”H‹t$PH9Þ„ÄH|$HB”轃ÿÿ‰D$<‹D$<…À„‹L$0‹D$0D‹L$Hct$ H‹T$`Áù1È)ÈAIÿH)ò¯ÁH˜H9ÂHœ$ LgŠH
­KéìITõHL$0Ht$H|$@AÿÔèwzÿÿH…ÀtÇD$<‹D$<…Àt"òD$@H=É[¸è+zÿÿH‰„$˜H;l$ptHƒmtRH‹„$˜H‹”$˜H‹Œ$¨dH3%(H‰Ð…ñHĸ[]A\A]Ãf.„ÇD$0énþÿÿH‹EH‰ïÿP0ë¢@ÇD$ éŒþÿÿHœ$ L‘ˆH
›JE1ÉH‰ߺ¾1Àèc|ÿÿH‹=L%H‰Þètwÿÿé?ÿÿÿ€Hœ$ L¹ˆH
eJë¹è[yÿÿH…À… ÿÿÿH‹=%H5đè/wÿÿéÿÿÿH)ЋT$0‹L$0Áú1Ñ)ÑH™HcÉH÷ù‰D$é.þÿÿèâvÿÿfAUH‰÷H‰ÖH%JATI‰ÌH
E_$USHì¸H‹u~#dH‹%(H‰„$¨1ÀH„$LL$PLD$pHDŽ$˜ÇD$H‰D$H„$€ÇD$LÇD$ H‰\$PH‰$1ÀHÇD$`ÿÿÿÿH‰\$pÇD$0H‰œ$€ÇD$@H‰œ$èuÿÿ1҅À„¥L‹D$pHt$`¹²¿èlvÿÿH…ÀH‰Å„@H‹´$L‹hH9Þ„›H|$@Hߑèʀÿÿ‰D$L‹D$L…À„*‹D$@…À„žH‹´$€H9Þ„}H|$0Há‘茀ÿÿ‰D$L‹D$L…À„ìD‹L$0E…Ɉ¦H‹D$`IcÑH9•H‹t$PH9Þ„ÅH|$ Hӑè>€ÿÿ‰D$L‹D$L…À„ž‹L$@‹D$@D‹L$ Hct$0H‹T$`Áù1È)ÈAIÿH)ò¯ÁH˜H9ÂHœ$ Lè†H
wHéíITõHL$@Ht$ H|$AÿÔèøvÿÿH…ÀtÇD$L‹D$L…Àt#óD$H=·T¸ZÀè©vÿÿH‰„$˜H;l$ptHƒmtRH‹„$˜H‹”$˜H‹Œ$¨dH3%(H‰Ð…ñHĸ[]A\A]Ãf.„ÇD$@émþÿÿH‹EH‰ïÿP0ë¢@ÇD$0é‹þÿÿHœ$ L…H
bGE1ÉH‰ߺ¾1ÀèãxÿÿH‹=Ì%H‰Þèôsÿÿé?ÿÿÿ€Hœ$ L9…H
-Gë¹èÛuÿÿH…À… ÿÿÿH‹=‹%H5Tè¯sÿÿéÿÿÿH)ЋT$@‹L$@Áú1Ñ)ÑH™HcÉH÷ù‰D$ é-þÿÿèbsÿÿfAUH‰÷H‰ÖHïFATI‰ÌH
…[$USHì¸H‹õz#dH‹%(H‰„$¨1ÀH„$LL$PLD$pHDŽ$˜ÇD$H‰D$H„$€ÇD$LÇD$ H‰\$PH‰$1ÀHÇD$`ÿÿÿÿH‰\$pÇD$0H‰œ$€ÇD$@H‰œ$èqÿÿ1҅À„¥L‹D$pHt$`¹²¿èìrÿÿH…ÀH‰Å„@H‹´$L‹hH9Þ„›H|$@HoèJ}ÿÿ‰D$L‹D$L…À„*‹D$@…À„žH‹´$€H9Þ„}H|$0Hqè}ÿÿ‰D$L‹D$L…À„ìD‹L$0E…Ɉ¦H‹D$`IcÑH9•H‹t$PH9Þ„ÅH|$ Hcè¾|ÿÿ‰D$L‹D$L…À„ž‹L$@‹D$@D‹L$ Hct$0H‹T$`Áù1È)ÈAIÿH)ò¯ÁH˜H9ÂHœ$ LhƒH
>EéíITµHL$@Ht$ H|$AÿÔèxsÿÿH…ÀtÇD$L‹D$L…Àt#óD$H=7Q¸ZÀè)sÿÿH‰„$˜H;l$ptHƒmtRH‹„$˜H‹”$˜H‹Œ$¨dH3%(H‰Ð…ñHĸ[]A\A]Ãf.„ÇD$@émþÿÿH‹EH‰ïÿP0ë¢@ÇD$0é‹þÿÿHœ$ L‘H
+DE1ÉH‰ߺ¾1ÀècuÿÿH‹=L%H‰Þètpÿÿé?ÿÿÿ€Hœ$ L¹H
õCë¹è[rÿÿH…À… ÿÿÿH‹=%H5äŒè/pÿÿéÿÿÿH)ЋT$@‹L$@Áú1Ñ)ÑH™HcÉH÷ù‰D$ é-þÿÿèâoÿÿfAWH‰÷H‰ÖHµCAVAUATUH‰ÍH
 V$SHìHH‹qw#dH‹%(H‰„$81ÀH„$LŒ$ðL„$°HDŽ$ÇD$0H‰D$(H„$ÇD$|H‰œ$€H‰œ$H‰D$ H„$ÐHDŽ$ ÿÿÿÿH‰œ$°ÇD$@H‰D$H„$ÀH‰œ$ÀÇD$PH‰œ$ÐH‰D$H„$HDŽ$àÿÿÿÿH‰œ$ðÇD$`H‰D$H„$€H‰œ$ÇD$pH‰œ$H‰$1Àè†mÿÿ…À„nH‹´$H9Þ„ÝH¼$ H^ŒèÙuÿÿ‰D$|‹D$|…À„yH‹´$ÐH9Þ„H|$PHtŒèGyÿÿ‰D$|‹D$|…À„G‹T$P…Ò„£H‹´$H9Þ„H|$pHvŒè	yÿÿ‰D$|‹D$|…À„	‹D$p…À„ÍL‹„$ðH´$๺¿è9nÿÿH…ÀI‰Å„òL‹„$°H´$ ¹º¿L‹pènÿÿH…ÀI‰Ä„äH‹´$ÀL‹xH9Þ„H|$@H°Œècxÿÿ‰D$|‹D$|…À„BD‹L$@E…Ɉ_IcÁH;„$ NH‹´$H9Þ„«H|$`H׌èxÿÿ‰D$|‹D$|…À„ñD‹L$`E…Ɉ‰IcÁH;„$àxH‹´$€H9Þ„‡H|$0HþŒèÁwÿÿ‰D$|‹D$|…À„ ‹t$pD‹L$0‹D$pHcL$`H‹”$àÁþAyÿ1ð)ðH)ʯÇH˜H9ÂŽÊD‹D$P‹D$PHct$@H‹”$ AÁøD1ÀD)ÀH)ò¯ÇH˜H9/Hœ$0L3~H
w@¾H‰ߺ1Àè qÿÿH‹=	%H‰Þè1lÿÿL;¤$°tIƒ,$uI‹D$L‰çÿP0DH‹„$H‹„$H‹Œ$8dH3%(…yHÄH[]A\A]A^A_Àòà;HDŽ$(ò„$ éýÿÿfDHœ$0LQuH
m?E1ÉH‰ߺ¾1Àè[pÿÿH‹=D%H‰ÞèlkÿÿéWÿÿÿ€ÇD$Péðüÿÿ1ÀéIÿÿÿf„Hœ$0E1ÉLVuH
?ë–DÇD$péîüÿÿÇD$@é‡ýÿÿHœ$0L_ŠH
ï>é—þÿÿèölÿÿH…À…ÍþÿÿH‹=¦ÿ$H5W‰èÊjÿÿéµþÿÿèÐlÿÿH…À…§þÿÿH‹=€ÿ$H5‰è¤jÿÿéþÿÿ€ÇD$`é]ýÿÿHœ$0L\ŠH
†>éþÿÿèKjÿÿHcT$@H‹„$ ‹L$PH)ЋT$PÁù1Ê)ÊHcÊH™H÷ù‰D$0é^ýÿÿH‰ÈH‰òHL$PHÁàHÁâH´$ LúH|$0LL$pMÿÕèlÿÿH…ÀtÇD$|‹D$|…À„¾ýÿÿH=<@L‰î1ÀèÎkÿÿH‰„$é ýÿÿHœ$0LŠébýÿÿffff.„AWH‰÷H‰ÖHÓ=AVAUATI‰ÌH
qN$USHì(H‹!q#dH‹%(H‰„$1ÀH„$LŒ$àL„$ HDŽ$ÇD$0H‰D$ H„$ðÇD$|H‰œ$€HDŽ$ÿÿÿÿH‰D$H„$ÀH‰œ$ ÇD$@H‰œ$°H‰D$H„$°ÇD$PH‰œ$ÀHDŽ$ÐÿÿÿÿH‰D$H„$€H‰œ$àÇD$`H‰œ$ðH‰$1ÀÇD$pH‰œ$èKgÿÿ1҅À„²L‹„$ H´$¹²¿è°hÿÿH…ÀH‰Å„äL‹„$àH´$йº¿L‹pè|hÿÿH…ÀI‰Å„ H‹´$L‹xH9Þ„kH|$pH/‰èÚrÿÿ‰D$|‹D$|…À„ú‹T$p…Ò„–H‹´$ÀH9Þ„=H|$PHa‰èœrÿÿ‰D$|‹D$|…À„¼‹D$P…À„ÐH‹´$ðH9Þ„ßH|$`Hc‰è^rÿÿ‰D$|‹D$|…À„~D‹L$`E…ɈÀIcÁH;„$Ѝ¯H‹´$°H9Þ„¹H|$@HЉè
rÿÿ‰D$|‹D$|…À„-D‹L$@E…Ɉ—H‹”$IcÁH9ЍƒH‹´$€H9Þ„H|$0Hv‰è¹qÿÿ‰D$|‹D$|…À„Ù‹t$pD‹L$0‹D$pHcL$`H‹”$ÐÁþAyÿ1ð)ðH)ʯÇH˜H9ÂŽaD‹D$P‹D$PHct$@H‹”$AÁøD1ÀD)ÀH)ò¯ÇH˜H9ÂHœ$L/xH
à:éHÁáHÁæHT$PLùLöH|$0LD$pAÿÔè6hÿÿH…ÀtÇD$|‹D$|…Àt!H=^<L‰î1ÀèðgÿÿH‰„$„H;¬$ tHƒmt_H‹„$H‹”$H‹Œ$dH3%(H‰Ð…~HÄ([]A\A]A^A_ÃÇD$péýÿÿÇD$PéËýÿÿH‹EH‰ïÿP0ë•@è{gÿÿH…Àu‡H‹=/ú$H5è…èSeÿÿéoÿÿÿfDHœ$L©†H
z9E1ÉH‰ߺ¾1ÀèûiÿÿH‹=äù$H‰Þèeÿÿéÿÿÿ€ègÿÿH…À…ÿÿÿH‹=»ù$H5ąèßdÿÿéêþÿÿf.„Hœ$E1ÉL®uH
9ë†DÇD$`é)ýÿÿHœ$L±†H
ö8éVÿÿÿÇD$@éOýÿÿHœ$LÉuH
à8é.ÿÿÿH)‹D$P‹L$PÁø1Á)ÁH‰ÐHcÉH™H÷ù‰D$0ébýÿÿèdÿÿHœ$L{„H
¬8éèþÿÿ€AWH‰÷H‰ÖH 8AVAUATI‰ÌH
‘H$USHì(H‹k#dH‹%(H‰„$1ÀH„$LŒ$àL„$ HDŽ$ÇD$0H‰D$ H„$ðÇD$|H‰œ$€HDŽ$ÿÿÿÿH‰D$H„$ÀH‰œ$ ÇD$@H‰œ$°H‰D$H„$°ÇD$PH‰œ$ÀHDŽ$ÐÿÿÿÿH‰D$H„$€H‰œ$àÇD$`H‰œ$ðH‰$1ÀÇD$pH‰œ$è«aÿÿ1҅À„ªL‹„$ H´$¹²¿ècÿÿH…ÀH‰Å„ÜL‹„$àH´$йº¿L‹pèÜbÿÿH…ÀI‰Å„H‹´$L‹xH9Þ„cH|$pHׅè:mÿÿ‰D$|‹D$|…À„ò‹T$p…Ò„ŽH‹´$ÀH9Þ„5H|$PHمèülÿÿ‰D$|‹D$|…À„´‹D$P…À„ÀH‹´$ðH9Þ„ÏH|$`Hۅè¾lÿÿ‰D$|‹D$|…À„vD‹L$`E…Ɉ°IcÁH;„$ЍŸH‹´$°H9Þ„©H|$@Hʅèmlÿÿ‰D$|‹D$|…À„%D‹L$@E…Ɉ‡H‹”$IcÁH9ЍsH‹´$€H9Þ„}H|$0H¶…èlÿÿ‰D$|‹D$|…À„Ñ‹t$pD‹L$0‹D$pHcL$`H‹”$ÐÁþAyÿ1ð)ðH)ʯÇH˜H9ÂŽQD‹D$P‹D$PHct$@H‹”$AÁøD1ÀD)ÀH)ò¯ÇH˜H9ÂHœ$LrH
­5éIÏHT$PI4öH|$0LD$pAÿÔèœbÿÿH…ÀtÇD$|‹D$|…ÀtH=Ä6L‰î1ÀèVbÿÿH‰„$fDH;¬$ tHƒmt_H‹„$H‹”$H‹Œ$dH3%(H‰Ð…vHÄ([]A\A]A^A_ÃÇD$pé¥ýÿÿÇD$PéÓýÿÿH‹EH‰ïÿP0ë•@èãaÿÿH…Àu‡H‹=—ô$H5˜‚è»_ÿÿéoÿÿÿfDHœ$LH
O4E1ÉH‰ߺ¾1ÀècdÿÿH‹=Lô$H‰Þèt_ÿÿéÿÿÿ€èsaÿÿH…À…ÿÿÿH‹=#ô$H5t‚èG_ÿÿéêþÿÿfHœ$E1ÉLpH
î3ëŽDÇD$`é9ýÿÿHœ$L!H
Ó3é^ÿÿÿÇD$@é_ýÿÿHœ$L9pH
½3é6ÿÿÿH)‹D$P‹L$PÁø1Á)ÁH‰ÐHcÉH™H÷ù‰D$0érýÿÿè‚^ÿÿHœ$Lë~H
‰3éðþÿÿ€AWH‰÷H‰ÖH}3AVAUATI‰ÌH
ÁB$USHì(H‹ñe#dH‹%(H‰„$1ÀH„$LŒ$àL„$ HDŽ$ÇD$0H‰D$ H„$ðÇD$|H‰œ$€HDŽ$ÿÿÿÿH‰D$H„$ÀH‰œ$ ÇD$@H‰œ$°H‰D$H„$°ÇD$PH‰œ$ÀHDŽ$ÐÿÿÿÿH‰D$H„$€H‰œ$àÇD$`H‰œ$ðH‰$1ÀÇD$pH‰œ$è\ÿÿ1҅À„ªL‹„$ H´$¹²¿è€]ÿÿH…ÀH‰Å„ÜL‹„$àH´$йº¿L‹pèL]ÿÿH…ÀI‰Å„H‹´$L‹xH9Þ„cH|$pH'‚èªgÿÿ‰D$|‹D$|…À„ò‹T$p…Ò„ŽH‹´$ÀH9Þ„5H|$PH)‚èlgÿÿ‰D$|‹D$|…À„´‹D$P…À„ÀH‹´$ðH9Þ„ÏH|$`H+‚è.gÿÿ‰D$|‹D$|…À„vD‹L$`E…Ɉ°IcÁH;„$ЍŸH‹´$°H9Þ„©H|$@H‚èÝfÿÿ‰D$|‹D$|…À„%D‹L$@E…Ɉ‡H‹”$IcÁH9ЍsH‹´$€H9Þ„}H|$0H‚è‰fÿÿ‰D$|‹D$|…À„Ñ‹t$pD‹L$0‹D$pHcL$`H‹”$ÐÁþAyÿ1ð)ðH)ʯÇH˜H9ÂŽQD‹D$P‹D$PHct$@H‹”$AÁøD1ÀD)ÀH)ò¯ÇH˜H9ÂHœ$LÿlH
Š0éIÏHT$PI4öH|$0LD$pAÿÔè]ÿÿH…ÀtÇD$|‹D$|…ÀtH=41L‰î1ÀèÆ\ÿÿH‰„$fDH;¬$ tHƒmt_H‹„$H‹”$H‹Œ$dH3%(H‰Ð…vHÄ([]A\A]A^A_ÃÇD$pé¥ýÿÿÇD$PéÓýÿÿH‹EH‰ïÿP0ë•@èS\ÿÿH…Àu‡H‹=ï$H5è~è+ZÿÿéoÿÿÿfDHœ$L{H
,/E1ÉH‰ߺ¾1ÀèÓ^ÿÿH‹=¼î$H‰ÞèäYÿÿéÿÿÿ€èã[ÿÿH…À…ÿÿÿH‹=“î$H5Ä~è·YÿÿéêþÿÿfHœ$E1ÉLŽjH
Ë.ëŽDÇD$`é9ýÿÿHœ$L‘{H
°.é^ÿÿÿÇD$@é_ýÿÿHœ$L©jH
š.é6ÿÿÿH)‹D$P‹L$PÁø1Á)ÁH‰ÐHcÉH™H÷ù‰D$0érýÿÿèòXÿÿHœ$L[yH
f.éðþÿÿ€AWH‰÷H‰ÖHZ.AVAUATI‰ÌH
ñ<$USHì(H‹a`#dH‹%(H‰„$1ÀH„$LŒ$àL„$ HDŽ$ÇD$0H‰D$ H„$ðÇD$|H‰œ$€HDŽ$ÿÿÿÿH‰D$H„$ÀH‰œ$ ÇD$@H‰œ$°H‰D$H„$°ÇD$PH‰œ$ÀHDŽ$ÐÿÿÿÿH‰D$H„$€H‰œ$àÇD$`H‰œ$ðH‰$1ÀÇD$pH‰œ$è‹Vÿÿ1҅À„ªL‹„$ H´$¹²¿èðWÿÿH…ÀH‰Å„ÜL‹„$àH´$йº¿L‹pè¼WÿÿH…ÀI‰Å„H‹´$L‹xH9Þ„cH|$pHw~èbÿÿ‰D$|‹D$|…À„ò‹T$p…Ò„ŽH‹´$ÀH9Þ„5H|$PHy~èÜaÿÿ‰D$|‹D$|…À„´‹D$P…À„ÀH‹´$ðH9Þ„ÏH|$`H{~èžaÿÿ‰D$|‹D$|…À„vD‹L$`E…Ɉ°IcÁH;„$ЍŸH‹´$°H9Þ„©H|$@Hj~èMaÿÿ‰D$|‹D$|…À„%D‹L$@E…Ɉ‡H‹”$IcÁH9ЍsH‹´$€H9Þ„}H|$0HV~èù`ÿÿ‰D$|‹D$|…À„Ñ‹t$pD‹L$0‹D$pHcL$`H‹”$ÐÁþAyÿ1ð)ðH)ʯÇH˜H9ÂŽQD‹D$P‹D$PHct$@H‹”$AÁøD1ÀD)ÀH)ò¯ÇH˜H9ÂHœ$LogH
g+éIHT$PI4¶H|$0LD$pAÿÔè|WÿÿH…ÀtÇD$|‹D$|…ÀtH=¤+L‰î1Àè6WÿÿH‰„$fDH;¬$ tHƒmt_H‹„$H‹”$H‹Œ$dH3%(H‰Ð…vHÄ([]A\A]A^A_ÃÇD$pé¥ýÿÿÇD$PéÓýÿÿH‹EH‰ïÿP0ë•@èÃVÿÿH…Àu‡H‹=wé$H58{è›TÿÿéoÿÿÿfDHœ$LñuH
	*E1ÉH‰ߺ¾1ÀèCYÿÿH‹=,é$H‰ÞèTTÿÿéÿÿÿ€èSVÿÿH…À…ÿÿÿH‹=é$H5{è'TÿÿéêþÿÿfHœ$E1ÉLþdH
¨)ëŽDÇD$`é9ýÿÿHœ$LvH
)é^ÿÿÿÇD$@é_ýÿÿHœ$LeH
w)é6ÿÿÿH)‹D$P‹L$PÁø1Á)ÁH‰ÐHcÉH™H÷ù‰D$0érýÿÿèbSÿÿHœ$LËsH
C)éðþÿÿ€AWH‰÷H‰ÖH7)AVAUATI‰ÌH
¡5$USHì(H‹ÑZ#dH‹%(H‰„$1ÀH„$LŒ$àL„$ HDŽ$ÇD$0H‰D$ H„$ðÇD$|H‰œ$€HDŽ$ÿÿÿÿH‰D$H„$ÀH‰œ$ ÇD$@H‰œ$°H‰D$H„$°ÇD$PH‰œ$ÀHDŽ$ÐÿÿÿÿH‰D$H„$€H‰œ$àÇD$`H‰œ$ðH‰$1ÀÇD$pH‰œ$èûPÿÿ1҅À„¡L‹„$ H´$¹²¿è`RÿÿH…ÀH‰Å„ÄL‹„$àH´$йº¿L‹pè,RÿÿH…ÀI‰Å„H‹´$L‹xH9Þ„[H|$pHÇzèŠ\ÿÿ‰D$|‹D$|…À„ú‹T$p…Ò„nH‹´$ÀH9Þ„-H|$PHÉzèL\ÿÿ‰D$|‹D$|…À„¼‹D$P…À„°H‹´$ðH9Þ„¿H|$`HËzè\ÿÿ‰D$|‹D$|…À„~D‹L$`E…Ɉ IcÁH;„$ЍH‹´$°H9Þ„™H|$@Hºzè½[ÿÿ‰D$|‹D$|…À„-D‹L$@E…ɈwH‹”$IcÁH9ЍcH‹´$€H9Þ„mH|$0H¦zèi[ÿÿ‰D$|‹D$|…À„Ù‹t$pD‹L$0‹D$pHcL$`H‹”$ÐÁþAyÿ1ð)ðH)ʯÇH˜H9ÂŽAD‹D$P‹D$PHct$@H‹”$AÁøD1ÀD)ÀH)ò¯ÇH˜H9ÂHœ$LßaH
D&éôHÁáHÁæHT$PLùLöH|$0LD$pAÿÔèæQÿÿH…ÀtÇD$|‹D$|…Àt!H=
&L‰êH‰î1ÀèQÿÿH‰„$DH‹„$H‹”$H‹Œ$dH3%(H‰Ð…oHÄ([]A\A]A^A_Ã@ÇD$pé­ýÿÿÇD$PéÛýÿÿèKQÿÿH…Àu–H‹=ÿã$H5 wè#Oÿÿ끐Hœ$LpH
%E1ɺ¾H‰ß1ÀèÓSÿÿH‹=¼ã$H‰ÞèäNÿÿH‹„$H‹”$é?ÿÿÿ€èÓPÿÿH…À…ÿÿÿH‹=ƒã$H5twè§NÿÿéÿÿÿfHœ$E1ÉL~_H
•$é{ÿÿÿfÇD$`éIýÿÿHœ$LpH
z$éNÿÿÿÇD$@éoýÿÿHœ$L™_H
d$é&ÿÿÿH)‹D$P‹L$PÁø1Á)ÁH‰ÐHcÉH™H÷ù‰D$0é‚ýÿÿèâMÿÿHœ$LKnH
0$éàþÿÿ€AWH‰÷H‰ÖH'$AVAUATI‰ÌH
á/$USHì(H‹QU#dH‹%(H‰„$1ÀH„$LŒ$àL„$ HDŽ$ÇD$0H‰D$ H„$ðÇD$|H‰œ$€HDŽ$ÿÿÿÿH‰D$H„$ÀH‰œ$ ÇD$@H‰œ$°H‰D$H„$°ÇD$PH‰œ$ÀHDŽ$ÐÿÿÿÿH‰D$H„$€H‰œ$àÇD$`H‰œ$ðH‰$1ÀÇD$pH‰œ$è{Kÿÿ1҅À„™L‹„$ H´$¹²¿èàLÿÿH…ÀH‰Å„¼L‹„$àH´$йº¿L‹pè¬LÿÿH…ÀI‰Å„H‹´$L‹xH9Þ„SH|$pH'wè
Wÿÿ‰D$|‹D$|…À„ò‹T$p…Ò„nH‹´$ÀH9Þ„%H|$PH)wèÌVÿÿ‰D$|‹D$|…À„´‹D$P…À„°H‹´$ðH9Þ„¿H|$`H+wèŽVÿÿ‰D$|‹D$|…À„vD‹L$`E…Ɉ IcÁH;„$ЍH‹´$°H9Þ„™H|$@Hwè=Vÿÿ‰D$|‹D$|…À„%D‹L$@E…ɈwH‹”$IcÁH9ЍcH‹´$€H9Þ„mH|$0HwèéUÿÿ‰D$|‹D$|…À„Ñ‹t$pD‹L$0‹D$pHcL$`H‹”$ÐÁþAyÿ1ð)ðH)ʯÇH˜H9ÂŽAD‹D$P‹D$PHct$@H‹”$AÁøD1ÀD)ÀH)ò¯ÇH˜H9ÂHœ$L_\H
4!éôIÏHT$PI4öH|$0LD$pAÿÔèlLÿÿH…ÀtÇD$|‹D$|…ÀtH=“ L‰êH‰î1Àè#LÿÿH‰„$H‹„$H‹”$H‹Œ$dH3%(H‰Ð…wHÄ([]A\A]A^A_Ã@ÇD$péµýÿÿÇD$PéãýÿÿèÓKÿÿH…Àu–H‹=‡Þ$H5tè«Iÿÿëf„Hœ$LkH
öE1ɺ¾H‰ß1ÀèSNÿÿH‹=<Þ$H‰ÞèdIÿÿH‹„$H‹”$é7ÿÿÿ€èSKÿÿH…À…ÿÿÿH‹=Þ$H5Ôsè'IÿÿéúþÿÿfHœ$E1ÉLþYH
…é{ÿÿÿfÇD$`éIýÿÿHœ$LkH
jéNÿÿÿÇD$@éoýÿÿHœ$LZH
Té&ÿÿÿH)‹D$P‹L$PÁø1Á)ÁH‰ÐHcÉH™H÷ù‰D$0é‚ýÿÿèbHÿÿHœ$LËhH
 éàþÿÿ€AWH‰÷H‰ÖHAVAUATI‰ÌH
!*$USHì(H‹ÑO#dH‹%(H‰„$1ÀH„$LŒ$àL„$ HDŽ$ÇD$0H‰D$ H„$ðÇD$|H‰œ$€HDŽ$ÿÿÿÿH‰D$H„$ÀH‰œ$ ÇD$@H‰œ$°H‰D$H„$°ÇD$PH‰œ$ÀHDŽ$ÐÿÿÿÿH‰D$H„$€H‰œ$àÇD$`H‰œ$ðH‰$1ÀÇD$pH‰œ$èûEÿÿ1҅À„™L‹„$ H´$¹²¿è`GÿÿH…ÀH‰Å„¼L‹„$àH´$йº¿L‹pè,GÿÿH…ÀI‰Å„H‹´$L‹xH9Þ„SH|$pH‡sèŠQÿÿ‰D$|‹D$|…À„ò‹T$p…Ò„nH‹´$ÀH9Þ„%H|$PH‰sèLQÿÿ‰D$|‹D$|…À„´‹D$P…À„°H‹´$ðH9Þ„¿H|$`H‹sèQÿÿ‰D$|‹D$|…À„vD‹L$`E…Ɉ IcÁH;„$ЍH‹´$°H9Þ„™H|$@Hzsè½Pÿÿ‰D$|‹D$|…À„%D‹L$@E…ɈwH‹”$IcÁH9ЍcH‹´$€H9Þ„mH|$0HfsèiPÿÿ‰D$|‹D$|…À„Ñ‹t$pD‹L$0‹D$pHcL$`H‹”$ÐÁþAyÿ1ð)ðH)ʯÇH˜H9ÂŽAD‹D$P‹D$PHct$@H‹”$AÁøD1ÀD)ÀH)ò¯ÇH˜H9ÂHœ$LßVH
!éôIÏHT$PI4öH|$0LD$pAÿÔèìFÿÿH…ÀtÇD$|‹D$|…ÀtH=L‰êH‰î1Àè£FÿÿH‰„$H‹„$H‹”$H‹Œ$dH3%(H‰Ð…wHÄ([]A\A]A^A_Ã@ÇD$péµýÿÿÇD$PéãýÿÿèSFÿÿH…Àu–H‹=Ù$H5hpè+Dÿÿëf„Hœ$LeH
ãE1ɺ¾H‰ß1ÀèÓHÿÿH‹=¼Ø$H‰ÞèäCÿÿH‹„$H‹”$é7ÿÿÿ€èÓEÿÿH…À…ÿÿÿH‹=ƒØ$H54pè§CÿÿéúþÿÿfHœ$E1ÉL~TH
ré{ÿÿÿfÇD$`éIýÿÿHœ$LeH
WéNÿÿÿÇD$@éoýÿÿHœ$L™TH
Aé&ÿÿÿH)‹D$P‹L$PÁø1Á)ÁH‰ÐHcÉH™H÷ù‰D$0é‚ýÿÿèâBÿÿHœ$LKcH

éàþÿÿ€AWH‰÷H‰ÖHAVAUATI‰ÌH
a$$USHì(H‹QJ#dH‹%(H‰„$1ÀH„$LŒ$àL„$ HDŽ$ÇD$0H‰D$ H„$ðÇD$|H‰œ$€HDŽ$ÿÿÿÿH‰D$H„$ÀH‰œ$ ÇD$@H‰œ$°H‰D$H„$°ÇD$PH‰œ$ÀHDŽ$ÐÿÿÿÿH‰D$H„$€H‰œ$àÇD$`H‰œ$ðH‰$1ÀÇD$pH‰œ$è{@ÿÿ1҅À„™L‹„$ H´$¹²¿èàAÿÿH…ÀH‰Å„¼L‹„$àH´$йº¿L‹pè¬AÿÿH…ÀI‰Å„H‹´$L‹xH9Þ„SH|$pHçoè
Lÿÿ‰D$|‹D$|…À„ò‹T$p…Ò„nH‹´$ÀH9Þ„%H|$PHéoèÌKÿÿ‰D$|‹D$|…À„´‹D$P…À„°H‹´$ðH9Þ„¿H|$`HëoèŽKÿÿ‰D$|‹D$|…À„vD‹L$`E…Ɉ IcÁH;„$ЍH‹´$°H9Þ„™H|$@HÚoè=Kÿÿ‰D$|‹D$|…À„%D‹L$@E…ɈwH‹”$IcÁH9ЍcH‹´$€H9Þ„mH|$0HÆoèéJÿÿ‰D$|‹D$|…À„Ñ‹t$pD‹L$0‹D$pHcL$`H‹”$ÐÁþAyÿ1ð)ðH)ʯÇH˜H9ÂŽAD‹D$P‹D$PHct$@H‹”$AÁøD1ÀD)ÀH)ò¯ÇH˜H9ÂHœ$L_QH
éôIHT$PI4¶H|$0LD$pAÿÔèlAÿÿH…ÀtÇD$|‹D$|…ÀtH=“L‰êH‰î1Àè#AÿÿH‰„$H‹„$H‹”$H‹Œ$dH3%(H‰Ð…wHÄ([]A\A]A^A_Ã@ÇD$péµýÿÿÇD$PéãýÿÿèÓ@ÿÿH…Àu–H‹=‡Ó$H5Èlè«>ÿÿëf„Hœ$L`H
ÐE1ɺ¾H‰ß1ÀèSCÿÿH‹=<Ó$H‰Þèd>ÿÿH‹„$H‹”$é7ÿÿÿ€èS@ÿÿH…À…ÿÿÿH‹=Ó$H5”lè'>ÿÿéúþÿÿfHœ$E1ÉLþNH
_é{ÿÿÿfÇD$`éIýÿÿHœ$L`H
DéNÿÿÿÇD$@éoýÿÿHœ$LOH
.é&ÿÿÿH)‹D$P‹L$PÁø1Á)ÁH‰ÐHcÉH™H÷ù‰D$0é‚ýÿÿèb=ÿÿHœ$LË]H
úéàþÿÿ€AWH‰÷H‰ÖHîAVAUATUH‰ÍH
€$SHìˆH‹ÑD#dH‹%(H‰„$x1ÀH„$HDŽ$hÇD$PDŽ$¼H‰œ$ÀLŒ$ H‰D$8HD$`HDŽ$ÐÿÿÿÿÇD$`H‰œ$àL„$àH‰D$0H„$@ÇD$pH‰œ$ðDŽ$€H‰D$(H„$0H‰œ$HDŽ$ÿÿÿÿDŽ$H‰D$ H„$H‰œ$ DŽ$ H‰œ$0DŽ$°H‰œ$@HDŽ$PÿÿÿÿH‰œ$`H‰D$H„$ðH‰D$H„$ÀH‰D$H„$`H‰$1Àè¤:ÿÿ…À„ÌH‹´$H9Þ„³H¼$€H´kè—Fÿÿ‰„$¼‹„$¼…Àu=H‹„$hH‹„$hH‹Œ$xdH3%(…ŸHĈ[]A\A]A^A_Ã@‹”$€…Òu]Hœ$pL>LH
ýE1ɺ¾H‰ß1Àè@ÿÿH‹=ùÏ$H‰Þè!;ÿÿéwÿÿÿ@DŽ$€éXÿÿÿ„L‹„$`H´$P¹º¿HDŽ$Pè ;ÿÿH…ÀI‰Ç„H‹´$@L‹hH9Þ„H¼$°H(kè{Eÿÿ‰„$¼‹„$¼…À„8‹„$°…À„~ƒ¼$L‹„$ H´$º¿Ƀá ƒÁè—:ÿÿH…ÀI‰Ä„¢ƒ|$`H‹@H´$ÐL‹„$຿H‰D$@Ƀá ƒÁèV:ÿÿH…ÀI‰Æ„ŠH‹´$ðH‹@H9ÞH‰D$H„×H|$pH<kè¯Dÿÿ‰„$¼‹„$¼…À„lD‹L$pE…ɈÑIcÁH;„$ЍÀH‹´$0H9Þ„IH¼$ H"kèUDÿÿ‰„$¼‹„$¼…À„D‹Œ$ E…ɈIcÁH;„$
H‹´$ÀH9Þ„H|$PHkèûCÿÿ‰„$¼‹„$¼…À„¸‹´$°D‹L$P‹„$°HcŒ$ H‹”$ÁþAyÿ1ð)ðH)ʯÇH˜H9ÂŽ]D‹„$€‹„$€Hct$pH‹”$ÐAÁøD1ÀD)ÀH)ò¯ÇH˜H9µHœ$pLXJH
wf„¾H‰ߺ1Àè<=ÿÿH‹=%Í$H‰ÞèM8ÿÿL;¼$`„šüÿÿIƒ/…üÿÿI‹GL‰ÿÿP0éüÿÿfDDŽ$°é|ýÿÿ1ÀétüÿÿÇD$pé4þÿÿ@Hœ$pE1ÉLVYH
§éjÿÿÿHœ$pL+IH
žéOÿÿÿèÊ9ÿÿH…À…üÿÿH‹=zÌ$H5Ûgèž7ÿÿéôûÿÿè¤9ÿÿH……=ÿÿÿH‹=SÌ$H5Dhèw7ÿÿé%ÿÿÿfè{9ÿÿH…À…ÿÿÿH‹=+Ì$H5lhèO7ÿÿéýþÿÿf.„DŽ$ éÂýÿÿHœ$pLAYH
é¥þÿÿHcT$pH‹„$ЋŒ$€H)Ћ”$€Áù1Ê)ÊHcÊH™H÷ù‰D$PéËýÿÿèº6ÿÿH‹D$@H”$€H|$PM‰éL„$°HÈH‹D$HH4ðÿÕè¹8ÿÿH…ÀtDŽ$¼‹„$¼…À„=þÿÿH=ÖL‰âL‰ö1Àèf8ÿÿH‰„$héþÿÿHœ$pL²VH
QéÞýÿÿfffff.„AWH‰÷H‰ÖH>AVAUATUH‰ÍH
$SHìˆH‹±=#dH‹%(H‰„$x1ÀH„$HDŽ$hÇD$PDŽ$¼H‰œ$ÀLŒ$ H‰D$8HD$`HDŽ$ÐÿÿÿÿÇD$`H‰œ$àL„$àH‰D$0H„$@ÇD$pH‰œ$ðDŽ$€H‰D$(H„$0H‰œ$HDŽ$ÿÿÿÿDŽ$H‰D$ H„$H‰œ$ DŽ$ H‰œ$0DŽ$°H‰œ$@HDŽ$PÿÿÿÿH‰œ$`H‰D$H„$ðH‰D$H„$ÀH‰D$H„$`H‰$1Àè„3ÿÿ…À„ÌH‹´$H9Þ„³H¼$€HÄfèw?ÿÿ‰„$¼‹„$¼…Àu=H‹„$hH‹„$hH‹Œ$xdH3%(…ŸHĈ[]A\A]A^A_Ã@‹”$€…Òu]Hœ$pLEH
ME1ɺ¾H‰ß1Àèð8ÿÿH‹=ÙÈ$H‰Þè4ÿÿéwÿÿÿ@DŽ$€éXÿÿÿ„L‹„$`H´$P¹º¿HDŽ$Pè4ÿÿH…ÀI‰Ç„H‹´$@L‹hH9Þ„H¼$°H8fè[>ÿÿ‰„$¼‹„$¼…À„8‹„$°…À„~ƒ¼$L‹„$ H´$º¿Ƀá ƒÁèw3ÿÿH…ÀI‰Ä„¢ƒ|$`H‹@H´$ÐL‹„$຿H‰D$@Ƀá ƒÁè63ÿÿH…ÀI‰Æ„ŠH‹´$ðH‹@H9ÞH‰D$H„×H|$pHLfè=ÿÿ‰„$¼‹„$¼…À„lD‹L$pE…ɈÑIcÁH;„$ЍÀH‹´$0H9Þ„IH¼$ H2fè5=ÿÿ‰„$¼‹„$¼…À„D‹Œ$ E…ɈIcÁH;„$
H‹´$ÀH9Þ„H|$PHfèÛ<ÿÿ‰„$¼‹„$¼…À„¸‹´$°D‹L$P‹„$°HcŒ$ H‹”$ÁþAyÿ1ð)ðH)ʯÇH˜H9ÂŽ]D‹„$€‹„$€Hct$pH‹”$ÐAÁøD1ÀD)ÀH)ò¯ÇH˜H9µHœ$pL8CH
Ç	f„¾H‰ߺ1Àè6ÿÿH‹=Æ$H‰Þè-1ÿÿL;¼$`„šüÿÿIƒ/…üÿÿI‹GL‰ÿÿP0éüÿÿfDDŽ$°é|ýÿÿ1ÀétüÿÿÇD$pé4þÿÿ@Hœ$pE1ÉL6RH
÷éjÿÿÿHœ$pLBH
îéOÿÿÿèª2ÿÿH…À…üÿÿH‹=ZÅ$H5ëbè~0ÿÿéôûÿÿè„2ÿÿH……=ÿÿÿH‹=3Å$H5TcèW0ÿÿé%ÿÿÿfè[2ÿÿH…À…ÿÿÿH‹=Å$H5|cè/0ÿÿéýþÿÿf.„DŽ$ éÂýÿÿHœ$pL!RH
Vé¥þÿÿHcT$pH‹„$ЋŒ$€H)Ћ”$€Áù1Ê)ÊHcÊH™H÷ù‰D$PéËýÿÿèš/ÿÿH‹D$@H”$€H|$PM‰éL„$°HˆH‹D$HH4°ÿÕè™1ÿÿH…ÀtDŽ$¼‹„$¼…À„=þÿÿH=¶L‰âL‰ö1ÀèF1ÿÿH‰„$héþÿÿHœ$pL’OH
¡éÞýÿÿfffff.„AUATI‰üUH‰õSHƒìH‹~H‹5-6#H9÷tI‰Õè¸2ÿÿ…	Ãt"òE»òA$HƒÄ‰Ø[]A\A]ÃDH‰ïèH.ÿÿH…ÀtCò@òA$H‹HQÿH…ÒH‰tHƒÄ»‰Ø[]A\A]ÀH‹PH‰ÇÿR0ëÛ@H‹}H‹5Õ5#H9÷t@è+2ÿÿ…Àu7H‹EH÷€¨„¢è]0ÿÿH…ÀHDÃ$L‰îH‰Çè7.ÿÿéPÿÿÿfH5YùH‰ïèa-ÿÿH‰ÅH…ítÇèd/ÿÿL‰êH‰îL‰çèæþÿÿ…ÀH‹Et.HƒèH…ÀH‰E…DÿÿÿH‹EH‰ï»ÿP0é÷þÿÿf„HƒèH…ÀH‰E…mÿÿÿH‹EH‰ïÿP0é^ÿÿÿH‰ïè,ÿÿ…À„NÿÿÿH‰ï1öèv.ÿÿH‰Åépÿÿÿfffff.„AWH‰÷H‰ÖHîAVAUATI‰ÌH
á*$USHìˆH‹ñ4#dH‹%(H‰„$x1ÀHD$`HDŽ$HÇD$@DŽ$ÌÇD$PLŒ$ðH‰D$(H„$@HDŽ$ÐH‰œ$àHDŽ$PÿÿÿÿL„$àHDŽ$XÿÿÿÿH‰œ$ðHDŽ$`ÿÿÿÿHDŽ$hÿÿÿÿÇD$`H‰œ$ÇD$pDŽ$€DŽ$H‰œ$DŽ$ H‰œ$ DŽ$°H‰œ$0DŽ$ÀH‰œ$@H‰D$ H„$0H‰D$H„$ H‰D$H„$H‰D$H„$H‰$1Àè»*ÿÿ1҅À„L‹„$ðH´$P¹²¿è ,ÿÿH…ÀH‰Å„H‹´$ L‹hH9Þ„ÏH¼$ HH`è{6ÿÿ‰„$̋„$̅ÀuYH;¬$ðtHƒm„œH‹„$HH‹”$HH‹Œ$xdH3%(H‰Ð…ÓHĈ[]A\A]A^A_ÄD‹Œ$ AƒùvRHœ$pLÛH
 H‰ߺ¾1ÀèØ/ÿÿH‹=$H‰Þèé*ÿÿé[ÿÿÿ@DŽ$ é<ÿÿÿƒ|$`L‹„$H´$`º¿Ƀá ƒÁèô*ÿÿH…ÀI‰Ç„CH‹´$0L‹pH9Þ„H¼$°H¬_èO5ÿÿ‰„$̋„$̅À„ÐþÿÿD‹Œ$°Aƒù‡×H‹´$@H9Þ„œH¼$ÀHŸ_è5ÿÿ‰„$̋„$̅À„ƒþÿÿD‹Œ$ÀAƒù†ËHœ$pLûH
 éÓþÿÿ€H‹EH‰ïÿP0éUþÿÿf„èË+ÿÿH…À…>þÿÿH‹={¾$H5ü]èŸ)ÿÿé&þÿÿDŽ$Àéoÿÿÿf.„DŽ$°éÿÿÿHœ$pLñH
éIþÿÿè`+ÿÿH…À…¾ýÿÿH‹=¾$H5!^è4)ÿÿé¦ýÿÿH„$ÐH‹´$àHÐ^H‰ÇH‰D$8èëùÿÿ‰„$̋„$̅À„lýÿÿH‹´$H9ÞtSH¼$HÙ^è´3ÿÿ‰„$̋„$̅À„5ýÿÿD‹Œ$Aƒùv(Hœ$pLyH
hé‰ýÿÿDŽ$ë»H‹„$`E…ÉHÊþH
¤ó‰„$€H‹„$P‰D$pH‹„$h‰D$PD„$Xƒ¼$À‰D$@‹„$°HDʅÀtƒøH\óHSóHEЃ¼$ HDóH57óH=8óLD$@L‰t$L‰l$HEðE…ÉLL$PHDøH„$€H‰D$ HD$pH‰D$H‹D$8H‰$AÿÔèÄ)ÿÿH…ÀtDŽ$̋„$̅À„üÿÿH=âýL‰þ1Àèt)ÿÿH‰„$HéîûÿÿèR'ÿÿfAWH‰÷H‰ÖHAAVAUATI‰ÌH
q$$USHìˆH‹á.#dH‹%(H‰„$x1ÀHD$`HDŽ$HÇD$0DŽ$ÌÇD$@LŒ$àH‰D$(H„$0ÇD$PH‰œ$ÐHDŽ$PÿÿÿÿL„$ÐHDŽ$XÿÿÿÿH‰œ$àHDŽ$`ÿÿÿÿHDŽ$hÿÿÿÿÇD$`H‰œ$ðÇD$pDŽ$€DŽ$H‰œ$DŽ$ H‰œ$DŽ$°H‰œ$ DŽ$ÀH‰œ$0H‰D$ H„$ H‰D$H„$H‰D$H„$H‰D$H„$ðH‰$1Àè¯$ÿÿ1҅À„L‹„$àH´$P¹²¿è&ÿÿH…ÀH‰Å„H‹´$L‹hH9Þ„ËH¼$ H$\èo0ÿÿ‰„$̋„$̅ÀuUH;¬$àtHƒm„ H‹„$HH‹”$HH‹Œ$xdH3%(H‰Ð…÷HĈ[]A\A]A^A_Ã@D‹Œ$ AƒùvZHœ$pLÓH
ûýH‰ߺ¾1ÀèÐ)ÿÿH‹=¹¹$H‰Þèá$ÿÿé_ÿÿÿ@DŽ$ é@ÿÿÿ„ƒ|$`L‹„$ðH´$`º¿Ƀá ƒÁèä$ÿÿH…ÀI‰Æ„CH‹´$ L‹xH9Þ„H¼$°H„[è?/ÿÿ‰„$̋„$̅À„ÌþÿÿD‹Œ$°Aƒù‡×H‹´$0H9Þ„œH¼$ÀHw[èò.ÿÿ‰„$̋„$̅À„þÿÿD‹Œ$ÀAƒù†ËHœ$pLëH
óüéËþÿÿ€H‹EH‰ïÿP0éQþÿÿf„è»%ÿÿH…À…:þÿÿH‹=k¸$H5ÔYè#ÿÿé"þÿÿDŽ$Àéoÿÿÿf.„DŽ$°éÿÿÿHœ$pLáH
TüéAþÿÿèP%ÿÿH…À…ºýÿÿH‹=¸$H5ùYè$#ÿÿé¢ýÿÿH‹´$ÐH¼$@H¨ZHDŽ$@è×óÿÿ…Àtò„$@¸fZÀóD$P‰„$̋„$̅À„HýÿÿH‹´$H9ÞtSH¼$H‰Zè„-ÿÿ‰„$̋„$̅À„ýÿÿD‹Œ$Aƒùv(Hœ$pLIH
›ûéaýÿÿDŽ$ë»H‹„$`E…ÉHšøH
t퉄$€H‹„$P‰D$pH‹„$h‰D$@D„$Xƒ¼$À‰D$0‹„$°HDʅÀtƒøH,íH#íHEЃ¼$ HíH5íH=íLD$0L‰|$L‰l$HEðE…ÉLL$@HDøH„$€H‰D$ HD$pH‰D$HD$PH‰$AÿÔè”#ÿÿH…ÀtDŽ$̋„$̅À„èûÿÿH=²÷L‰ö1ÀèD#ÿÿH‰„$HéÊûÿÿè"!ÿÿfAWH‰÷H‰ÖHtúAVAUI‰ÍH
$ATUSHìˆH‹±(#dH‹%(H‰„$x1ÀHD$pHDŽ$8ÇD$0DŽ$¼ÇD$@LŒ$ÐÇD$PH‰œ$ÀL„$ÀHDŽ$@ÿÿÿÿHDŽ$HÿÿÿÿH‰œ$ÐHDŽ$PÿÿÿÿHDŽ$XÿÿÿÿH‰œ$àÇD$`H‰œ$ðHDŽ$`ÿÿÿÿHDŽ$hÿÿÿÿÇD$pH‰œ$DŽ$€H‰œ$DŽ$H‰œ$ DŽ$ DŽ$°H‰D$(H„$ H‰D$ H„$H‰D$H„$H‰D$H„$ðH‰D$H„$àH‰$1Àèrÿÿ1҅À„!L‹„$ÐH´$@¹²¿è×ÿÿH…ÀH‰Å„[L‹„$àH´$P¹º¿L‹pè£ÿÿH…ÀI‰Ä„WH‹´$ L‹xH9Þ„ÚH¼$HãWèþ)ÿÿ‰„$¼‹„$¼…ÀtKD‹Œ$Aƒù†ºHœ$pLÛH
?ø¾H‰ߺ1Àè°#ÿÿH‹=™³$H‰ÞèÁÿÿL;¤$àtIƒ,$„|H;¬$ÐtHƒm„OH‹„$8H‹”$8H‹Œ$xdH3%(H‰Ð…ùHĈ[]A\A]A^A_ÃDŽ$é1ÿÿÿ„H‹´$ðH9Þ„oH¼$0H WHDŽ$0èïîÿÿ…Àtò„$0¸fZÀóD$`‰„$¼‹„$¼…À„ÿÿÿH‹´$ÀH¼$0HWHDŽ$0è•îÿÿ…ÀtòŒ$0¸fZÉóL$P‰„$¼‹„$¼…À„ÂþÿÿH‹´$H9Þ„¿H¼$€HëVè>(ÿÿ‰„$¼‹„$¼…À„‡þÿÿD‹Œ$€Hœ$pL1H
™öAƒù‡<þÿÿH‹”$PH‹„$@E…ÉH‹´$XH‹Œ$H‰”$°‰„$ „F9‰D$@…d‰ȃ|$pL‹„$H´$`‰D$0ºH˜¿H‰„$`H‰„$hɃá EèæÿÿH…ÀH‰Ã„åHcT$0L‹@H‹„$`H9ÐuH;„$h„÷H‹=/±$H5èSÿÿéýÿÿfDH‹EH‰ïÿP0é¢ýÿÿf„I‹D$L‰çÿP0étýÿÿè+ÿÿH…À…{ýÿÿH‹=۰$H5$Tèÿÿÿécýÿÿf.„èûÿÿH…À…6ýÿÿH‹=«°$H5DTèÏÿÿéýÿÿf.„ÇD$`éÇýÿÿDŽ$€éLþÿÿ9ñ‰L$@„¼þÿÿA‰ÉHœ$pL½
H
õé•üÿÿA‰ÁëàèOÿÿ‹„$€H5µñ…ÀtƒøH5ŒæHƒæHEðƒ¼$HnæH=mæHT$0HL$@L‰D$ M‰ñLD$PL‰|$H‰T$(HDøHD$`H‰D$H„$°H‰D$H„$ H‰$AÿÕèòÿÿH…ÀtDŽ$¼‹„$¼…À„üÿÿH=ñH‰Þ1Àè¢ÿÿH‰„$8éäûÿÿè°ÿÿH…À…ÖûÿÿH‹=`¯$H5QTè„ÿÿé¾ûÿÿffffff.„AUH‰÷H‰ÖHôóATI‰ÌH
µ$USHìXH‹å!#dH‹%(H‰„$H1ÀHD$pLŒ$ÀL„$°HDŽ$ÇD$0H‰D$ H„$DŽ$¬ÇD$@ÇD$PH‰D$H„$ðH‰œ$°HDŽ$ ÿÿÿÿHDŽ$(ÿÿÿÿH‰D$H„$àH‰œ$ÀÇD$`H‰œ$ÐH‰D$H„$ÐHDŽ$0ÿÿÿÿHDŽ$8ÿÿÿÿÇD$pH‰$1ÀH‰œ$àDŽ$€H‰œ$ðDŽ$H‰œ$DŽ$ èÞÿÿ1҅À„L‹„$ÀH´$ ¹²¿èCÿÿH…ÀH‰Å„ÇH‹´$L‹hH9Þ„ÊH¼$H+Sèž#ÿÿ‰„$¬‹„$¬…ÀuTH;¬$ÀtHƒm„gH‹„$H‹”$H‹Œ$HdH3%(H‰Ð…nHÄX[]A\A]ÀD‹Œ$AƒùvZHœ$@L+	H
ÝñH‰ߺ¾1ÀèÿÿH‹=é¬$H‰Þèÿÿé`ÿÿÿ@DŽ$éAÿÿÿ„H‹´$ÐH9Þ„ïH¼$HxRHDŽ$èŸèÿÿ…Àtò„$¸fZÀóD$`‰„$¬‹„$¬…À„áþÿÿH‹´$°H¼$H^RHDŽ$èEèÿÿ…ÀtòŒ$¸fZÉóL$P‰„$¬‹„$¬…À„‡þÿÿH‹´$ðH9Þ„?H¼$€H;Rèî!ÿÿ‰„$¬‹„$¬…À„LþÿÿD‹Œ$€Aƒù‡H‹Œ$(H‹„$ E…ɉ„$ ‰Êt‰‰ȃ|$pL‹„$àH´$0‰T$@‰D$0ºH˜¿H‰„$0H‰„$8Ƀá EèËÿÿH…ÀH‰Ã„uHcT$0L‹@H‹„$0H9ÐuH;„$8„“H‹=«$H5õè8ÿÿé‡ýÿÿH‹EH‰ïÿP0éŠýÿÿè+ÿÿH…À…{ýÿÿH‹=۪$H5Pèÿÿÿécýÿÿf.„ÇD$`éGþÿÿDŽ$€éÌþÿÿHœ$@LÄH
yïé„ýÿÿ‹„$€H5þë…ÀtƒøH5ÕàHÌàHEð‹„$H=¾àHT$0HL$@L‰D$M‰éH‰T$LD$P…ÀH“àHDøHD$`H‰D$H„$ H‰$AÿÔèLÿÿH…ÀtDŽ$¬‹„$¬…À„qüÿÿH=jëH‰Þ1ÀèüÿÿH‰„$éSüÿÿèÚÿÿèÿÿH…Àf…>üÿÿH‹=³©$H5DPè×ÿÿé&üÿÿfAWH‰÷H‰ÖHîAVAUI‰ÍH
Ó$ATUSHìˆH‹A#dH‹%(H‰„$x1ÀHD$pHDŽ$8ÇD$0DŽ$¼ÇD$@LŒ$ÐÇD$PH‰œ$ÀL„$ÀHDŽ$@ÿÿÿÿHDŽ$HÿÿÿÿH‰œ$ÐHDŽ$PÿÿÿÿHDŽ$XÿÿÿÿH‰œ$àÇD$`H‰œ$ðHDŽ$`ÿÿÿÿHDŽ$hÿÿÿÿÇD$pH‰œ$DŽ$€H‰œ$DŽ$H‰œ$ DŽ$ DŽ$°H‰D$(H„$ H‰D$ H„$H‰D$H„$H‰D$H„$ðH‰D$H„$àH‰$1Àèÿÿ1҅À„!L‹„$ÐH´$@¹²¿ègÿÿH…ÀH‰Å„‹L‹„$àH´$P¹º¿L‹pè3ÿÿH…ÀI‰Ä„‡H‹´$ L‹xH9Þ„ÚH¼$HOèŽÿÿ‰„$¼‹„$¼…ÀtKD‹Œ$Aƒù†ºHœ$pLkH
Zì¾H‰ߺ1Àè@ÿÿH‹=)§$H‰ÞèQÿÿL;¤$àtIƒ,$„¬H;¬$ÐtHƒm„H‹„$8H‹”$8H‹Œ$xdH3%(H‰Ð…HĈ[]A\A]A^A_ÃDŽ$é1ÿÿÿ„H‹´$ðH9Þ„ŸH¼$0H@NHDŽ$0èâÿÿ…Àtò„$0¸fZÀóD$`‰„$¼‹„$¼…À„ÿÿÿH‹´$ÀH¼$0H&NHDŽ$0è%âÿÿ…ÀtòŒ$0¸fZÉóL$P‰„$¼‹„$¼…À„ÂþÿÿH‹´$H9Þ„ïH¼$€HNèÎÿÿ‰„$¼‹„$¼…À„‡þÿÿD‹Œ$€Aƒù†ÃHœ$pLÏ
H
©êé7þÿÿH‹EH‰ïÿP0érþÿÿf„I‹D$L‰çÿP0éDþÿÿè‹ÿÿH…À…KþÿÿH‹=;¥$H5Lè_ÿÿé3þÿÿf.„è[ÿÿH…À…þÿÿH‹=¥$H54Lè/ÿÿéîýÿÿf.„ÇD$`é—þÿÿDŽ$€éÿÿÿH‹”$PH‹„$@E…ÉH‹Œ$XH‹´$H‰”$°‰„$ „£9IT$0‰t$@@•ÇLcΉÐ@„ÿ…ƒ|$pL‹„$H´$`H˜º¿H‰„$`L‰Œ$hɃá Eè¿ÿÿH…ÀH‰Ã„&L‹@HcD$0H9„$`uHcD$@H9„$htNH‹=
¤$H5ó	è.ÿÿéØüÿÿ9։D$0‰L$@@•ÇLcÉéZÿÿÿHœ$pLL	H
éé„üÿÿèÓÿÿƒ¼$HÚH5ÚH=ÚHT$0HL$@L‰D$ M‰ñLD$PH‰T$(L‰|$HEðƒ¼$€HDøHD$`H‰D$H„$°H‰D$H„$ H‰$AÿÕèŠÿÿH…ÀtDŽ$¼‹„$¼…À„
üÿÿH=¨äH‰Þ1Àè:ÿÿH‰„$8éìûÿÿèHÿÿH…À…ÞûÿÿH‹=ø¢$H5qKèÿÿéÆûÿÿ€AWH‰÷H‰ÖHèAVAUI‰ÍH
“$ATUSHì¨H‹#dH‹%(H‰„$˜1ÀH„$HDŽ$XÇD$@DŽ$ÜÇD$PLŒ$ðÇD$`ÇD$pL„$àH‰œ$àHDŽ$`ÿÿÿÿHDŽ$hÿÿÿÿH‰œ$ðHDŽ$pÿÿÿÿHDŽ$xÿÿÿÿH‰œ$DŽ$€H‰œ$HDŽ$€ÿÿÿÿHDŽ$ˆÿÿÿÿDŽ$H‰œ$ DŽ$ H‰œ$0DŽ$°H‰œ$@DŽ$ÀDŽ$ÐH‰D$(H„$@H‰D$ H„$0H‰D$H„$ H‰D$H„$H‰D$H„$H‰$1Àè1ÿÿ1҅À„…L‹„$ðH´$`¹²¿è–ÿÿH…ÀH‰Å„ÊL‹„$H´$p¹º¿L‹pèbÿÿH…ÀI‰Ä„†H‹´$0L‹xH9Þ„AH¼$ HJè½ÿÿ‰„$܋„$܅À„¯D‹Œ$ Aƒù‡uH‹´$@H9Þ„H¼$°H
Jèpÿÿ‰„$܋„$܅ÀtfD‹Œ$°Aƒù‡H‹´$H9Þ„+H¼$PHJHDŽ$PèÜÿÿ…À…3‰„$܋„$܅À…=DL;¤$tIƒ,$„ƒH;¬$ðtHƒmtbH‹„$XH‹”$XH‹Œ$˜dH3%(H‰Ð…®HĨ[]A\A]A^A_ÃfDDŽ$ éÊþÿÿDŽ$°éÿÿÿH‹EH‰ïÿP0ë’@I‹D$L‰çÿP0émÿÿÿè{ÿÿH…À…pÿÿÿH‹=+Ÿ$H5ìGèO
ÿÿéXÿÿÿf.„Hœ$LÁøH
[äH‰ߺ¾1ÀèöÿÿH‹=ߞ$H‰Þè
ÿÿéêþÿÿfò„$P¸fZÀó„$€é­þÿÿH‹´$àH¼$PHÁHHDŽ$Pè˜Úÿÿ…ÀtòŒ$P¸fZÉóL$p‰„$܋„$܅À„nþÿÿ‹¼$ H‹´$hH‹„$pH‹”$`L‹Œ$x…ÿ‰ñ‰„$Љ”$Àt‰щò‹´$°‰L$`‰T$@…ö„D9ÉA‰Á•DÉD‰L$P…ƒ¼$L‹„$ HcÒH´$€H‰”$€Mcɺ¿L‰Œ$ˆɃá Eè"	ÿÿH…ÀH‰Ã„±L‹@HcD$@H9„$€uHcD$PH9„$ˆ„¥H‹=i$H5Rèÿÿépýÿÿ„è‹
ÿÿH…À…oýÿÿH‹=;$H5LFè_ÿÿéWýÿÿf.„Hœ$LaH
€âéþÿÿDDŽ$€éôüÿÿ9Á•ÁéïþÿÿHœ$LÿH
[âéÑýÿÿ‹„$°H5AÞ…ÀtƒøH5ÓHÓHEð‹„$ H=Þ…ÀtƒøH=ñÒHèÒHEøH„$€HT$@HL$PL‰D$(LL$pLD$`H‰D$ H„$ÐH‰T$0L‰|$L‰4$H‰D$H„$ÀH‰D$AÿÕèg	ÿÿH…ÀtDŽ$܋„$܅À„ üÿÿH=…ÝH‰Þ1Àè	ÿÿH‰„$Xéüÿÿèõÿÿè 	ÿÿH…À…ïûÿÿH‹=Л$H51Fèôÿÿé×ûÿÿffffff.„AWH‰÷H‰ÖH;áAVAUATI‰ÌH
aó#USHìØH‹Q#dH‹%(H‰„$È1ÀH„$€HDŽ$¨ÇD$PDŽ$ÜÇD$`LŒ$ðH‰œ$àHDŽ$°ÿÿÿÿL„$àHDŽ$¸ÿÿÿÿH‰œ$ðHDŽ$ÿÿÿÿH‰œ$ÇD$pH‰œ$ HDŽ$0ÿÿÿÿDŽ$€H‰œ$@DŽ$H‰œ$PDŽ$ H‰œ$`DŽ$°H‰œ$pDŽ$ÀH‰œ$€DŽ$ÐH‰œ$H‰D$@H„$H‰D$8H„$€H‰D$0H„$pH‰D$(H„$`H‰D$ H„$PH‰D$H„$@H‰D$H„$ H‰D$H„$H‰$1Àèâÿÿ1҅Àt{L‹„$ðH´$°¹²¿èKÿÿH…ÀH‰Å„¿L‹hH‹„$¸H9„$°tiH‹=¢™$H5“
èÆÿÿH;¬$ðtHƒm„ÑH‹„$¨H‹”$¨H‹Œ$ÈdH3%(H‰Ð…HÄØ[]A\A]A^A_ÃDH‹´$H9Þ„H¼$ÐH Dè+ÿÿ‰„$܋„$܅À„oÿÿÿD‹Œ$ÐAƒùvgHœ$ÀLX
H
•ÞH‰ߺ¾1ÀèÝÿÿH‹=Ƙ$H‰Þèîÿÿé#ÿÿÿf„H‹EH‰ïÿP0é ÿÿÿDŽ$Ðé|ÿÿÿH‹´$`H9Þ„¯H¼$ H°Cè{ÿÿ‰„$܋„$܅À„¿þÿÿ‹”$ …Ò„†H‹´$€H9Þ„“H¼$ÀH¦Cè1ÿÿ‰„$܋„$܅À„uþÿÿ‹„$À…À„jH‹´$pH9Þ„wH¼$°HœCèç
ÿÿ‰„$܋„$܅À„+þÿÿH‹´$ H9Þ„LH¼$ H¡CHDŽ$ è Óÿÿ…Àtò„$ ¸fZÀóD$p‰„$܋„$܅À„ÈýÿÿH‹´$àH¼$ H‡CHDŽ$ èFÓÿÿ…ÀtòZŒ$ óL$`¸‰„$܋„$܅À„rýÿÿH‹´$PH9Þ„¥H¼$HhCèóÿÿ‰„$܋„$܅À„7ýÿÿH‹„$°L‹„$H´$¹º¿‰D$PèÿÿH…ÀI‰Æ„L‹x‹D$P‹¼$ Hc”$H‹´$Hÿ‹„$ Áÿ1ø)ø¯ÁÐH˜H9ÆŽÂ…Òx	H9֏H‹==–$H5^
èaÿÿL;´$„üÿÿIƒ.…ƒüÿÿI‹FL‰÷ÿP0étüÿÿf.„è;ÿÿH…À…qüÿÿH‹=ë•$H5”@èÿÿéYüÿÿf.„DŽ$ é\ýÿÿHœ$ÀE1ÉL–
H
nÛéÁüÿÿDŽ$ÀéxýÿÿHœ$ÀE1ÉLØ
H
RÛé“üÿÿDŽ$°é”ýÿÿÇD$péêýÿÿèbÿÿDŽ$éfþÿÿL‹„$@ƒÈÿI9Ø„ƒ¼$€H´$0H˜º¿H‰„$0Ƀá €Ʌè}ÿÿH…ÀH‰Ã„¸‹´$À‹”$ÀH‹xHc„$°H‹Œ$0Áþ1ò)ò‹t$Pƒî¯ÖÂHcÒH9Ñ~c…Àx	H9Á½H‹= ”$H5yèÄÿþÿé^þÿÿH‹=ˆ”$H5qè¬ÿþÿéFþÿÿè²ÿÿH…À…ÓúÿÿH‹=b”$H5Aè†ÿþÿé»úÿÿH‹=J”$H5ëènÿþÿéþÿÿètÿÿH……ùýÿÿH‹=#”$H5,AèGÿþÿéáýÿÿ‹”$À‹„$ÀÁú1Ð)Ћ”$°¯MDé¼þÿÿH‡ƒ¼$ÐHc„$Ht$PH/ÊL„$ÀH‰L$HL$pH=ÊL‰D$I‰ðH‰L$HŒ$ HDúM‡HT$`H‰$L‰éAÿÔèÀÿÿH…ÀtDŽ$܋„$܅À„0ýÿÿH=ÞÔH‰Þ1ÀèpÿÿH‰„$¨éýÿÿAWH‰÷H‰ÖHÙAVAUATUH‰ÍH
pé#SHìèH‹á#dH‹%(H‰„$Ø1ÀH„$HDŽ$¸ÇD$PDŽ$ìÇD$`LŒ$ÇD$pH‰œ$ðL„$ðHDŽ$ÀÿÿÿÿHDŽ$ÈÿÿÿÿH‰œ$HDŽ$ÿÿÿÿH‰œ$ DŽ$€H‰œ$0HDŽ$@ÿÿÿÿDŽ$H‰œ$PDŽ$ H‰œ$`DŽ$°H‰œ$pDŽ$ÀH‰œ$€DŽ$ÐH‰œ$DŽ$àH‰D$@H„$ H‰œ$ H‰D$8H„$H‰D$0H„$€H‰D$(H„$pH‰D$ H„$`H‰D$H„$PH‰D$H„$0H‰D$H„$ H‰$1Àègûþÿ1҅À„õL‹„$H´$À¹²¿èÌüþÿH…ÀI‰Ç„xH‹´$pL‹`H9Þ„ãH¼$°HÄ>è'ÿÿ‰„$싄$ì…À„i‹´$°…ö„âH‹´$H9Þ„ÁH¼$ÐHº>èÝÿÿ‰„$싄$ì…À„‹Œ$ЅÉ„H‹´$€H9Þ„H¼$ÀH°>è“ÿÿ‰„$싄$ì…À„ÕH‹´$0H9Þ„ìH¼$°Hµ>HDŽ$°èLÌÿÿ…Àtò„$°¸fZÀó„$€‰„$싄$ì…À„oH‹´$ðH¼$°H˜>HDŽ$°èïËÿÿ…ÀtòŒ$°¸fZÉóL$p‰„$싄$ì…À„H‹´$ H9Þ„<H¼$àHu>è˜ÿÿ‰„$싄$ì…À„ÚD‹Œ$àAƒù‡H‹´$`H9Þ„H¼$ Hh>èKÿÿ‰„$싄$ì…À„L‹´$À‹”$àH´$H‹„$ÈL‹„$ ¿…ÒD‰ñºDÈD‰t$P‰D$`‰L$H¹DEðèQúþÿH…ÀI‰Å„Õ‹´$°‹”$°‹|$HL‹HHc„$ H‹Œ$Áþ1òƒï)ò¯úHcÒH9ÑŽ{…Àˆ[H9ÁŽRL‹„$PƒÈÿI9Ø„lƒ¼$H´$@H˜º¿L‰L$HH‰„$@Ƀá €Ʌè¨ùþÿH…ÀH‰ÃL‹L$H„P‹´$Ћ”$ÐAƒîH‹xHc„$ÀH‹Œ$@Áþ1ò)òD¯òAHcÒH9ÑŽÌ…Àx	H9ÁÿH‹=$H5›èæøþÿL;¬$ tIƒmu
I‹EL‰ïÿP0L;¼$tIƒ/tXH‹„$¸H‹”$¸H‹Œ$ØdH3%(H‰Ð…)HÄè[]A\A]A^A_Ã@DŽ$°é(üÿÿ„I‹GL‰ÿÿP0ëœ@DŽ$ÐéJüÿÿHœ$ÐLéH
ÿÒE1ÉH‰ߺ¾1ÀèóüþÿH‹=܌$H‰Þèøþÿé7ÿÿÿ€èúþÿH…À…2ÿÿÿH‹=³Œ$H5:è×÷þÿéÿÿÿfHœ$ÐE1ÉLæH
žÒëŽDDŽ$ÀéôûÿÿDŽ$€éJüÿÿDŽ$àéÏüÿÿHœ$ÐLAH
cÒé>ÿÿÿè@÷þÿDŽ$ éìüÿÿH‹=Œ$H5:è=÷þÿéRþÿÿH‹=Œ$H5Âè%÷þÿé:þÿÿè+ùþÿH…À…JþÿÿH‹=ۋ$H5<;èÿöþÿé2þÿÿL‡Hc„$ H=;ÍM‹„$à…ÀtƒøH=ÂHþÁHEøH„$ÐHt$PHL$pHT$`L‰\$L‰$H‰D$ H„$€I‰ñM‰àH‰D$H„$°H‰D$ÿÕè‡øþÿH…ÀtDŽ$싄$ì…À„rýÿÿH=¥ÌH‰Þ1Àè7øþÿH‰„$¸éTýÿÿH‹=‹$H5Lè'öþÿé<ýÿÿ‹Œ$Ћ”$ÐDðÁù1Ê)ʯ‹”$ÀDéiüÿÿèøþÿH…À…ýÿÿH‹=²Š$H5c:èÖõþÿéëüÿÿAWH‰÷H‰ÖHÍÐAVAUATUH‰ÍH
ÐÚ#SHìXH‹Aý"dH‹%(H‰„$H1ÀH„$ LŒ$L„$ÀHDŽ$8ÇD$0H‰D$(H„$DŽ$ŒH‰œ$ÇD$@H‰D$ H„$àH‰œ$ HDŽ$°ÿÿÿÿH‰œ$ÀH‰D$H„$ÐÇD$PH‰œ$ÐÇD$`H‰D$H„$ H‰œ$àHDŽ$ðÿÿÿÿH‰œ$H‰D$H„$ÇD$pH‰œ$DŽ$€H‰$1ÀH‰œ$ èHóþÿ…À„¸H‹´$ H9Þ„?H¼$0H09HDŽ$0è/Åÿÿ…À…÷‰„$Œ‹„$Œ…À„¡H‹´$àH9Þ„HH|$`H$9èïþþÿ‰„$Œ‹„$Œ…À„i‹T$`…Ò„ÍH‹´$ H9Þ„<H¼$€H9è¨þþÿ‰„$Œ‹„$Œ…À„"‹„$€…À„ãL‹„$H´$𹺿èÏóþÿH…ÀI‰Å„L‹„$ÀH´$°¹º¿L‹pè›óþÿH…ÀI‰Ä„ýH‹´$ÐL‹xH9Þ„šH|$PHN9èùýþÿ‰„$Œ‹„$Œ…À„PD‹L$PE…ɈrIcÁH;„$°aH‹´$H9Þ„»H|$pH79è¢ýþÿ‰„$Œ‹„$Œ…À„ùD‹L$pE…Ɉ“IcÁH;„$ð‚H‹´$H9Þ„‘H|$0H 9èKýþÿ‰„$Œ‹„$Œ…À„¢‹´$€D‹L$0‹„$€LcD$pH‹”$ðÁþAIÿ1ð)ðL)¯ÁH˜H9ÂŽÁ‹|$`‹D$`Hct$PH‹”$°Áÿ1ø)øH)ò¯ÁH˜H91Hœ$@LµH
A;H‰ߺ1Àè¢öþÿH‹=‹†$H‰Þè³ñþÿL;¤$ÀtIƒ,$uI‹D$L‰çÿP0€H‹„$8H‹„$8H‹Œ$HdH3%(…yHÄX[]A\A]A^A_Àò„$0¸fZÀóD$@éìüÿÿÇD$@€?éãüÿÿHœ$@LÉúH
-ÌE1ÉH‰ߺ¾1ÀèÓõþÿH‹=¼…$H‰ÞèäðþÿéOÿÿÿ€ÇD$`éÃüÿÿ1ÀéAÿÿÿHœ$@E1ÉLÖúH
ÜËëžDDŽ$€éÏüÿÿÇD$PéqýÿÿHœ$@LÜH
´Ëé’þÿÿèsòþÿH…À…ÊþÿÿH‹=#…$H5Ü5èGðþÿé²þÿÿèMòþÿH…À…¤þÿÿH‹=ý„$H56è!ðþÿéŒþÿÿ@ÇD$péPýÿÿHœ$@LÜH
NËéþÿÿèËïþÿHcT$PH‹„$°‹L$`H)ЋT$`Áù1Ê)ÊHcÊH™H÷ù‰D$0éWýÿÿI·HL$`Ht$@H|$0LŒ$€O†ÿÕè¥ñþÿH…ÀtDŽ$Œ‹„$Œ…À„ÃýÿÿH=ÃÅL‰î1ÀèUñþÿH‰„$8é¥ýÿÿHœ$@L¡égýÿÿ@AWH‰÷H‰ÖH«ÊAVAUATI‰ÌH
aê#USHìˆH‹±ö"dH‹%(H‰„$x1ÀHD$`HDŽ$8ÇD$@DŽ$¬ÇD$PLŒ$ÐHDŽ$°H‰œ$ÀL„$ÀHDŽ$@ÿÿÿÿHDŽ$HÿÿÿÿH‰œ$ÐHDŽ$PÿÿÿÿHDŽ$XÿÿÿÿH‰œ$àHDŽ$ðH‰œ$HDŽ$`ÿÿÿÿHDŽ$hÿÿÿÿÇD$`H‰œ$ÇD$pH‰œ$ DŽ$€H‰œ$0DŽ$DŽ$ H‰D$(H„$0H‰D$ H„$ H‰D$H„$H‰D$H„$H‰D$H„$àH‰$1Àèmìþÿ1҅À„ L‹„$ÐH´$@¹²¿èÒíþÿH…ÀH‰Å„L‹„$àH´$P¹º¿L‹hèžíþÿH…ÀI‰Ç„H‹´$0L‹pH9Þ„ÝH¼$€H®4èù÷þÿ‰„$¬‹„$¬…ÀtKD‹Œ$€Aƒù†µHœ$pLÖÝH
qȾH‰ߺ1Àè«ñþÿH‹=”$H‰Þè¼ìþÿL;¼$àt
Iƒ/„(H;¬$ÐtHƒm„ûH‹„$8H‹”$8H‹Œ$xdH3%(H‰Ð…¦HĈ[]A\A]A^A_ÀDŽ$€é.ÿÿÿH‹´$H9Þ„H¼$ðHð3èû¼ÿÿ‰„$¬‹„$¬…À„IÿÿÿH„$°H‹´$ÀHþ3H‰ÇH‰D$8è|ÿÿ‰„$¬‹„$¬…À„ÿÿÿH‹´$ H9Þ„»H|$pH4è‰öþÿ‰„$¬‹„$¬…À„×þÿÿD‹L$pHœ$pLÝH
ÇAƒù‡þÿÿH‹”$PH‹„$@E…ÉH‹´$XH‹Œ$H‰”$ ‰„$„E9‰D$P…c‰ȃ|$`L‹„$H´$`‰D$@ºH˜¿H‰„$`H‰„$hɃá Eè4ëþÿH…ÀH‰Ã„äHcT$@L‹@H‹„$`H9ÐuH;„$h„öH‹=}$H5^Ýè¡êþÿéàýÿÿ@H‹EH‰ïÿP0éöýÿÿf„I‹GL‰ÿÿP0éÉýÿÿè{ìþÿH…À…ÏýÿÿH‹=+$H5D1èOêþÿé·ýÿÿf.„èKìþÿH…À…ŠýÿÿH‹=û~$H5d1èêþÿérýÿÿf.„HDŽ$ðéëýÿÿÇD$péPþÿÿ9ñ‰L$P„½þÿÿA‰ÉHœ$pLÜH
‡ÅééüÿÿA‰Áëàèžéþÿ‹D$pH5À…ÀtƒøH5޴HմHEðƒ¼$€H4H=¿´HT$@HL$PL‰D$ M‰éL‹D$8L‰t$H‰T$(HDøH„$ðH‰D$H„$ H‰D$H„$H‰$AÿÔèAëþÿH…ÀtDŽ$¬‹„$¬…À„VüÿÿH=_¿H‰Þ1ÀèñêþÿH‰„$8é8üÿÿèÿêþÿH…À…*üÿÿH‹=¯}$H5p1èÓèþÿéüÿÿfffff.„AVH‰÷H‰ÖH{ÄAUATI‰ÌH
Câ#USHì@H‹3ð"dH‹%(H‰„$81ÀHD$PLŒ$°L„$ HDŽ$ÇD$0H‰D$ H„$DŽ$ŒÇD$@HDŽ$H‰D$H„$ðH‰œ$ HDŽ$ÿÿÿÿHDŽ$ÿÿÿÿH‰D$H„$àH‰œ$°HDŽ$ÀH‰œ$ÐH‰D$H„$ÐHDŽ$ ÿÿÿÿHDŽ$(ÿÿÿÿÇD$PH‰$1ÀH‰œ$àÇD$`H‰œ$ðÇD$pH‰œ$DŽ$€è*æþÿ1҅À„ŠL‹„$°H´$¹²¿èçþÿH…ÀH‰Å„sH‹´$L‹hH9Þ„ÆH|$pHJ0èíñþÿ‰„$Œ‹„$Œ…ÀuSH;¬$°tHƒm„H‹„$H‹”$H‹Œ$8dH3%(H‰Ð…HÄ@[]A\A]A^Ã@D‹L$pAƒùvUHœ$0L~×H
gÂH‰ߺ¾1ÀèSëþÿH‹=<{$H‰Þèdæþÿédÿÿÿ€ÇD$péEÿÿÿH‹´$ÐH9Þ„§H¼$ÀH /è·ÿÿ‰„$Œ‹„$Œ…À„ÿÿÿL´$H‹´$ H®/L‰÷èζÿÿ‰„$Œ‹„$Œ…À„ÝþÿÿH‹´$ðH9Þ„HH|$`H»/è–ðþÿ‰„$Œ‹„$Œ…À„¥þÿÿD‹L$`Aƒù‡H‹Œ$H‹„$E…ɉ„$€‰Êt‰‰ȃ|$PL‹„$àH´$ ‰T$@‰D$0ºH˜¿H‰„$ H‰„$(Ƀá EèvåþÿH…ÀH‰Ã„|HcT$0L‹@H‹„$ H9ÐuH;„$(„ŸH‹=¿y$H5 ×èãäþÿéãýÿÿfDH‹EH‰ïÿP0éãýÿÿf„èËæþÿH…À…ÌýÿÿH‹={y$H5Œ-èŸäþÿé´ýÿÿf.„HDŽ$ÀécþÿÿÇD$`éÃþÿÿHœ$0LcÖH
OÀéÐýÿÿ‹D$`H5 º…ÀtƒøH5w¯Hn¯HEð‹D$pH=c¯HT$0HL$@L‰D$M‰éH‰T$M‰ð…ÀH:¯HDøH„$ÀH‰D$H„$€H‰$AÿÔèðåþÿH…ÀtDŽ$Œ‹„$Œ…À„ÆüÿÿH=ºH‰Þ1Àè åþÿH‰„$é¨üÿÿè~ãþÿè©åþÿH…À…•üÿÿH‹=Yx$H5Â-è}ãþÿé}üÿÿ„AWH‰÷H‰ÖHg¿AVAUATI‰ÌH
ÑÚ#USHìˆH‹áê"dH‹%(H‰„$x1ÀHD$`HDŽ$8ÇD$@DŽ$¬ÇD$PLŒ$ÐHDŽ$°H‰œ$ÀL„$ÀHDŽ$@ÿÿÿÿHDŽ$HÿÿÿÿH‰œ$ÐHDŽ$PÿÿÿÿHDŽ$XÿÿÿÿH‰œ$àHDŽ$ðH‰œ$HDŽ$`ÿÿÿÿHDŽ$hÿÿÿÿÇD$`H‰œ$ÇD$pH‰œ$ DŽ$€H‰œ$0DŽ$DŽ$ H‰D$(H„$0H‰D$ H„$ H‰D$H„$H‰D$H„$H‰D$H„$àH‰$1Àèàþÿ1҅À„ L‹„$ÐH´$@¹²¿èâþÿH…ÀH‰Å„6L‹„$àH´$P¹º¿L‹hèÎáþÿH…ÀI‰Ç„2H‹´$0L‹pH9Þ„ÝH¼$€Hv,è)ìþÿ‰„$¬‹„$¬…ÀtKD‹Œ$€Aƒù†µHœ$pLÒH
,½¾H‰ߺ1ÀèÛåþÿH‹=Äu$H‰ÞèìàþÿL;¼$àt
Iƒ/„XH;¬$ÐtHƒm„3H‹„$8H‹”$8H‹Œ$xdH3%(H‰Ð…²HĈ[]A\A]A^A_ÀDŽ$€é.ÿÿÿH‹´$H9Þ„OH¼$ðH¸+è+±ÿÿ‰„$¬‹„$¬…À„IÿÿÿH„$°H‹´$ÀHÆ+H‰ÇH‰D$8èñ°ÿÿ‰„$¬‹„$¬…À„ÿÿÿH‹´$ H9Þ„ëH|$pHÎ+è¹êþÿ‰„$¬‹„$¬…À„×þÿÿD‹L$pAƒù†ÂHœ$pL½ÙH
λéŠþÿÿf„H‹EH‰ïÿP0é¾þÿÿI‹GL‰ÿÿP0é™þÿÿè{áþÿH…À…ŸþÿÿH‹=+t$H5Ü)èOßþÿé‡þÿÿf.„èKáþÿH…À…ZþÿÿH‹=ûs$H5ü)èßþÿéBþÿÿf.„HDŽ$ðé»þÿÿÇD$pé ÿÿÿH‹„$PH‹”$@E…ÉH‹´$XH‹Œ$H‰„$ ‰”$„¡9։D$@‰L$P@•ÇLcÉ@„ÿ…Ÿƒ|$`L‹„$H´$`H˜º¿H‰„$`L‰Œ$hɃá Eè°ÞþÿH…ÀH‰Ã„(L‹@HcD$@H9„$`uHcD$PH9„$htPH‹=ûr$H5äØèÞþÿé.ýÿÿ9IT$@‰t$P@•ÇLcΉÐéXÿÿÿHœ$pL;ØH
.ºéØüÿÿèÂÝþÿƒ¼$€H©H5©H=©HT$@HL$PL‰D$ M‰éL‹D$8H‰T$(L‰t$HEðƒ|$pHDøH„$ðH‰D$H„$ H‰D$H„$H‰$AÿÔèyßþÿH…ÀtDŽ$¬‹„$¬…À„^üÿÿH=—³H‰Þ1Àè)ßþÿH‰„$8é@üÿÿè7ßþÿH…À…2üÿÿH‹=çq$H5@)èÝþÿéüÿÿfDAWH‰÷H‰ÖHB¹AVAUI‰ÍH
ãÒ#ATUSHì˜H‹qä"dH‹%(H‰„$ˆ1ÀHD$pHDŽ$HÇD$@DŽ$¼ÇD$PLŒ$àÇD$`HDŽ$ÀL„$ÐH‰œ$ÐHDŽ$PÿÿÿÿHDŽ$XÿÿÿÿH‰œ$àHDŽ$`ÿÿÿÿHDŽ$hÿÿÿÿH‰œ$ðHDŽ$H‰œ$HDŽ$pÿÿÿÿHDŽ$xÿÿÿÿÇD$pH‰œ$ DŽ$€H‰œ$0DŽ$H‰œ$@DŽ$ DŽ$°H‰D$(H„$@H‰D$ H„$0H‰D$H„$ H‰D$H„$H‰D$H„$ðH‰$1Àè"Úþÿ1҅À„jL‹„$àH´$P¹²¿è‡ÛþÿH…ÀH‰Å„«L‹„$ðH´$`¹º¿L‹pèSÛþÿH…ÀI‰Ä„H‹´$0L‹xH9Þ„"H¼$€Hë'è®åþÿ‰„$¼‹„$¼…À„˜D‹Œ$€Aƒù‡VH‹´$@H9Þ„åH¼$HÞ'èaåþÿ‰„$¼‹„$¼…ÀtOD‹Œ$Aƒù‡­H‹´$H9Þ„¼H¼$HÕ'è«ÿÿ‰„$¼‹„$¼…À…fL;¤$ðtIƒ,$tH;¬$àtHƒmt^H‹„$HH‹”$HH‹Œ$ˆdH3%(H‰Ð…cHĘ[]A\A]A^A_ÃfDŽ$€ééþÿÿDŽ$é&ÿÿÿH‹EH‰ïÿP0ë–@I‹D$L‰çÿP0éqÿÿÿè‹ÛþÿH…À…tÿÿÿH‹=;n$H5Ü%è_Ùþÿé\ÿÿÿf.„Hœ$€LÑÇH
¢µH‰ߺ¾1ÀèÞþÿH‹=ïm$H‰ÞèÙþÿéòþÿÿfHœ$ÀH‹´$ÐHÑ&H‰ßèѩÿÿ‰„$¼‹„$¼…À„»þÿÿ‹¼$€H‹´$XH‹„$`H‹”$PL‹Œ$h…ÿ‰ñ‰„$°‰”$ t‰щò‹´$‰L$`‰T$@…ö„D9ÉA‰Á•DÉD‰L$P…úƒ|$pL‹„$ HcÒH´$pH‰”$pMcɺ¿L‰Œ$xɃá EèzØþÿH…ÀI‰Â„²L‹@HcD$@H9„$puHcD$PH9„$x„žH‹=Ál$H5ªÒèå×þÿéÀýÿÿèëÙþÿH…À…ÃýÿÿH‹=›l$H5Œ$è¿×þÿé«ýÿÿf.„Hœ$€LÁÕH
´é[þÿÿDHDŽ$éNýÿÿ9Á•ÁéùþÿÿHœ$€L^ÖH
ñ³é þÿÿ‹„$H5 ­…ÀtƒøH5w¢Hn¢HEð‹„$€H=y­…ÀtƒøH=P¢HG¢HEøH„$HT$@L‰T$8HL$PL‰D$(I‰ÙH‰D$ H„$°H‰T$0LD$`L‰|$L‰4$H‰D$H„$ H‰D$AÿÕèÃØþÿH…ÀL‹T$8tDŽ$¼‹„$¼…À„oüÿÿH=ܬL‰Ö1ÀènØþÿH‰„$HéQüÿÿèLÖþÿèwØþÿH…À…>üÿÿH‹='k$H5p$èKÖþÿé&üÿÿfDAWH‰÷H‰ÖHҲAVAUATI‰ÌH
!Ã#USHìÈH‹±Ý"dH‹%(H‰„$¸1ÀHD$`HDŽ$˜ÇD$PDŽ$¼HDŽ$ÀLŒ$àH‰œ$ÐHDŽ$ ÿÿÿÿL„$ÐHDŽ$¨ÿÿÿÿH‰œ$àHDŽ$ðÿÿÿÿH‰œ$HDŽ$H‰œ$ HDŽ$0ÿÿÿÿÇD$`H‰œ$@ÇD$pH‰œ$PDŽ$€H‰œ$`DŽ$H‰œ$pDŽ$ H‰œ$€DŽ$°H‰œ$H‰D$@H„$H‰D$8H„$€H‰D$0H„$pH‰D$(H„$`H‰D$ H„$PH‰D$H„$@H‰D$H„$ H‰D$H„$H‰$1ÀèCÓþÿ1҅Àt{L‹„$àH´$ ¹²¿è¬ÔþÿH…ÀH‰Å„pL‹hH‹„$¨H9„$ tjH‹=i$H5ôÜè'ÔþÿH;¬$àtHƒm„ÒH‹„$˜H‹”$˜H‹Œ$¸dH3%(H‰Ð…µHÄÈ[]A\A]A^A_ÃfDH‹´$H9Þ„H¼$°Hh"è‹Þþÿ‰„$¼‹„$¼…À„nÿÿÿD‹Œ$°AƒùvgHœ$°L¸ÜH
,°H‰ߺ¾1Àè=ØþÿH‹=&h$H‰ÞèNÓþÿé"ÿÿÿf„H‹EH‰ïÿP0éÿÿÿDŽ$°é|ÿÿÿH‹´$`H9Þ„_H¼$€Hø!èÛÝþÿ‰„$¼‹„$¼…À„¾þÿÿ‹”$€…Ò„6H‹´$€H9Þ„CH¼$ Hî!è‘Ýþÿ‰„$¼‹„$¼…À„tþÿÿ‹„$ …À„H‹´$pH9Þ„'H¼$Hä!èGÝþÿ‰„$¼‹„$¼…À„*þÿÿH‹´$ H9Þ„üH¼$Hé!è£ÿÿ‰„$¼‹„$¼…À„ïýÿÿL¼$ÀH‹´$ÐH÷!L‰ÿèעÿÿ‰„$¼‹„$¼…À„ºýÿÿH‹´$PH9Þ„¢H|$pH"èŸÜþÿ‰„$¼‹„$¼…À„‚ýÿÿH‹„$ L‹„$H´$𹺿‰D$PèÉÑþÿH…ÀI‰Æ„L‹H‹D$P‹¼$€HcT$pH‹´$ðHÿ‹„$€Áÿ1ø)ø¯ÁÐH˜H9ÆŽÉ…Òx	H9֏H‹=ìe$H5
ÝèÑþÿL;´$„ÛüÿÿIƒ.…ÑüÿÿI‹FL‰÷ÿP0éÂüÿÿf„èëÒþÿH…À…ÀüÿÿH‹=›e$H5,è¿Ðþÿé¨üÿÿf.„DŽ$€é¬ýÿÿHœ$°E1ÉLFÚH
U­éýÿÿDŽ$ éÈýÿÿHœ$°E1ÉLˆÚH
9­éãüÿÿDŽ$éäýÿÿHDŽ$éþÿÿèÐþÿÇD$péiþÿÿL‹„$@ƒÈÿI9Ø„"ƒ|$`H´$0H˜º¿L‰L$HH‰„$0Ƀá €Ʌè*ÐþÿH…ÀH‰ÃL‹L$H„¸‹´$ ‹”$ H‹xHc„$H‹Œ$0Áþ1ò)ò‹t$Pƒî¯ÖÂHcÒH9Ñ~c…Àx	H9Á¼H‹=Hd$H5!ÜèlÏþÿéWþÿÿH‹=0d$H5ÛèTÏþÿé?þÿÿèZÑþÿH…À…ûÿÿH‹=
d$H5³è.ÏþÿéûÿÿH‹=òc$H5“ÛèÏþÿéþÿÿèÑþÿH…À…óýÿÿH‹=Ìc$H5ÅèðÎþÿéÛýÿÿ‹”$ ‹„$ Áú1Ð)Ћ”$¯MDé¶þÿÿHǃ¼$°HcD$pH
à™H=ߙHt$PH‰T$H”$I‰ðHDùH‰T$HŒ$ H”$€MÁH‰L$L‰éH‰$L‰úAÿÔèkÐþÿH…ÀtDŽ$¼‹„$¼…À„,ýÿÿH=‰¤H‰Þ1ÀèÐþÿH‰„$˜éýÿÿfffff.„AWH‰÷H‰ÖHóªAVAUATUSH‰ËH
o¹#HìèL‹=Õ"dH‹%(H‰„$Ø1ÀH„$€HDŽ$¸ÇD$`DŽ$ÜÇD$pLŒ$HDŽ$àL‰¼$ðL„$ðHDŽ$ÀÿÿÿÿHDŽ$ÈÿÿÿÿL‰¼$HDŽ$ÿÿÿÿL‰¼$ HDŽ$0L‰¼$@HDŽ$PÿÿÿÿDŽ$€L‰¼$`DŽ$L‰¼$pDŽ$ L‰¼$€DŽ$°L‰¼$DŽ$ÀL‰¼$ DŽ$ÐH‰D$@H„$°L‰¼$°H‰D$8H„$ H‰D$0H„$H‰D$(H„$€H‰D$ H„$pH‰D$H„$`H‰D$H„$@H‰D$H„$ H‰$1ÀèËþÿ1҅À„¨L‹„$H´$À¹²¿ègÌþÿH…ÀI‰Æ„#H‹´$€H‹hL9þ„–H¼$ HOèÂÖþÿ‰„$܋„$܅À„‹¼$ …ÿ„H‹´$ L9þ„lH¼$ÀHEèxÖþÿ‰„$܋„$܅À„Ò‹´$À…ö„³H‹´$L9þ„ÂH¼$°H;è.Öþÿ‰„$܋„$܅À„ˆH‹´$@L9þ„—H¼$0H@èó›ÿÿ‰„$܋„$܅À„ML¤$àH‹´$ðHNL‰ç辛ÿÿ‰„$܋„$܅À„H‹´$°L9þ„8H¼$ÐHXèƒÕþÿ‰„$܋„$܅À„ÝD‹Œ$ÐAƒù‡H‹´$pL9þ„H¼$HKè6Õþÿ‰„$܋„$܅À„H‹”$À‹Œ$ÐH´$H‹„$ÈL‹„$ ¿…ɉщT$`DȉD$pD‰L$Xº¹‰D$Tè;ÊþÿH…ÀI‰Å„Ћ´$ ‹”$ ‹|$XL‹HHc„$H‹Œ$Áþ1òƒï)ò¯úHcÒH9ÑŽv…ÀˆVH9ÁŽML‹„$`ƒÈÿM9ø„eƒ¼$€H´$PH˜º¿L‰L$XH‰„$PɃá €Ʌè’ÉþÿH…ÀI‰ÇL‹L$X„M‹´$À‹”$ÀD‹D$TH‹xHc„$°H‹Œ$PÁþ1òAƒè)òD¯ÂAHcÒH9ÑŽÀ…Àx	H9ÁõH‹=§]$H5€ÕèËÈþÿL;¬$ tIƒmu
I‹EL‰ïÿP0L;´$tIƒ.tPH‹„$¸H‹”$¸H‹œ$ØdH3%(H‰Ð…"HÄè[]A\A]A^A_Ã@DŽ$ éuüÿÿI‹FL‰÷ÿP0ë¤@DŽ$ÀéŸüÿÿHœ$ÐLÙÑH
&¥E1ÉH‰ߺ¾1ÀèãÌþÿH‹=Ì\$H‰ÞèôÇþÿé?ÿÿÿ€èóÉþÿH…À…:ÿÿÿH‹=£\$H5äèÇÇþÿé"ÿÿÿfHœ$ÐE1ÉLÖÑH
ŤëŽDDŽ$°éIüÿÿHDŽ$0ésüÿÿDŽ$ÐéÓüÿÿHœ$ÐL0ÖH
‰¤é=ÿÿÿè/ÇþÿDŽ$éðüÿÿH‹=\$H5)Óè,Çþÿé\þÿÿH‹=ð[$H5±ÖèÇþÿéDþÿÿèÉþÿH…À…QþÿÿH‹=Ê[$H5#èîÆþÿé9þÿÿLÇHc„$H=*IK„$ЅÀtƒøH=ö‘Hí‘HEøH„$ÀHt$`HT$pL‰D$H‰$I‰èH‰D$ H„$0I‰ñL‰áH‰D$H„$ H‰D$ÿÓèxÈþÿH…ÀtDŽ$܋„$܅À„~ýÿÿH=–œL‰þ1Àè(ÈþÿH‰„$¸é`ýÿÿH‹=ôZ$H5=ÖèÆþÿéHýÿÿ‹Œ$À‹”$À‹D$TÁù1ʃè)ʯ‹”$°DélüÿÿèïÇþÿH…À…ýÿÿH‹=ŸZ$H5HèÃÅþÿéóüÿÿfffff.„AWH‰÷H‰ÖHä¢AVAUATUH‰ÍH
«#SHìHH‹!Í"dH‹%(H‰„$81ÀH„$ LŒ$L„$ÀHDŽ$(ÇD$0H‰D$(H„$ÇD$|H‰œ$€HDŽ$H‰D$ H„$àH‰œ$ HDŽ$°ÿÿÿÿH‰œ$ÀH‰D$H„$ÐÇD$@H‰œ$ÐÇD$PH‰D$H„$ H‰œ$àHDŽ$ðÿÿÿÿH‰œ$H‰D$H„$€ÇD$`H‰œ$ÇD$pH‰$1ÀH‰œ$ è*Ãþÿ…À„ZH‹´$ H9Þ„ÙH¼$H
è•ÿÿ‰D$|‹D$|…À„uH‹´$àH9Þ„H|$PHèëÎþÿ‰D$|‹D$|…À„C‹T$P…Ò„H‹´$ H9Þ„þH|$pHè­Îþÿ‰D$|‹D$|…À„‹D$p…À„±L‹„$H´$𹺿èÝÃþÿH…ÀI‰Å„ÖL‹„$ÀH´$°¹º¿L‹pè©ÃþÿH…ÀI‰Ä„ÈH‹´$ÐL‹xH9Þ„eH|$@HTèÎþÿ‰D$|‹D$|…À„>D‹L$@E…ɈCIcÁH;„$°2H‹´$H9Þ„H|$`HCè¶Íþÿ‰D$|‹D$|…À„íD‹L$`E…ɈmIcÁH;„$ð\H‹´$€H9Þ„kH|$0H2èeÍþÿ‰D$|‹D$|…À„œ‹t$pD‹L$0‹D$pLcD$`H‹”$ðÁþAIÿ1ð)ðL)¯ÁH˜H9ÂŽ¡‹|$P‹D$PHct$@H‹”$°Áÿ1ø)øH)ò¯ÁH˜H9Hœ$0LÛÓH
žŸ¾H‰ߺ1ÀèÈÆþÿH‹=±V$H‰ÞèÙÁþÿL;¤$ÀtIƒ,$uI‹D$L‰çÿP0DH‹„$(H‹„$(H‹Œ$8dH3%(…aHÄH[]A\A]A^A_Àòˆ‘ò„$é)ýÿÿfHœ$0L	ËH
¤žE1ÉH‰ߺ¾1ÀèÆþÿH‹=üU$H‰Þè$Áþÿégÿÿÿ€ÇD$Péýÿÿ1ÀéYÿÿÿHœ$0E1ÉLËH
SžëžDÇD$pé
ýÿÿÇD$@é£ýÿÿHœ$0LàH
.žé¯þÿÿè¶ÂþÿH…À…åþÿÿH‹=fU$H5èŠÀþÿéÍþÿÿèÂþÿH…À…¿þÿÿH‹=@U$H5AèdÀþÿé§þÿÿ€ÇD$`éyýÿÿHœ$0LàH
ŝé4þÿÿèÀþÿHcT$@H‹„$°‹L$PH)ЋT$PÁù1Ê)ÊHcÊH™H÷ù‰D$0ézýÿÿI÷HL$PH´$H|$0LL$pOÆÿÕèåÁþÿH…ÀtÇD$|‹D$|…À„ãýÿÿH=	–L‰î1Àè›ÁþÿH‰„$(éÅýÿÿHœ$0Lçßé‡ýÿÿf.„AWH‰÷H‰ÖH"AVAUATUH‰ÍH
@¥#SHìXH‹ñÆ"dH‹%(H‰„$H1ÀH„$ LŒ$L„$ÀHDŽ$(ÇD$0H‰D$(H„$ÇD$|H‰œ$€H‰œ$ H‰D$ H„$àHDŽ$°ÿÿÿÿH‰œ$ÀÇD$@H‰D$H„$ÐH‰œ$ÐÇD$PH‰œ$àH‰D$H„$ HDŽ$ðÿÿÿÿH‰œ$ÇD$`H‰D$H„$€H‰œ$ÇD$pH‰œ$ H‰$1Àè½þÿ…À„®H‹´$ H9Þ„%H¼$0HHDŽ$0HDŽ$8èAÅþÿ…Àt1ò„$0òŒ$8¸fZÀfZÉó„$óŒ$”‰D$|‹D$|…À„tH‹´$àH9Þ„H|$PHÏèzÈþÿ‰D$|‹D$|…À„B‹T$P…Ò„–H‹´$ H9Þ„
H|$pHÑè<Èþÿ‰D$|‹D$|…À„‹D$p…À„ÀL‹„$H´$𹺿èl½þÿH…ÀI‰Å„åL‹„$ÀH´$°¹º¿L‹pè8½þÿH…ÀI‰Ä„×H‹´$ÐL‹xH9Þ„tH|$@Hè–Çþÿ‰D$|‹D$|…À„>D‹L$@E…ɈRIcÁH;„$°AH‹´$H9Þ„žH|$`HúèEÇþÿ‰D$|‹D$|…À„íD‹L$`E…Ɉ|IcÁH;„$ðkH‹´$€H9Þ„zH|$0HéèôÆþÿ‰D$|‹D$|…À„œ‹t$pD‹L$0‹D$pLcD$`H‹”$ðÁþAIÿ1ð)ðL)¯ÁH˜H9Âް‹|$P‹D$PHct$@H‹”$°Áÿ1ø)øH)ò¯ÁH˜H9&Hœ$@LjÍH
›™¾H‰ߺ1ÀèWÀþÿH‹=@P$H‰Þèh»þÿL;¤$ÀtIƒ,$uI‹D$L‰çÿP0@H‹„$(H‹„$(H‹Œ$HdH3%(…qHÄX[]A\A]A^A_ÀDŽ$€?DŽ$”é%ýÿÿDHœ$@L‘ÄH
š˜E1ÉH‰ߺ¾1À蛿þÿH‹=„O$H‰Þ謺þÿé_ÿÿÿ€ÇD$Péýüÿÿ1ÀéQÿÿÿf„Hœ$@E1ÉL–ÄH
A˜ë–DÇD$péûüÿÿÇD$@é”ýÿÿHœ$@LŸÙH
˜é þÿÿè6¼þÿH…À…ÕþÿÿH‹=æN$H5¿è
ºþÿé½þÿÿè¼þÿH…À…¯þÿÿH‹=ÀN$H5éèä¹þÿé—þÿÿ€ÇD$`éjýÿÿHœ$@LœÙH
³—é%þÿÿ苹þÿHcT$@H‹„$°‹L$PH)ЋT$PÁù1Ê)ÊHcÊH™H÷ù‰D$0ékýÿÿI÷HL$PH´$H|$0LL$pOÆÿÕèe»þÿH…ÀtÇD$|‹D$|…À„ÔýÿÿH=‰L‰î1Àè»þÿH‰„$(é¶ýÿÿHœ$@LgÙéxýÿÿf.„AUH‰÷H‰ÖH—ATI‰ÌH
Ų#USHìXH‹uÀ"dH‹%(H‰„$H1ÀHD$PLŒ$°L„$ HDŽ$ÇD$0H‰D$ H„$DŽ$ŒÇD$@H‰œ$ H‰D$H„$ðHDŽ$ÿÿÿÿHDŽ$ÿÿÿÿH‰œ$°H‰D$H„$àH‰œ$ÐHDŽ$ ÿÿÿÿHDŽ$(ÿÿÿÿH‰D$H„$ÐÇD$PH‰œ$àÇD$`H‰$1ÀH‰œ$ðÇD$pH‰œ$DŽ$€脶þÿ1҅À„ŠL‹„$°H´$¹²¿èé·þÿH…ÀH‰Å„
H‹´$L‹hH9Þ„ÈH|$pHÌèGÂþÿ‰„$Œ‹„$Œ…ÀuUH;¬$°tHƒm„¨H‹„$H‹”$H‹Œ$HdH3%(H‰Ð…ÂHÄX[]A\A]ÄD‹L$pAƒùvUHœ$@L֧H
•H‰ߺ¾1À諻þÿH‹=”K$H‰Þ輶þÿébÿÿÿ€ÇD$péCÿÿÿH‹´$ÐH9Þ„?H¼$0H HDŽ$0HDŽ$8製þÿ…Àt1ò„$0òŒ$8¸fZÀfZÉó„$ÀóŒ$ĉ„$Œ‹„$Œ…À„ÃþÿÿH‹´$ H¼$0HéHDŽ$0HDŽ$8è$½þÿ…Àt1ò”$0òœ$8¸fZÒfZÛó”$óœ$”‰„$Œ‹„$Œ…À„DþÿÿH‹´$ðH9Þ„SH|$`H¬èWÀþÿ‰„$Œ‹„$Œ…À„þÿÿD‹L$`Aƒù‡*H‹Œ$H‹„$E…ɉ„$€‰Êt‰‰ȃ|$PL‹„$àH´$ ‰T$@‰D$0ºH˜¿H‰„$ H‰„$(Ƀá Eè7µþÿH…ÀH‰Ã„ŒHcT$0L‹@H‹„$ H9ÐuH;„$(„ªH‹=€I$H5a§褴þÿéJýÿÿ€H‹EH‰ïÿP0éIýÿÿf„苶þÿH…À…2ýÿÿH‹=;I$H5tè_´þÿéýÿÿf.„DŽ$ÀDŽ$ÄéþÿÿÇD$`é¸þÿÿHœ$@L¦H
Z’é.ýÿÿ‹D$`H5VŠ…ÀtƒøH5-H$HEð‹D$pH=HT$0HL$@L‰D$M‰éH‰T$L„$…ÀHë~HDøH„$ÀH‰D$H„$€H‰$AÿÔ衵þÿH…ÀtDŽ$Œ‹„$Œ…À„üÿÿH=¿‰H‰Þ1ÀèQµþÿH‰„$éÿûÿÿè/³þÿèZµþÿH…À…ìûÿÿH‹=
H$H5£è.³þÿéÔûÿÿf„AUH‰÷H‰ÖHl‘ATI‰ÌH
e­#USHìXH‹•º"dH‹%(H‰„$H1ÀHD$PLŒ$°L„$ HDŽ$ÇD$0H‰D$ H„$DŽ$ŒÇD$@H‰œ$ H‰D$H„$ðHDŽ$ÿÿÿÿHDŽ$ÿÿÿÿH‰œ$°H‰D$H„$àH‰œ$ÐHDŽ$ ÿÿÿÿHDŽ$(ÿÿÿÿH‰D$H„$ÐÇD$PH‰œ$àÇD$`H‰$1ÀH‰œ$ðÇD$pH‰œ$DŽ$€褰þÿ1҅À„ŠL‹„$°H´$¹²¿è	²þÿH…ÀH‰Å„
H‹´$L‹hH9Þ„ÈH|$pH”èg¼þÿ‰„$Œ‹„$Œ…ÀuUH;¬$°tHƒm„¨H‹„$H‹”$H‹Œ$HdH3%(H‰Ð…ÂHÄX[]A\A]ÄD‹L$pAƒùvUHœ$@Lö¡H
pH‰ߺ¾1Àè˵þÿH‹=´E$H‰Þèܰþÿébÿÿÿ€ÇD$péCÿÿÿH‹´$ÐH9Þ„?H¼$0Hè
HDŽ$0HDŽ$8è÷þÿ…Àt1ò„$0òŒ$8¸fZÀfZÉó„$ÀóŒ$ĉ„$Œ‹„$Œ…À„ÃþÿÿH‹´$ H¼$0H±
HDŽ$0HDŽ$8èD·þÿ…Àt1ò”$0òœ$8¸fZÒfZÛó”$óœ$”‰„$Œ‹„$Œ…À„DþÿÿH‹´$ðH9Þ„SH|$`Ht
èwºþÿ‰„$Œ‹„$Œ…À„þÿÿD‹L$`Aƒù‡*H‹Œ$H‹„$E…ɉ„$€‰Êt‰‰ȃ|$PL‹„$àH´$ ‰T$@‰D$0ºH˜¿H‰„$ H‰„$(Ƀá EèW¯þÿH…ÀH‰Ã„ŒHcT$0L‹@H‹„$ H9ÐuH;„$(„ªH‹= C$H5¡èĮþÿéJýÿÿ€H‹EH‰ïÿP0éIýÿÿf„諰þÿH…À…2ýÿÿH‹=[C$H5<è®þÿéýÿÿf.„DŽ$ÀDŽ$ÄéþÿÿÇD$`é¸þÿÿHœ$@L9 H
¶Œé.ýÿÿ‹D$`H5v„…ÀtƒøH5MyHDyHEð‹D$pH=9yHT$0HL$@L‰D$M‰éH‰T$L„$…ÀHyHDøH„$ÀH‰D$H„$€H‰$AÿÔèoþÿH…ÀtDŽ$Œ‹„$Œ…À„üÿÿH=߃H‰Þ1Àèq¯þÿH‰„$éÿûÿÿèO­þÿèz¯þÿH…À…ìûÿÿH‹=*B$H5kèN­þÿéÔûÿÿf„AWH‰÷H‰ÖHȋAVAUI‰ÍH
å#ATUSHìˆH‹±´"dH‹%(H‰„$x1ÀHD$PHDŽ$(ÇD$0DŽ$œÇD$@LŒ$ÀH‰D$(H„$ H‰œ$°HDŽ$0ÿÿÿÿHDŽ$8ÿÿÿÿL„$°H‰D$ H„$H‰œ$ÀHDŽ$@ÿÿÿÿHDŽ$HÿÿÿÿH‰œ$ÐH‰œ$ðHDŽ$PÿÿÿÿHDŽ$XÿÿÿÿÇD$PH‰œ$ÇD$`H‰œ$ÇD$pH‰œ$ DŽ$€DŽ$H‰D$H„$H‰D$H„$ðH‰D$H„$ÐH‰$1À航þÿ1҅À„L‹„$ÀH´$0¹²¿èí«þÿH…ÀH‰Å„ÁL‹„$ÐH´$@¹º¿L‹p蹫þÿH…ÀI‰Ä„½H‹´$ L‹xH9Þ„ØH|$pH<è¶þÿ‰„$œ‹„$œ…ÀtHD‹L$pAƒù†¶Hœ$pL÷›H
®‰¾H‰ߺ1Àè̯þÿH‹=µ?$H‰ÞèݪþÿL;¤$ÐtIƒ,$„èH;¬$ÀtHƒm„ÃH‹„$(H‹”$(H‹Œ$xdH3%(H‰Ð…LHĈ[]A\A]A^A_ÀÇD$pé3ÿÿÿH‹´$ðH9Þ„ßH¼$`H€HDŽ$`HDŽ$hèc±þÿ…Àt1ò„$`òŒ$h¸fZÀfZÉó„$àóŒ$䉄$œ‹„$œ…À„ûþÿÿH‹´$°H¼$`HIHDŽ$`HDŽ$hèä°þÿ…Àt1ò”$`òœ$h¸fZÒfZÛó”$ óœ$¤‰„$œ‹„$œ…À„|þÿÿH‹´$H9Þ„óH|$`Hè´þÿ‰„$œ‹„$œ…À„DþÿÿD‹L$`Aƒù†ÊHœ$pL£H
½‡é÷ýÿÿ€H‹EH‰ïÿP0é.þÿÿI‹D$L‰çÿP0éþÿÿè۪þÿH…À…þÿÿH‹=‹=$H5诨þÿé÷ýÿÿf.„諪þÿH…À…ÊýÿÿH‹=[=$H54è¨þÿé²ýÿÿf.„DŽ$àDŽ$äénþÿÿÇD$`éÿÿÿH‹”$@H‹„$0E…ÉH‹Œ$HH‹´$8‰”$‰„$€„£9IT$0‰t$@@•ÇLcΉÐ@„ÿ…ƒ|$PL‹„$H´$PH˜º¿H‰„$PL‰Œ$XɃá Eè¨þÿH…ÀH‰Ã„&L‹@HcD$0H9„$PuHcD$@H9„$XtNH‹=O<$H58¢ès§þÿé‘üÿÿ9։D$0‰L$@@•ÇLcÉéZÿÿÿHœ$pL‘¡H
†é=üÿÿè§þÿƒ|$pHgrH5ZrH=[rHT$0HL$@L‰D$ M‰ñL„$ H‰T$(L‰|$HEðƒ|$`HDøH„$àH‰D$H„$H‰D$H„$€H‰$AÿÕèϨþÿH…ÀtDŽ$œ‹„$œ…À„ÃûÿÿH=í|H‰Þ1Àè¨þÿH‰„$(é¥ûÿÿ荨þÿH…À…—ûÿÿH‹==;$H5vèa¦þÿéûÿÿfff.„AWH‰÷H‰ÖH#…AVAUI‰ÍH
ӡ#ATUSHìˆH‹m"dH‹%(H‰„$x1ÀHD$PHDŽ$(ÇD$0DŽ$œÇD$@LŒ$ÀH‰D$(H„$ H‰œ$°HDŽ$0ÿÿÿÿHDŽ$8ÿÿÿÿL„$°H‰D$ H„$H‰œ$ÀHDŽ$@ÿÿÿÿHDŽ$HÿÿÿÿH‰œ$ÐH‰œ$ðHDŽ$PÿÿÿÿHDŽ$XÿÿÿÿÇD$PH‰œ$ÇD$`H‰œ$ÇD$pH‰œ$ DŽ$€DŽ$H‰D$H„$H‰D$H„$ðH‰D$H„$ÐH‰$1À蘣þÿ1҅À„L‹„$ÀH´$0¹²¿èý¤þÿH…ÀH‰Å„‘L‹„$ÐH´$@¹º¿L‹pèɤþÿH…ÀI‰Ä„H‹´$ L‹xH9Þ„ØH|$pHDè'¯þÿ‰„$œ‹„$œ…ÀtHD‹L$pAƒù†¶Hœ$pL•H
ƒ¾H‰ߺ1ÀèܨþÿH‹=Å8$H‰Þèí£þÿL;¤$ÐtIƒ,$„¸H;¬$ÀtHƒm„“H‹„$(H‹”$(H‹Œ$xdH3%(H‰Ð…@HĈ[]A\A]A^A_ÀÇD$pé3ÿÿÿH‹´$ðH9Þ„¯H¼$`HˆHDŽ$`HDŽ$hèsªþÿ…Àt1ò„$`òŒ$h¸fZÀfZÉó„$àóŒ$䉄$œ‹„$œ…À„ûþÿÿH‹´$°H¼$`HQHDŽ$`HDŽ$hèô©þÿ…Àt1ò”$`òœ$h¸fZÒfZÛó”$ óœ$¤‰„$œ‹„$œ…À„|þÿÿH‹´$H9Þ„ÃH|$`Hè'­þÿ‰„$œ‹„$œ…À„DþÿÿD‹L$`Hœ$pL”H
$Aƒù‡üýÿÿH‹”$@H‹„$0E…ÉH‹´$HH‹Œ$8‰”$‰„$€„M9‰D$@…k‰ȃ|$PL‹„$H´$P‰D$0ºH˜¿H‰„$PH‰„$XɃá EèҡþÿH…ÀH‰Ã„ìHcT$0L‹@H‹„$PH9ÐuH;„$X„þH‹=6$H5ü“è?¡þÿéMýÿÿf.„H‹EH‰ïÿP0é^ýÿÿI‹D$L‰çÿP0é8ýÿÿè£þÿH…À…?ýÿÿH‹=Ë5$H5Lþèï þÿé'ýÿÿf.„èë¢þÿH…À…úüÿÿH‹=›5$H5lþ迠þÿéâüÿÿf.„DŽ$àDŽ$äéžýÿÿÇD$`éHþÿÿ9ñ‰L$@„µþÿÿA‰ÉHœ$pL¢’H
…éNüÿÿA‰Áëàè4 þÿ‹D$`H5v…ÀtƒøH5tkHkkHEðƒ|$pHYkH=XkHT$0HL$@L‰D$ M‰ñL„$ L‰|$H‰T$(HDøH„$àH‰D$H„$H‰D$H„$€H‰$AÿÕèסþÿH…ÀtDŽ$œ‹„$œ…À„»ûÿÿH=õuH‰Þ1À臡þÿH‰„$(éûÿÿ蕡þÿH…À…ûÿÿH‹=E4$H5~þèiŸþÿéwûÿÿ@AWH‰÷H‰ÖHƒ~AVAUI‰ÍH
£›#ATUSHìˆH‹Ѧ"dH‹%(H‰„$x1ÀHD$PHDŽ$(ÇD$0DŽ$œÇD$@LŒ$ÀH‰D$(H„$ H‰œ$°HDŽ$0ÿÿÿÿHDŽ$8ÿÿÿÿL„$°H‰D$ H„$H‰œ$ÀHDŽ$@ÿÿÿÿHDŽ$HÿÿÿÿH‰œ$ÐH‰œ$ðHDŽ$PÿÿÿÿHDŽ$XÿÿÿÿÇD$PH‰œ$ÇD$`H‰œ$ÇD$pH‰œ$ DŽ$€DŽ$H‰D$H„$H‰D$H„$ðH‰D$H„$ÐH‰$1À訜þÿ1҅À„L‹„$ÀH´$0¹²¿è
žþÿH…ÀH‰Å„‘L‹„$ÐH´$@¹º¿L‹pèٝþÿH…ÀI‰Ä„H‹´$ L‹xH9Þ„ØH|$pH\ýè7¨þÿ‰„$œ‹„$œ…ÀtHD‹L$pAƒù†¶Hœ$pLŽH
j|¾H‰ߺ1Àèì¡þÿH‹=Õ1$H‰ÞèýœþÿL;¤$ÐtIƒ,$„¸H;¬$ÀtHƒm„“H‹„$(H‹”$(H‹Œ$xdH3%(H‰Ð…@HĈ[]A\A]A^A_ÀÇD$pé3ÿÿÿH‹´$ðH9Þ„¯H¼$`H üHDŽ$`HDŽ$h胣þÿ…Àt1ò„$`òŒ$h¸fZÀfZÉó„$àóŒ$䉄$œ‹„$œ…À„ûþÿÿH‹´$°H¼$`HiüHDŽ$`HDŽ$hè£þÿ…Àt1ò”$`òœ$h¸fZÒfZÛó”$ óœ$¤‰„$œ‹„$œ…À„|þÿÿH‹´$H9Þ„ÃH|$`H4üè7¦þÿ‰„$œ‹„$œ…À„DþÿÿD‹L$`Hœ$pL-H
„zAƒù‡üýÿÿH‹”$@H‹„$0E…ÉH‹´$HH‹Œ$8‰”$‰„$€„M9‰D$@…k‰ȃ|$PL‹„$H´$P‰D$0ºH˜¿H‰„$PH‰„$XɃá EèâšþÿH…ÀH‰Ã„ìHcT$0L‹@H‹„$PH9ÐuH;„$X„þH‹=+/$H5èOšþÿéMýÿÿf.„H‹EH‰ïÿP0é^ýÿÿI‹D$L‰çÿP0é8ýÿÿè+œþÿH…À…?ýÿÿH‹=Û.$H5dùèÿ™þÿé'ýÿÿf.„èû›þÿH…À…úüÿÿH‹=«.$H5„ùèϙþÿéâüÿÿf.„DŽ$àDŽ$äéžýÿÿÇD$`éHþÿÿ9ñ‰L$@„µþÿÿA‰ÉHœ$pL²‹H
åxéNüÿÿA‰ÁëàèD™þÿ‹D$`H5­o…ÀtƒøH5„dH{dHEðƒ|$pHidH=hdHT$0HL$@L‰D$ M‰ñL„$ L‰|$H‰T$(HDøH„$àH‰D$H„$H‰D$H„$€H‰$AÿÕèçšþÿH…ÀtDŽ$œ‹„$œ…À„»ûÿÿH=oH‰Þ1À藚þÿH‰„$(éûÿÿ襚þÿH…À…ûÿÿH‹=U-$H5–ùèy˜þÿéwûÿÿ@AWH‰÷H‰ÖHãwAVAUI‰ÍH
3#ATUSHìˆH‹áŸ"dH‹%(H‰„$x1ÀHD$PHDŽ$(ÇD$0DŽ$œÇD$@LŒ$ÀH‰D$(H„$ H‰œ$°HDŽ$0ÿÿÿÿHDŽ$8ÿÿÿÿL„$°H‰D$ H„$H‰œ$ÀHDŽ$@ÿÿÿÿHDŽ$HÿÿÿÿH‰œ$ÐH‰œ$ðHDŽ$PÿÿÿÿHDŽ$XÿÿÿÿÇD$PH‰œ$ÇD$`H‰œ$ÇD$pH‰œ$ DŽ$€DŽ$H‰D$H„$H‰D$H„$ðH‰D$H„$ÐH‰$1À踕þÿ1҅À„L‹„$ÀH´$0¹²¿è—þÿH…ÀH‰Å„ÁL‹„$ÐH´$@¹º¿L‹pèé–þÿH…ÀI‰Ä„½H‹´$ L‹xH9Þ„ØH|$pHtøèG¡þÿ‰„$œ‹„$œ…ÀtHD‹L$pAƒù†¶Hœ$pL'‡H
Éu¾H‰ߺ1ÀèüšþÿH‹=å*$H‰Þè
–þÿL;¤$ÐtIƒ,$„èH;¬$ÀtHƒm„ÃH‹„$(H‹”$(H‹Œ$xdH3%(H‰Ð…LHĈ[]A\A]A^A_ÀÇD$pé3ÿÿÿH‹´$ðH9Þ„ßH¼$`H¸÷HDŽ$`HDŽ$h蓜þÿ…Àt1ò„$`òŒ$h¸fZÀfZÉó„$àóŒ$䉄$œ‹„$œ…À„ûþÿÿH‹´$°H¼$`H÷HDŽ$`HDŽ$hèœþÿ…Àt1ò”$`òœ$h¸fZÒfZÛó”$ óœ$¤‰„$œ‹„$œ…À„|þÿÿH‹´$H9Þ„óH|$`HD÷èGŸþÿ‰„$œ‹„$œ…À„DþÿÿD‹L$`Aƒù†ÊHœ$pLKŽH
Øsé÷ýÿÿ€H‹EH‰ïÿP0é.þÿÿI‹D$L‰çÿP0éþÿÿè–þÿH…À…þÿÿH‹=»($H5Lõèߓþÿé÷ýÿÿf.„èەþÿH…À…ÊýÿÿH‹=‹($H5lõ诓þÿé²ýÿÿf.„DŽ$àDŽ$äénþÿÿÇD$`éÿÿÿH‹”$@H‹„$0E…ÉH‹Œ$HH‹´$8‰”$‰„$€„£9IT$0‰t$@@•ÇLcΉÐ@„ÿ…ƒ|$PL‹„$H´$PH˜º¿H‰„$PL‰Œ$XɃá Eè4“þÿH…ÀH‰Ã„&L‹@HcD$0H9„$PuHcD$@H9„$XtNH‹='$H5h裒þÿé‘üÿÿ9։D$0‰L$@@•ÇLcÉéZÿÿÿHœ$pLLH
0ré=üÿÿèH’þÿƒ|$pH—]H5Š]H=‹]HT$0HL$@L‰D$ M‰ñL„$ H‰T$(L‰|$HEðƒ|$`HDøH„$àH‰D$H„$H‰D$H„$€H‰$AÿÕèÿ“þÿH…ÀtDŽ$œ‹„$œ…À„ÃûÿÿH=hH‰Þ1À诓þÿH‰„$(é¥ûÿÿ轓þÿH…À…—ûÿÿH‹=m&$H5®ô葑þÿéûÿÿfff.„ATH‰÷I‰ÌH‰ÖH
îo#H4qUSHƒìpH‹ú˜"LL$@LD$ HÇD$hHÇD$ÇD$H‰D$ H‰D$@1ÀHÇD$0HÇD$PHÇD$`èʏþÿ1҅ÀtFH‹l$ H‹5 ˜"H‹}H9÷t誔þÿ…	Ãt4òE»òD$‰\$‹D$…ÀuXH‹D$hH‹T$hHƒÄpH‰Ð[]A\ÃfH‰ïè(þÿH…À„¿ò@òD$H‹HQÿH…ÒH‰„‘»‰\$‹D$…Àt¨H\$0H‹t$@HÿóH‰ßè7aÿÿ‰D$‹D$…ÀtƒHL$`HT$PH|$H‰ÞAÿÔèA’þÿH…ÀtÇD$‹D$…À„PÿÿÿòL$`H=èo¸òD$Pèë‘þÿH‰D$hé)ÿÿÿH‹PH‰ÇÿR0é`ÿÿÿH‹}H‹55—"H9÷tH苓þÿ…Àu?H‹EH÷€¨„ª轑þÿH…ÀHDr$$H5ûòH‰Ç蓏þÿéºþÿÿfDH5±ZH‰ï蹎þÿH‰ÅH…ít¿輐þÿH|$HÀòH‰îè8`ÿÿ…ÀH‹Et(HƒèH…ÀH‰E…¾þÿÿH‹EH‰ï»ÿP0éWþÿÿHƒèH…ÀH‰E…eÿÿÿH‹EH‰ïÿP0éVÿÿÿH‰ïèpþÿ…À„FÿÿÿH‰ï1öèΏþÿH‰ÅépÿÿÿfDATH‰÷I‰ÌH‰ÖH
.m#H§nUSHƒìpH‹Z–"LL$PLD$@HÇD$hÇ$ÇD$<H‰D$@H‰D$P1ÀÇD$ÇD$ ÇD$0è/þÿ‰Â1ÒtVH‹\$@HÇD$`H‹5z•"H‹{H9÷tè’þÿ…	Åt>òCf=fZÐó$‰l$<‹D$<…Àu[H‹D$hH‹D$hHƒÄp[]A\ÄH‰ßèxþÿH…À„ïò@òD$`H‹HQÿH…ÒH‰„ÁòD$`ëf„H‹t$PH|$`HÏñHÇD$`è^ÿÿ…Àtò\$`¸fZÛó\$‰D$<‹D$<…À„]ÿÿÿHL$0HT$ Ht$H‰çAÿÔènþÿH…ÀtÇD$<‹D$<…À„*ÿÿÿóD$ óL$0H="m¸ZÀZÉèþÿH‰D$héýþÿÿ„H‹PH‰ÇÿR0é0ÿÿÿH‹{H‹5U”"H9÷tH諐þÿ…Àu?H‹CH÷€¨„ŸèݎþÿH…ÀHD’!$H5›ðH‰Ç賌þÿé‡þÿÿfDH5ÑWH‰ßèًþÿH‰ÃH…Ût¿è܍þÿH|$`H`ðH‰ÞèX]ÿÿ…ÀH‹tHƒèH…ÀH‰…þÿÿH‹CH‰ßÿP0éþÿÿHƒèH…ÀH‰…pÿÿÿH‹CH‰ßÿP0éaÿÿÿH‰ß蛊þÿ…À„QÿÿÿH‰ß1öèùŒþÿH‰Ãé{ÿÿÿAWH‰÷H‰ÖHôkAVAUI‰ÍH
k#ATUSHì¸H‹“"H„$LL$PLD$0HDŽ$¨HÇD$ H‰D$HD$pÇD$H‰\$0HÇD$@H‰$1ÀH‰\$PHÇD$`H‰\$pHDŽ$€H‰œ$HDŽ$ ÿÿÿÿèŠþÿ1҅ÀtUL‹¤$H‹5o’"I‹|$H9÷tèøŽþÿ…	ÅtJòAD$½ò„$€‰l$‹D$…ÀulH‹„$¨H‹”$¨HĸH‰Ð[]A\A]A^A_Ã@L‰çè`ŠþÿH…À„Wò@ò„$€H‹HQÿH…ÒH‰„½‰l$‹D$…Àt”Hl$`H‹t$pH4ïH‰ïèl[ÿÿ‰D$‹D$…À„kÿÿÿLd$@H‹t$PHKïL‰çèC[ÿÿ‰D$‹D$…À„BÿÿÿH´$ I‰عº¿HDŽ$ èxŠþÿH…ÀH‰Ã„ŸLt$ H‹t$0HsïL‹xL‰÷èßZÿÿ‰D$‹D$…À„ÞþÿÿHŒ$€M‰øH‰êL‰æL‰÷AÿÕèã‹þÿH…ÀtÇD$‹D$…À„©þÿÿH=`H‰Þ1À虋þÿH‰„$¨é‹þÿÿ@H‹PH‰ÇÿR0éÓþÿÿf„I‹|$H‹5Ԑ"H9÷tGè*þÿ…Àu>I‹D$H÷€¨„±è[‹þÿH…ÀHD$H5™íH‰Çè1‰þÿéþÿÿ@H5QTL‰çèYˆþÿI‰ÄM…ätÁè\ŠþÿH¼$€H]íL‰æèÕYÿÿ…ÀI‹$t-HƒèH…ÀI‰$…&þÿÿI‹D$L‰ç½ÿP0éªýÿÿ€HƒèH…ÀI‰$…_ÿÿÿI‹D$L‰çÿP0éOÿÿÿL‰çè‡þÿ…À„?ÿÿÿL‰ç1öèe‰þÿI‰Äégÿÿÿ舊þÿH…À…^ýÿÿH‹=8$H5íè\ˆþÿéFýÿÿ€AUH‰÷I‰ÍH‰ÖH
g#H=hATUSHì¸H‹ŏ"H„$€LL$`LD$PHDŽ$¨ÇD$H‰D$HD$pÇD$LH‰\$PÇD$ H‰$1ÀH‰\$`ÇD$0H‰\$pÇD$@H‰œ$€HDŽ$ÿÿÿÿèg†þÿ‰Â1ÒtfH‹¬$€HDŽ$ H‹5¬Ž"H‹}H9÷tè6‹þÿ…ÀA‰ÄtGòEfÀA¼fZÈóL$@D‰d$L‹D$L…ÀuaH‹„$¨H‹„$¨Hĸ[]A\A]ÃH‰ï蠆þÿH…À„Çò@ò„$ H‹HQÿH…ÒH‰„Žò„$ ëH¬$ H‹t$pH¼ìHDŽ$ H‰ïè Wÿÿ…Àtò”$ ¸fZÒóT$0‰D$L‹D$L…À„KÿÿÿH‹t$`H°ìH‰ïHDŽ$ èTWÿÿ…Àtòœ$ ¸fZÛó\$ ‰D$L‹D$L…À„ÿþÿÿH´$I‰عº¿HDŽ$èm†þÿH…ÀH‰Ã„¹H‹t$PHµìH‰ïL‹`HDŽ$ èÍVÿÿ…Àtò¤$ ¸fZäód$‰D$L‹D$L…À„xþÿÿHL$@HT$0Ht$ H|$M‰àAÿÕ貇þÿH…ÀtÇD$L‹D$L…À„@þÿÿH=Ö[H‰Þ1Àèh‡þÿH‰„$¨é"þÿÿH‹PH‰ÇÿR0écþÿÿf„H‹}H‹5¥Œ"H9÷tHèûˆþÿ…Àu?H‹EH÷€¨„¥è-‡þÿH…ÀHDâ$H5³êH‰Çè…þÿé¨ýÿÿfDH5!PH‰ïè)„þÿH‰ÅH…ít¿è,†þÿH¼$ HuêH‰îè¥Uÿÿ…ÀH‹Et HƒèH…ÀH‰E…¶ýÿÿH‹EH‰ïÿP0é§ýÿÿHƒèH…ÀH‰E…jÿÿÿH‹EH‰ïÿP0é[ÿÿÿH‰ïèå‚þÿ…À„HÿÿÿH‰ï1öè@…þÿH‰Åérÿÿÿèc†þÿH…À…ýÿÿH‹=$H5¤êè7„þÿééüÿÿfAUH‰÷I‰ÍH‰ÖH
þf#H0dATUSHìØH‹¥‹"dH‹%(H‰„$È1ÀH„$°LŒ$LD$pHDŽ$¸ÇD$ H‰D$H„$ ÇD$LH‰\$PHÇD$`H‰D$HD$PH‰\$pHDŽ$€ÿÿÿÿH‰œ$H‰$1ÀÇD$0H‰œ$ ÇD$@H‰œ$°è‚þÿ1҅ÀtOL‹d$pH‹5nŠ"I‹|$H9÷tè÷†þÿ…	ÅtYòAD$½òD$`‰l$L‹D$L…Àu{H‹„$¸H‹”$¸H‹Œ$ÈdH3%(H‰Ð…áHÄØ[]A\A]ÃL‰çèP‚þÿH…À„Çò@òD$`H‹HQÿH…ÒH‰„™½‰l$L‹D$L…Àt…L‹„$H´$€¹º¿èĂþÿH…ÀH‰Å„zH‹´$°L‹`H9Þ„3H|$@HÇéè"þÿ‰D$L‹D$L…À„ÿÿÿ‹D$@…À„†H‹´$ H9Þ„•H|$0HÉéèäŒþÿ‰D$L‹D$L…À„áþÿÿD‹L$0E…ɈvH‹„$€IcÑH9bH‹t$PH9Þ„%H|$ H¸é蓌þÿ‰D$L‹D$L…À„þÿÿ‹L$@‹D$@D‹L$ Hct$0H‹”$€Áù1È)ÈAIÿH)ò¯ÁH˜H9Hœ$ÀL6“H
¨a€H‰ߺ¾1Àè†þÿH‹=$H‰Þè-þÿéþÿÿ„ÇD$@éÕþÿÿH‹PH‰ÇÿR0éXþÿÿI‹|$H‹5Tˆ"H9÷„›覄þÿ…À…ŽI‹D$H÷€¨„LèӂþÿH…ÀHDˆ$H5¡çH‰Ç詀þÿé…ýÿÿ@Hœ$ÀE1ÉL~‘H
´`é2ÿÿÿfÇD$0ésþÿÿHœ$ÀLQH
™`éÿÿÿDH5yKL‰çèþÿI‰ÄM…ä„mÿÿÿ老þÿH|$`HçL‰æèüPÿÿ…ÀI‹$tTHƒèH…ÀI‰$…ZýÿÿI‹D$L‰ç½ÿP0éÏüÿÿèùþÿH…À…ÍüÿÿH‹=©$H5çèÍþÿéµüÿÿ„HƒèH…ÀI‰$…çþÿÿI‹D$L‰çÿP0é×þÿÿH)ЋT$@‹L$@Áú1Ñ)ÑH™HcÉH÷ù‰D$ éÍýÿÿL‰çèä}þÿ…À„¤þÿÿL‰ç1öèB€þÿI‰ÄéÿÿÿIôHL$@Ht$`H|$ AÿÕèOþÿH…ÀtÇD$L‹D$L…À„üÿÿH=sUH‰î1ÀèþÿH‰„$¸éõûÿÿèã~þÿAUH‰÷I‰ÍH‰ÖH
Ža#HG_ATUSHìèH‹u†"dH‹%(H‰„$Ø1ÀH„$°LŒ$LD$pHDŽ$ÈÇD$ H‰D$H„$ ÇD$\H‰\$`ÇD$0H‰D$HD$`H‰\$pHDŽ$€ÿÿÿÿH‰œ$H‰$1ÀÇD$@H‰œ$ ÇD$PH‰œ$°èé|þÿ1҅ÀtgH‹l$pH‹5?…"HDŽ$ÀH‹}H9÷t轁þÿ…ÀA‰ÄtfòEfÀA¼fZÈóL$0D‰d$\‹D$\…À…|H‹„$ÈH‹”$ÈH‹Œ$ØdH3%(H‰Ð…ÑHÄè[]A\A]Ã@H‰ïè}þÿH…À„¿ò@ò„$ÀH‹HQÿH…ÒH‰„Žò„$Àé_ÿÿÿL‹„$H´$€¹º¿è|}þÿH…ÀH‰Å„oH‹´$°L‹`H9Þ„+H|$PHÏåèڇþÿ‰D$\‹D$\…À„ÿÿÿ‹D$P…À„~H‹´$ H9Þ„H|$@HÑå蜇þÿ‰D$\‹D$\…À„àþÿÿD‹L$@E…ɈnH‹„$€IcÑH9ZH‹t$`H9Þ„H|$ HÀåèK‡þÿ‰D$\‹D$\…À„þÿÿ‹L$P‹D$PD‹L$ Hct$@H‹”$€Áù1È)ÈAIÿH)ò¯ÁH˜H9Hœ$ÐLîH
§\€H‰ߺ¾1ÀèԀþÿH‹=½$H‰Þèå{þÿéþÿÿÇD$PéÝþÿÿH‹PH‰ÇÿR0écþÿÿH‹}H‹5ƒ"H9÷„œègþÿ…À…H‹EH÷€¨„Eè•}þÿH…ÀHDJ$H5³ãH‰Çèk{þÿé‰ýÿÿfDHœ$ÐE1ÉL>ŒH
»[é:ÿÿÿfÇD$@é{þÿÿHœ$ÐLŒH
 [é
ÿÿÿDH59FH‰ïèAzþÿH‰ÅH…í„kÿÿÿè@|þÿH¼$ÀH!ãH‰îè¹Kÿÿ…ÀH‹EtIHƒèH…ÀH‰E…býÿÿH‹EH‰ïÿP0éSýÿÿè¼|þÿH…À…×üÿÿH‹=l$H5ãèzþÿé¿üÿÿHƒèH…ÀH‰E…íþÿÿH‹EH‰ïÿP0éÞþÿÿH)ЋT$P‹L$PÁú1Ñ)ÑH™HcÉH÷ù‰D$ éÞýÿÿH‰ïè­xþÿ…À„«þÿÿH‰ï1öè{þÿH‰Åé%ÿÿÿI´HL$PHt$0H|$ AÿÕè|þÿH…ÀtÇD$\‹D$\…À„#üÿÿH=<PH‰î1ÀèÎ{þÿH‰„$Èéüÿÿè¬yþÿfff.„AUH‰÷I‰ÍH‰ÖH
Ž]#HNZATUSHìèH‹5"dH‹%(H‰„$Ø1ÀHD$0LŒ$ L„$€HDŽ$ÈÇD$ H‰D$H„$ÀÇD$\H‰\$`HÇD$pH‰D$H„$°H‰œ$€HDŽ$ÿÿÿÿÇD$0H‰D$HD$`H‰œ$ ÇD$@H‰œ$°H‰$1ÀÇD$PH‰œ$Àèwþÿ1҅À„öL‹¤$€H‹5ß"I‹|$H9÷tèh|þÿ…	Å„þòAD$½òD$p‰l$\‹D$\…À„œƒ|$0L‹„$ H´$º¿Ƀá ƒÁè xþÿH…ÀH‰Å„ÌH‹´$ÀL‹`H9Þ„×H|$PHCâèþ‚þÿ‰D$\‹D$\…À„.‹D$P…À„ºH‹´$°H9Þ„H|$@HEâèþÿ‰D$\‹D$\…À„ðD‹L$@E…ɈÂH‹„$IcÑH9®H‹t$`H9Þ„ÏH|$ H4âèo‚þÿ‰D$\‹D$\…À„Ÿ‹L$P‹D$PD‹L$ Hct$@H‹”$Áù1È)ÈAIÿH)ò¯ÁH˜H9ÂHœ$ÐL‰H
XéH‰òHL$PHt$pHÁâH|$ LâAÿÕè!yþÿH…ÀtÇD$\‹D$\…ÀtH=IMH‰î1ÀèÛxþÿH‰„$ÈH‹„$ÈH‹”$ÈH‹Œ$ØdH3%(H‰Ð…*HÄè[]A\A]ÄL‰çèvþÿH…À„¿ò@òD$pH‹HQÿH…ÒH‰t
½éßýÿÿH‹PH‰ÇÿR0ëç@ÇD$Pé1þÿÿHœ$ÐL)‡H
ïVE1ÉH‰ߺ¾1ÀèûzþÿH‹=ä
$H‰Þèvþÿé'ÿÿÿ€Hœ$ÐLQ‡H
ºV비ÇD$@é÷ýÿÿI‹|$H‹5$}"H9÷toèzyþÿ…ÀufI‹D$H÷€¨„òè«wþÿH…ÀHD`
$H5ßH‰Çèuþÿéðüÿÿ@èƒwþÿH…À…ŠþÿÿH‹=3
$H5,ßèWuþÿérþÿÿfH5y@L‰çètþÿI‰ÄM…ät™è„vþÿH|$pH¸ÞL‰æèFÿÿ…ÀI‹$t&HƒèH…ÀI‰$…’þÿÿI‹D$L‰ç½ÿP0éfüÿÿHƒèH…ÀI‰$…AÿÿÿI‹D$L‰çÿP0é1ÿÿÿH)ЋT$P‹L$PÁú1Ñ)ÑH™HcÉH÷ù‰D$ é#ýÿÿL‰çèsþÿ…À„þþÿÿL‰ç1öètuþÿI‰ÄéNÿÿÿègtþÿ€AUH‰÷I‰ÍH‰ÖH
X#HZUATUSHìøH‹õ{"dH‹%(H‰„$è1ÀHD$@LŒ$ L„$€HDŽ$ØÇD$ H‰D$H„$ÀÇD$lH‰\$pÇD$0H‰D$H„$°H‰œ$€HDŽ$ÿÿÿÿÇD$@H‰D$HD$pH‰œ$ ÇD$PH‰œ$°H‰$1ÀÇD$`H‰œ$ÀèQrþÿ1҅À„H‹¬$€H‹5 z"HDŽ$ÐH‹}H9÷tèwþÿ…ÀA‰Ä„òEfÀA¼fZÈóL$0D‰d$l‹D$l…À„™ƒ|$@L‹„$ H´$º¿Ƀá ƒÁèMsþÿH…ÀH‰Å„ÉH‹´$ÀL‹`H9Þ„ÜH|$`H@Þè«}þÿ‰D$l‹D$l…À„+‹D$`…À„¿H‹´$°H9Þ„H|$PHBÞèm}þÿ‰D$l‹D$l…À„íD‹L$PE…ɈÇH‹„$IcÑH9³H‹t$pH9Þ„ÈH|$ H1Þè}þÿ‰D$l‹D$l…À„œ‹L$`‹D$`D‹L$ Hct$PH‹”$Áù1È)ÈAIÿH)ò¯ÁH˜H9ÂHœ$àLÃH
SéIôHL$`Ht$0H|$ AÿÕèÔsþÿH…ÀtÇD$l‹D$l…ÀtH=üGH‰î1ÀèŽsþÿH‰„$ØfDH‹„$ØH‹”$ØH‹Œ$èdH3%(H‰Ð…&HÄø[]A\A]ÄH‰ïèÈpþÿH…À„¿ò@ò„$ÐH‹HQÿH…ÒH‰tò„$ÐéÆýÿÿ@H‹PH‰ÇÿR0ëâ@ÇD$`é,þÿÿHœ$àLсH
ãQE1ÉH‰ߺ¾1Àè£uþÿH‹=Œ$H‰Þè´pþÿéÿÿÿ€Hœ$àLùH
®Që¹ÇD$PéúýÿÿH‹}H‹5Õw"H9÷tpè+tþÿ…ÀugH‹EH÷€¨„ðè]rþÿH…ÀHD$H5ÛH‰Çè3pþÿéôüÿÿfDè3rþÿH…À…ŠþÿÿH‹=ã$H5,ÛèpþÿérþÿÿfH5);H‰ïè1oþÿH‰ÅH…ít—è4qþÿH¼$ÐHµÚH‰îè­@ÿÿ…ÀH‹Et HƒèH…ÀH‰E…’þÿÿH‹EH‰ïÿP0éƒþÿÿHƒèH…ÀH‰E…BÿÿÿH‹EH‰ïÿP0é3ÿÿÿH)ЋT$`‹L$`Áú1Ñ)ÑH™HcÉH÷ù‰D$ é*ýÿÿH‰ïèÊmþÿ…À„ÿÿÿH‰ï1öè(pþÿH‰ÅéRÿÿÿèoþÿff.„AWH‰÷H‰ÖH`PAVAUI‰ÍH
ÓN#ATUSHì¨H‹¡v"dH‹%(H‰„$˜1ÀH„$HDŽ$ˆÇD$PDŽ$¼H‰œ$ÀLŒ$ H‰D$@HD$`HDŽ$ÐÿÿÿÿÇD$`H‰œ$àL„$àH‰D$8H„$@ÇD$pH‰œ$ðDŽ$€H‰œ$HDŽ$ÿÿÿÿDŽ$H‰œ$ DŽ$ H‰œ$0DŽ$°H‰œ$@HDŽ$PH‰œ$`HDŽ$pH‰œ$€H‰D$0H„$0H‰D$(H„$H‰D$ H„$ðH‰D$H„$ÀH‰D$H„$€H‰D$H„$`H‰$1ÀèSlþÿ1҅À„™L‹¤$`H‹5¢t"I‹|$H9÷tè+qþÿ…	Å„¡òAD$½ò„$P‰¬$¼‹„$¼…À„6H‹´$H9Þ„µH¼$€H†Ùèñwþÿ‰„$¼‹„$¼…À„û‹”$€…Ò„ŒH‹´$@H9Þ„ãH¼$°H|Ùè§wþÿ‰„$¼‹„$¼…À„±‹„$°…À„ŠH¬$pH‹´$€H{ÙH‰ïèc=ÿÿ‰„$¼‹„$¼…À„mƒ¼$L‹„$ H´$º¿Ƀá ƒÁèŽlþÿH…ÀI‰Ä„yƒ|$`L‹„$àH´$к¿L‹pɃá ƒÁèRlþÿH…ÀI‰Ç„fH‹´$0H‹@H9ÞH‰D$H„ÖH¼$ HÙè¨vþÿ‰„$¼‹„$¼…À„²D‹Œ$ E…ɈÍIcÁH;„$¼H‹´$ðH9Þ„H|$pHsÙèNvþÿ‰„$¼‹„$¼…À„XD‹L$pE…ɈíH‹„$ÐIcÑH9ÙH‹´$ÀH9Þ„èH|$PHYÙèôuþÿ‰„$¼‹„$¼…À„þ‹´$°D‹L$P‹„$°HcŒ$ H‹”$ÁþAyÿ1ð)ðH)ʯÇH˜H9ÂŽ«D‹„$€‹„$€Hct$pH‹”$ÐAÁøD1ÀD)ÀH)ò¯ÇH˜H9ÂHœ$LU|H
Lé*H‹D$HIÎH”$€H|$PLŒ$PL„$°H‰,$H4ðAÿÕèKlþÿH…ÀtDŽ$¼‹„$¼…Àt H=l@L‰âL‰þ1ÀèükþÿH‰„$ˆ@H‹„$ˆH‹”$ˆH‹Œ$˜dH3%(H‰Ð…”HĨ[]A\A]A^A_Ã@L‰çè8iþÿH…À„Ïò@ò„$PH‹HQÿH…ÒH‰t½é<üÿÿ„H‹PH‰ÇÿR0ëâ@DŽ$€éVüÿÿHœ$LAzH
¢JE1ÉH‰ߺ¾1ÀènþÿH‹=üý#H‰Þè$iþÿéÿÿÿ€Hœ$E1ÉLvŠH
hJë¶DDŽ$°é(üÿÿ„I‹|$H‹54p"H9÷tGèŠlþÿ…Àu>I‹D$H÷€¨„ºè»jþÿH…ÀHDpý#H5ÉÔH‰Çè‘hþÿé@ûÿÿ@H5±3L‰çè¹gþÿI‰ÄM…ätÁè¼iþÿH¼$PHÔL‰æè59ÿÿ…ÀI‹$t&HƒèH…ÀI‰$…ªþÿÿI‹D$L‰ç½ÿP0éÛúÿÿHƒèH…ÀI‰$…fÿÿÿI‹D$L‰çÿP0éVÿÿÿDŽ$ é5üÿÿL‰çè^fþÿ…À„6ÿÿÿL‰ç1öè¼hþÿI‰Äé^ÿÿÿHœ$Lå‰H
8IérþÿÿèÄiþÿH…À…«ýÿÿH‹=tü#H5ÍÔè˜gþÿé“ýÿÿè›iþÿH…À…‚ýÿÿH‹=Kü#H5ìÔèogþÿéjýÿÿÇD$péöûÿÿHœ$L®xH
ÒHéûýÿÿègþÿH)Ћ”$€‹Œ$€Áú1Ñ)ÑH™HcÉH÷ù‰D$PéüÿÿHœ$L]‡éƒüÿÿAWH‰÷H‰ÖH›HAVAUI‰ÍH
cG#ATUSHì¨H‹qn"dH‹%(H‰„$˜1ÀH„$HDŽ$ˆÇD$PDŽ$¼H‰œ$ÀLŒ$ H‰D$@HD$`HDŽ$ÐÿÿÿÿÇD$`H‰œ$àL„$àH‰D$8H„$@ÇD$pH‰œ$ðDŽ$€H‰œ$HDŽ$ÿÿÿÿDŽ$H‰œ$ DŽ$ H‰œ$0DŽ$°H‰œ$@HDŽ$PH‰œ$`HDŽ$pH‰œ$€H‰D$0H„$0H‰D$(H„$H‰D$ H„$ðH‰D$H„$ÀH‰D$H„$€H‰D$H„$`H‰$1Àè#dþÿ1҅À„™L‹¤$`H‹5rl"I‹|$H9÷tèûhþÿ…	Å„¡òAD$½ò„$P‰¬$¼‹„$¼…À„6H‹´$H9Þ„µH¼$€HžÓèÁoþÿ‰„$¼‹„$¼…À„û‹”$€…Ò„ŒH‹´$@H9Þ„ãH¼$°H”Óèwoþÿ‰„$¼‹„$¼…À„±‹„$°…À„ŠH¬$pH‹´$€H“ÓH‰ïè35ÿÿ‰„$¼‹„$¼…À„mƒ¼$L‹„$ H´$º¿Ƀá ƒÁè^dþÿH…ÀI‰Ä„yƒ|$`L‹„$àH´$к¿L‹pɃá ƒÁè"dþÿH…ÀI‰Ç„fH‹´$0H‹@H9ÞH‰D$H„ÖH¼$ HµÓèxnþÿ‰„$¼‹„$¼…À„²D‹Œ$ E…ɈÍIcÁH;„$¼H‹´$ðH9Þ„H|$pH›Óènþÿ‰„$¼‹„$¼…À„XD‹L$pE…ɈíH‹„$ÐIcÑH9ÙH‹´$ÀH9Þ„èH|$PHÓèÄmþÿ‰„$¼‹„$¼…À„þ‹´$°D‹L$P‹„$°HcŒ$ H‹”$ÁþAyÿ1ð)ðH)ʯÇH˜H9ÂŽ«D‹„$€‹„$€Hct$pH‹”$ÐAÁøD1ÀD)ÀH)ò¯ÇH˜H9ÂHœ$L%tH
RDé*HÁáHÁæHt$HLñH”$€H|$PLŒ$PL„$°H‰,$AÿÕèdþÿH…ÀtDŽ$¼‹„$¼…ÀtH=98L‰âL‰þ1ÀèÉcþÿH‰„$ˆH‹„$ˆH‹”$ˆH‹Œ$˜dH3%(H‰Ð…”HĨ[]A\A]A^A_Ã@L‰çèaþÿH…À„Ïò@ò„$PH‹HQÿH…ÒH‰t½é<üÿÿ„H‹PH‰ÇÿR0ëâ@DŽ$€éVüÿÿHœ$LrH
ÞBE1ÉH‰ߺ¾1ÀèãeþÿH‹=Ìõ#H‰Þèô`þÿéÿÿÿ€Hœ$E1ÉLF‚H
¥Bë¶DDŽ$°é(üÿÿ„I‹|$H‹5h"H9÷tGèZdþÿ…Àu>I‹D$H÷€¨„ºè‹bþÿH…ÀHD@õ#H5áÎH‰Çèa`þÿé@ûÿÿ@H5+L‰çè‰_þÿI‰ÄM…ätÁèŒaþÿH¼$PH¥ÎL‰æè1ÿÿ…ÀI‹$t&HƒèH…ÀI‰$…ªþÿÿI‹D$L‰ç½ÿP0éÛúÿÿHƒèH…ÀI‰$…fÿÿÿI‹D$L‰çÿP0éVÿÿÿDŽ$ é5üÿÿL‰çè.^þÿ…À„6ÿÿÿL‰ç1öèŒ`þÿI‰Äé^ÿÿÿHœ$LµH
vAérþÿÿè”aþÿH…À…«ýÿÿH‹=Dô#H5åÎèh_þÿé“ýÿÿèkaþÿH…À…‚ýÿÿH‹=ô#H5Ïè?_þÿéjýÿÿÇD$péöûÿÿHœ$L~pH
Aéûýÿÿèí^þÿH)Ћ”$€‹Œ$€Áú1Ñ)ÑH™HcÉH÷ù‰D$PéüÿÿHœ$L-éƒüÿÿAWH‰÷H‰ÖHÜ@AVAUI‰ÍH
Ó>#ATUSHì¸H‹Af"dH‹%(H‰„$¨1ÀH„$HDŽ$˜ÇD$PDŽ$ÜH‰œ$àLŒ$@H‰D$@HD$`HDŽ$ðÿÿÿÿÇD$`H‰œ$L„$H‰D$8H„$`ÇD$pH‰œ$DŽ$€H‰œ$ HDŽ$0ÿÿÿÿDŽ$H‰œ$@DŽ$ H‰œ$PDŽ$°H‰œ$`DŽ$ÀH‰œ$pDŽ$ÐH‰œ$€H‰D$0H„$PH‰D$(H„$ H‰D$ H„$H‰D$H„$àH‰D$H„$€H‰D$H„$pH‰$1Àèõ[þÿ1҅À„ÓH‹¬$pHDŽ$H‹58d"H‹}H9÷tèÂ`þÿ…ÀA‰Ä„ÏòEfÀA¼fZÈóŒ$ÀD‰¤$܋„$܅À„\H‹´$ H9Þ„ÛH¼$€H¼Íègþÿ‰„$܋„$܅À„!‹”$€…Ò„ºH‹´$`H9Þ„H¼$°H²Íè5gþÿ‰„$܋„$܅À„׋„$°…À„¸H‹´$€H¼$H±ÍHDŽ$èè,ÿÿ…Àtò”$¸fZÒó”$Љ„$܋„$܅À„kƒ¼$L‹„$@H´$0º¿Ƀá ƒÁèô[þÿH…ÀH‰Å„xƒ|$`L‹„$H´$ðº¿L‹pɃá ƒÁè¸[þÿH…ÀI‰Ä„lH‹´$PL‹xH9Þ„ÚH¼$ H°Íèfþÿ‰„$܋„$܅À„µD‹Œ$ E…ɈÑIcÁH;„$0ÀH‹´$H9Þ„ H|$pH–Íè¹eþÿ‰„$܋„$܅À„[D‹L$pE…ɈøH‹„$ðIcÑH9äH‹´$àH9Þ„óH|$PH|Íè_eþÿ‰„$܋„$܅À„‹´$°D‹L$P‹„$°HcŒ$ H‹”$0ÁþAyÿ1ð)ðH)ʯÇH˜H9Â޶D‹„$€‹„$€Hct$pH‹”$ðAÁøD1ÀD)ÀH)ò¯ÇH˜H9ÂHœ$ LÀkH
^<é5H„$ÐIÎH”$€I4÷H|$PLŒ$ÀH‰$L„$°AÿÕè³[þÿH…ÀtDŽ$܋„$܅Àt H=Ô/H‰êL‰æ1Àèd[þÿH‰„$˜@H‹„$˜H‹”$˜H‹Œ$¨dH3%(H‰Ð…œHĸ[]A\A]A^A_Ã@H‰ïè XþÿH…À„×ò@ò„$H‹HQÿH…ÒH‰tò„$éúûÿÿ@H‹PH‰ÇÿR0ëâ@DŽ$€é0üÿÿ„Hœ$ L¡iH
ß:E1ÉH‰ߺ¾1Àès]þÿH‹=\í#H‰Þè„Xþÿéÿÿÿ€Hœ$ E1ÉLÖyH
¦:ë¶DDŽ$°éúûÿÿ„H‹}H‹5•_"H9÷tHèë[þÿ…Àu?H‹EH÷€¨„µèZþÿH…ÀHDÒì#H5ÓÈH‰ÇèóWþÿéûÿÿfDH5#H‰ïèWþÿH‰ÅH…ít¿èYþÿH¼$H•ÈH‰îè•(ÿÿ…ÀH‹Et HƒèH…ÀH‰E…¢þÿÿH‹EH‰ïÿP0é“þÿÿHƒèH…ÀH‰E…jÿÿÿH‹EH‰ïÿP0é[ÿÿÿDŽ$ é1üÿÿH‰ïèÅUþÿ…À„;ÿÿÿH‰ï1öè#XþÿH‰ÅéeÿÿÿHœ$ LLyH
~9éyþÿÿè+YþÿH…À…ªýÿÿH‹=Ûë#H5ÜÈèÿVþÿé’ýÿÿf.„èûXþÿH…À…zýÿÿH‹=«ë#H5üÈèÏVþÿébýÿÿÇD$péëûÿÿHœ$ LhH
9éûýÿÿè}VþÿH)Ћ”$€‹Œ$€Áú1Ñ)ÑH™HcÉH÷ù‰D$PéüûÿÿHœ$ L½véxüÿÿAWH‰÷H‰ÖHÝ8AVAUI‰ÍH
£5#ATUSHì¸H‹Ñ]"dH‹%(H‰„$¨1ÀH„$HDŽ$˜ÇD$PDŽ$ÜH‰œ$àLŒ$@H‰D$@HD$`HDŽ$ðÿÿÿÿÇD$`H‰œ$L„$H‰D$8H„$`ÇD$pH‰œ$DŽ$€H‰œ$ HDŽ$0ÿÿÿÿDŽ$H‰œ$@DŽ$ H‰œ$PDŽ$°H‰œ$`DŽ$ÀH‰œ$pDŽ$ÐH‰œ$€H‰D$0H„$PH‰D$(H„$ H‰D$ H„$H‰D$H„$àH‰D$H„$€H‰D$H„$pH‰$1Àè…Sþÿ1҅À„ÓH‹¬$pHDŽ$H‹5È["H‹}H9÷tèRXþÿ…ÀA‰Ä„ÏòEfÀA¼fZÈóŒ$ÀD‰¤$܋„$܅À„\H‹´$ H9Þ„ÛH¼$€H¬Çè_þÿ‰„$܋„$܅À„!‹”$€…Ò„ºH‹´$`H9Þ„H¼$°H¢ÇèÅ^þÿ‰„$܋„$܅À„׋„$°…À„¸H‹´$€H¼$H¡ÇHDŽ$èx$ÿÿ…Àtò”$¸fZÒó”$Љ„$܋„$܅À„kƒ¼$L‹„$@H´$0º¿Ƀá ƒÁè„SþÿH…ÀH‰Å„xƒ|$`L‹„$H´$ðº¿L‹pɃá ƒÁèHSþÿH…ÀI‰Ä„lH‹´$PL‹xH9Þ„ÚH¼$ HÇè£]þÿ‰„$܋„$܅À„µD‹Œ$ E…ɈÑIcÁH;„$0ÀH‹´$H9Þ„ H|$pHvÇèI]þÿ‰„$܋„$܅À„[D‹L$pE…ɈøH‹„$ðIcÑH9äH‹´$àH9Þ„óH|$PH\Çèï\þÿ‰„$܋„$܅À„‹´$°D‹L$P‹„$°HcŒ$ H‹”$0ÁþAyÿ1ð)ðH)ʯÇH˜H9Â޶D‹„$€‹„$€Hct$pH‹”$ðAÁøD1ÀD)ÀH)ò¯ÇH˜H9ÂHœ$ LPcH
Z4é5H„$ÐIŽH”$€I4·H|$PLŒ$ÀH‰$L„$°AÿÕèCSþÿH…ÀtDŽ$܋„$܅Àt H=d'H‰êL‰æ1ÀèôRþÿH‰„$˜@H‹„$˜H‹”$˜H‹Œ$¨dH3%(H‰Ð…œHĸ[]A\A]A^A_Ã@H‰ïè0PþÿH…À„×ò@ò„$H‹HQÿH…ÒH‰tò„$éúûÿÿ@H‹PH‰ÇÿR0ëâ@DŽ$€é0üÿÿ„Hœ$ L1aH
ß2E1ÉH‰ߺ¾1ÀèUþÿH‹=ìä#H‰ÞèPþÿéÿÿÿ€Hœ$ E1ÉLfqH
¥2ë¶DDŽ$°éúûÿÿ„H‹}H‹5%W"H9÷tHè{Sþÿ…Àu?H‹EH÷€¨„µè­QþÿH…ÀHDbä#H5ÃÂH‰ÇèƒOþÿéûÿÿfDH5¡H‰ïè©NþÿH‰ÅH…ít¿è¬PþÿH¼$H…ÂH‰îè% ÿÿ…ÀH‹Et HƒèH…ÀH‰E…¢þÿÿH‹EH‰ïÿP0é“þÿÿHƒèH…ÀH‰E…jÿÿÿH‹EH‰ïÿP0é[ÿÿÿDŽ$ é1üÿÿH‰ïèUMþÿ…À„;ÿÿÿH‰ï1öè³OþÿH‰ÅéeÿÿÿHœ$ LÜpH
|1éyþÿÿè»PþÿH…À…ªýÿÿH‹=kã#H5ÌÂèNþÿé’ýÿÿf.„è‹PþÿH…À…zýÿÿH‹=;ã#H5äÂè_NþÿébýÿÿÇD$péëûÿÿHœ$ Lž_H
1éûýÿÿè
NþÿH)Ћ”$€‹Œ$€Áú1Ñ)ÑH™HcÉH÷ù‰D$PéüûÿÿHœ$ LMnéxüÿÿAVAUATI‰üUSH‰óHƒì@H‹~H‹53U"HÇD$HÇD$H9÷„XI‰ÕèpQþÿ…À…HL‹5)U"H‹{I‹H‹°ˆH9÷„²èEQþÿ‰ÅH‹{I‹…í…œH‹pPH9÷t;è&Qþÿ…ÀH‹{I‹u+H‹pH9÷tè
Qþÿ…ÀH‹{„q‹C…À…fI‹H‹pH9þtèâPþÿ…ÀI‹„׿L‹¨ˆÿh1ÒH‰ÆH‰ßAÿÕH…À„»H‹@òHòfZÉé‹H‹°H9þ„«èƒPþÿ…À…›I‹H‹{H‹°H9÷tècPþÿ…ÀI‹„ Ht$ H‰ßÿðÛl$ Ý\$òD$Ûl$0Ý\$òL$fÉfZÉë@H‰ßè(PþÿfÉfZɽfÀóAL$fZÐóA$HƒÄ@‰è[]A\A]A^ÀI‹Ht$ H‰ßÿðóD$ óL$$ZÀë®fDHt$H‰ßÿðòL$òD$fZÉ누H‹5ñR"HÇD$H9÷„«èrOþÿ…À…ŠH‹CH‹€¨©€…©H‰ß…”èñIþÿ…ÀtH‹CH÷€¨„’èsMþÿH…À„ÎL‰îH‰ÇèOKþÿéÿÿÿf.„L‹¨è¿ÿhH‰ßH‰ÆAÿÕé&þÿÿòL$fZÉòCé¼þÿÿWÉëñòL$òH*CfZÉé¢þÿÿèíMþÿòD$èòLþÿH…Àt@1íé þÿÿ1öH‰ßè¬KþÿH…ÀH‰Ã„XÿÿÿH|$L‰êH‰ÆèðQþÿ…ÀH‹t,HƒèH…ÀH‰t?òD$òZL$é<þÿÿH‹ÕQ"H‹é#ÿÿÿHƒèH…ÀH‰…ÿÿÿH‹CH‰ßÿP0éöþÿÿH‹CH‰ßÿP0òZL$òD$éóýÿÿAWH‰÷H‰ÖH(-AVAUATI‰ÌH
H#USHìˆH‹±Q"dH‹%(H‰„$x1ÀHD$`HDŽ$HÇD$@DŽ$ÌÇD$PLŒ$ðH‰D$(H„$@H‰œ$àHDŽ$PÿÿÿÿHDŽ$XÿÿÿÿL„$àH‰D$ H„$0H‰œ$ðHDŽ$`ÿÿÿÿHDŽ$hÿÿÿÿÇD$`H‰œ$ÇD$pDŽ$€DŽ$H‰œ$DŽ$ H‰œ$ DŽ$°H‰œ$0DŽ$ÀH‰œ$@H‰D$H„$ H‰D$H„$H‰D$H„$H‰$1Àè‡Gþÿ1҅À„L‹„$ðH´$P¹²¿èìHþÿH…ÀH‰Å„H‹´$ L‹hH9Þ„ËH¼$ H<¾èGSþÿ‰„$̋„$̅ÀuUH;¬$ðtHƒm„˜H‹„$HH‹”$HH‹Œ$xdH3%(H‰Ð…ÏHĈ[]A\A]A^A_Ã@D‹Œ$ AƒùvRHœ$pL«5H
ê*H‰ߺ¾1Àè¨LþÿH‹=‘Ü#H‰Þè¹Gþÿé_ÿÿÿ@DŽ$ é@ÿÿÿƒ|$`L‹„$H´$`º¿Ƀá ƒÁèÄGþÿH…ÀI‰Ç„CH‹´$0L‹pH9Þ„H¼$°H¤½èRþÿ‰„$̋„$̅À„ÔþÿÿD‹Œ$°Aƒù‡×H‹´$@H9Þ„œH¼$ÀH—½èÒQþÿ‰„$̋„$̅À„‡þÿÿD‹Œ$ÀAƒù†ËHœ$pLË5H
ê)éÓþÿÿ€H‹EH‰ïÿP0éYþÿÿf„è›HþÿH…À…BþÿÿH‹=KÛ#H5ô»èoFþÿé*þÿÿDŽ$Àéoÿÿÿf.„DŽ$°éÿÿÿHœ$pLÁ4H
K)éIþÿÿè0HþÿH…À…ÂýÿÿH‹=àÚ#H5¼èFþÿéªýÿÿH„$ÐH‹´$àHȼH‰ÇH‰D$8èë÷ÿÿ‰„$̋„$̅À„pýÿÿH‹´$H9ÞtSH¼$HѼè„Pþÿ‰„$̋„$̅À„9ýÿÿD‹Œ$Aƒùv(Hœ$pLI5H
²(é‰ýÿÿDŽ$ë»H‹„$`E…ÉHšH
t‰„$€H‹„$P‰D$pH‹„$h‰D$PD„$Xƒ¼$À‰D$@‹„$°HDʅÀtƒøH,H#HEЃ¼$ HH5H=LD$@L‰t$L‰l$HEðE…ÉLL$PHDøH„$€H‰D$ HD$pH‰D$H‹D$8H‰$AÿÔè”FþÿH…ÀtDŽ$̋„$̅À„üÿÿH=²L‰þ1ÀèDFþÿH‰„$Héòûÿÿè"DþÿfAWH‰÷H‰ÖH‹'AVAUI‰ÍH
ƒ:#ATUSHì˜H‹±K"dH‹%(H‰„$ˆ1ÀHD$pHDŽ$8ÇD$@DŽ$¼ÇD$PLŒ$ÐH‰D$(H„$0ÇD$`H‰œ$ÀHDŽ$@ÿÿÿÿL„$ÀHDŽ$HÿÿÿÿH‰œ$ÐHDŽ$PÿÿÿÿHDŽ$XÿÿÿÿH‰œ$àH‰œ$HDŽ$`ÿÿÿÿHDŽ$hÿÿÿÿÇD$pH‰œ$DŽ$€H‰œ$ DŽ$H‰œ$0DŽ$ DŽ$°H‰D$ H„$ H‰D$H„$H‰D$H„$H‰D$H„$àH‰$1ÀèzAþÿ1҅À„ÂL‹„$ÐH´$@¹²¿èßBþÿH…ÀH‰Å„L‹„$àH´$P¹º¿L‹pè«BþÿH…ÀI‰Ä„oH‹´$ L‹xH9Þ„zH¼$€H3ºèMþÿ‰„$¼‹„$¼…À„ðD‹Œ$€Aƒù‡®H‹´$0H9Þ„=H¼$H&ºè¹Lþÿ‰„$¼‹„$¼…À„£D‹Œ$Aƒù‡H‹´$H9Þ„H¼$pHºHDŽ$pHDŽ$xè´Hþÿ…Àt1ò„$pòŒ$x¸fZÀfZÉó„$ðóŒ$ô‰„$¼‹„$¼…À…f„L;¤$àtIƒ,$tH;¬$ÐtHƒmt^H‹„$8H‹”$8H‹Œ$ˆdH3%(H‰Ð…mHĘ[]A\A]A^A_ÃfDŽ$€é‘þÿÿDŽ$éÎþÿÿH‹EH‰ïÿP0ë–@I‹D$L‰çÿP0éqÿÿÿè‹BþÿH…À…tÿÿÿH‹=;Õ#H5̷è_@þÿé\ÿÿÿf.„Hœ$€LÑ.H
«#H‰ߺ¾1ÀèEþÿH‹=ïÔ#H‰Þè@þÿéòþÿÿfHœ$pH‹´$ÀHɸH‰ßèòÿÿ‰„$¼‹„$¼…À„»þÿÿ‹¼$€H‹´$HH‹„$PH‹”$@L‹Œ$X…ÿ‰ñ‰„$°‰”$ t‰щò‹´$‰L$`‰T$@…ö„D9ÉA‰Á•DÉD‰L$P…ƒ|$pL‹„$HcÒH´$`H‰”$`Mcɺ¿L‰Œ$hɃá Eèz?þÿH…ÀI‰Â„¼L‹@HcD$@H9„$`uHcD$PH9„$h„¨H‹=ÁÓ#H5ª9èå>þÿéÀýÿÿèë@þÿH…À…ÃýÿÿH‹=›Ó#H5|¶è¿>þÿé«ýÿÿf.„Hœ$€LÁ<H
 "é[þÿÿDDŽ$ðDŽ$ôé=ýÿÿ9Á•ÁéïþÿÿHœ$€LT=H
ð!éþÿÿ‹„$H5–…ÀtƒøH5m	Hd	HEð‹„$€H=o…ÀtƒøH=F	H=	HEøH„$ðHT$@L‰T$8HL$PL‰D$(I‰ÙH‰D$ H„$°H‰T$0LD$`L‰|$L‰4$H‰D$H„$ H‰D$AÿÕè¹?þÿH…ÀL‹T$8tDŽ$¼‹„$¼…À„eüÿÿH=ÒL‰Ö1Àèd?þÿH‰„$8éGüÿÿèB=þÿèm?þÿH…À…4üÿÿH‹=Ò#H5^¶èA=þÿéüÿÿfff.„AWH‰÷H‰ÖHË AVAUATI‰ÌH
q*#USHìÈH‹¡D"dH‹%(H‰„$¸1ÀHD$`HDŽ$˜ÇD$PDŽ$¼H‰œ$ÐLŒ$àH‰D$@H„$HDŽ$ ÿÿÿÿHDŽ$¨ÿÿÿÿH‰œ$àL„$ÐHDŽ$ðÿÿÿÿH‰œ$H‰œ$ HDŽ$0ÿÿÿÿÇD$`H‰œ$@ÇD$pH‰œ$PDŽ$€H‰œ$`DŽ$H‰œ$pDŽ$ H‰œ$€DŽ$°H‰œ$H‰D$8H„$€H‰D$0H„$pH‰D$(H„$`H‰D$ H„$PH‰D$H„$@H‰D$H„$ H‰D$H„$H‰$1ÀèK:þÿ1҅Àt{L‹„$àH´$ ¹²¿è´;þÿH…ÀH‰Å„hL‹hH‹„$¨H9„$ tjH‹=Ð#H5üCè/;þÿH;¬$àtHƒm„ÊH‹„$˜H‹”$˜H‹Œ$¸dH3%(H‰Ð…·HÄÈ[]A\A]A^A_ÃfDH‹´$H9Þ„‡H¼$°Hh´è“Eþÿ‰„$¼‹„$¼…À„nÿÿÿD‹Œ$°Aƒùv_Hœ$°LÀCH
=H‰ߺ¾1ÀèE?þÿH‹=.Ï#H‰ÞèV:þÿé"ÿÿÿH‹EH‰ïÿP0é'ÿÿÿDŽ$°é„ÿÿÿH‹´$`H9Þ„_H¼$€H´èëDþÿ‰„$¼‹„$¼…À„Æþÿÿ‹”$€…Ò„6H‹´$€H9Þ„CH¼$ Hö³è¡Dþÿ‰„$¼‹„$¼…À„|þÿÿ‹„$ …À„H‹´$pH9Þ„'H¼$Hì³èWDþÿ‰„$¼‹„$¼…À„2þÿÿH‹´$ H9Þ„üH¼$Hñ³èLëÿÿ‰„$¼‹„$¼…À„÷ýÿÿL¼$ÀH‹´$ÐH´L‰ÿèëÿÿ‰„$¼‹„$¼…À„ÂýÿÿH‹´$PH9Þ„¬H|$pH´è¯Cþÿ‰„$¼‹„$¼…À„ŠýÿÿH‹„$ L‹„$H´$𹺿‰D$PèÙ8þÿH…ÀI‰Æ„(L‹H‹D$P‹¼$€HcT$pH‹´$ðHÿ‹„$€Áÿ1ø)ø¯ÁÐH˜H9ÆŽÓ…Òx	H9֏H‹=üÌ#H5Dè 8þÿL;´$„ãüÿÿIƒ.…ÙüÿÿI‹FL‰÷ÿP0éÊüÿÿf„èû9þÿH…À…ÈüÿÿH‹=«Ì#H54±èÏ7þÿé°üÿÿf.„DŽ$€é¬ýÿÿHœ$°E1ÉLVAH
néýÿÿDŽ$ éÈýÿÿHœ$°E1ÉL˜AH
RéëüÿÿDŽ$éäýÿÿDŽ$DŽ$éþÿÿè7þÿÇD$pé_þÿÿL‹„$@ƒÈÿI9Ø„"ƒ|$`H´$0H˜º¿L‰L$HH‰„$0Ƀá €Ʌè07þÿH…ÀH‰ÃL‹L$H„¸‹´$ ‹”$ H‹xHc„$H‹Œ$0Áþ1ò)ò‹t$Pƒî¯ÖÂHcÒH9Ñ~c…Àx	H9Á¼H‹=NË#H5'Cèr6þÿéMþÿÿH‹=6Ë#H5BèZ6þÿé5þÿÿè`8þÿH…À…ûÿÿH‹=Ë#H5¹±è46þÿéûÿÿH‹=øÊ#H5™Bè6þÿé÷ýÿÿè"8þÿH…À…éýÿÿH‹=ÒÊ#H5˱èö5þÿéÑýÿÿ‹”$ ‹„$ Áú1Ð)Ћ”$¯MDé¶þÿÿHǃ¼$°HcD$pH
æH=åHt$PH‰T$H”$I‰ðHDùH‰T$HŒ$ H”$€MÁH‰L$L‰éH‰$L‰úAÿÔèq7þÿH…ÀtDŽ$¼‹„$¼…À„"ýÿÿH=H‰Þ1Àè!7þÿH‰„$˜éýÿÿ@AWH‰÷H‰ÖHAVAUATUSH‰ËH
ß #HìèL‹=‘<"dH‹%(H‰„$Ø1ÀH„$€HDŽ$¨ÇD$`DŽ$ÜÇD$pLŒ$ðL‰¼$àHDŽ$°ÿÿÿÿL„$àHDŽ$¸ÿÿÿÿL‰¼$ðHDŽ$ÿÿÿÿL‰¼$L‰¼$0HDŽ$@ÿÿÿÿDŽ$€L‰¼$PDŽ$L‰¼$`DŽ$ L‰¼$pDŽ$°L‰¼$€DŽ$ÀL‰¼$DŽ$ÐL‰¼$ H‰D$@H„$ H‰D$8H„$H‰D$0H„$€H‰D$(H„$pH‰D$ H„$`H‰D$H„$PH‰D$H„$0H‰D$H„$H‰$1Àè*2þÿ1҅À„øL‹„$ðH´$°¹²¿è3þÿH…ÀI‰Æ„{H‹´$pH‹hL9þ„æH¼$ Hw¯èê=þÿ‰„$܋„$܅À„l‹¼$ …ÿ„åH‹´$L9þ„ÄH¼$ÀHm¯è =þÿ‰„$܋„$܅À„"‹´$À…ö„H‹´$€L9þ„H¼$°Hc¯èV=þÿ‰„$܋„$܅À„ØH‹´$0L9þ„ïH¼$ÀHh¯HDŽ$ÀHDŽ$Èèc9þÿ…Àt1ò„$ÀòŒ$ȸfZÀfZÉó„$ óŒ$$‰„$܋„$܅À„PL¤$ÀH‹´$àH1¯L‰çèÉãÿÿ‰„$܋„$܅À„H‹´$ L9þ„MH¼$ÐH;¯è^<þÿ‰„$܋„$܅À„àD‹Œ$ÐAƒù‡!H‹´$`L9þ„0H¼$H.¯è<þÿ‰„$܋„$܅À„“H‹”$°‹Œ$ÐH´$H‹„$¸L‹„$¿…ɉщT$`DȉD$pD‰L$Xº¹‰D$Tè1þÿH…ÀI‰Å„å‹´$ ‹”$ ‹|$XL‹HHc„$H‹Œ$Áþ1òƒï)ò¯úHcÒH9ÑŽ‹…ÀˆkH9ÁŽbL‹„$PƒÈÿM9ø„zƒ¼$€H´$@H˜º¿L‰L$XH‰„$@Ƀá €Ʌèm0þÿH…ÀI‰ÇL‹L$X„b‹´$À‹”$ÀD‹D$TH‹xHc„$°H‹Œ$@Áþ1òAƒè)òD¯ÂAHcÒH9ÑŽÕ…Àx	H9Á
H‹=‚Ä#H5[<è¦/þÿL;¬$tIƒmu
I‹EL‰ïÿP0L;´$ðtIƒ.tXH‹„$¨H‹”$¨H‹œ$ØdH3%(H‰Ð…4HÄè[]A\A]A^A_Ã@DŽ$ é%üÿÿ„I‹FL‰÷ÿP0ëœ@DŽ$ÀéGüÿÿHœ$ÐL©8H
ÿE1ÉH‰ߺ¾1Àè³3þÿH‹=œÃ#H‰ÞèÄ.þÿé7ÿÿÿ€èÃ0þÿH…À…2ÿÿÿH‹=sÃ#H5´ªè—.þÿéÿÿÿfHœ$ÐE1ÉL¦8H
žëŽDDŽ$°éñûÿÿDŽ$ DŽ$$é^üÿÿDŽ$Ðé¾üÿÿHœ$ÐLö<H
Xé3ÿÿÿèõ-þÿDŽ$éÛüÿÿH‹=ÎÂ#H5ï9èò-þÿéGþÿÿH‹=¶Â#H5w=èÚ-þÿé/þÿÿèà/þÿH…À…?þÿÿH‹=Â#H5ñ«è´-þÿé'þÿÿLÇHc„$H=ðIK„$ЅÀtƒøH=¼øH³øHEøH„$ÀHt$`HT$pL‰D$H‰$I‰èH‰D$ H„$ I‰ñL‰áH‰D$H„$ H‰D$ÿÓè>/þÿH…ÀtDŽ$܋„$܅À„iýÿÿH=\L‰þ1Àèî.þÿH‰„$¨éKýÿÿH‹=ºÁ#H5=èÞ,þÿé3ýÿÿ‹Œ$À‹”$À‹D$TÁù1ʃè)ʯ‹”$°DéWüÿÿèµ.þÿH…À…öüÿÿH‹=eÁ#H5«è‰,þÿéÞüÿÿ@AUH‰÷H‰ÖH½ATUH‰ÍH
$#SHì˜H‹õ3"LL$0LD$ HÇD$8ÇD$H‰D$ H‰D$01Àèé*þÿ1҅À„4H‹\$ H‹5s3"H‹{H9÷„æèÁ/þÿ…À…ÙL‹-z3"H‹{I‹EH‹°ˆH9÷„
è•/þÿA‰ÄH‹{I‹EE…ä…ñH‹pPH9÷t@ès/þÿ…ÀH‹{I‹Eu/H‹pH9÷t
èY/þÿ…À„A‹C…À…6H‹{I‹EfDH‹pH9þtè*/þÿ…ÀI‹E„¦¿L‹¨ˆÿh1ÒH‰ÆH‰ßAÿÕH…Àt6H‹@A¼òf@f)D$@ëH‰ßA¼èâ.þÿòD$@òL$HD‰d$‹D$…À…¥H‹D$8H‹T$8HĘH‰Ð[]A\A]Ãf.„H‹°H9þ„è{.þÿ…À…I‹EH‹{H‹°H9÷tèZ.þÿ…ÀI‹E„Ht$pH‰ßA¼ÿðÛl$pD‰d$‹D$…ÀÝ\$@۬$€Ý\$H„aÿÿÿfDH\$PH‹t$0HW©H‰ßèw1þÿ‰D$‹D$…À„2ÿÿÿHL$pHT$`H|$@H‰ÞÿÕè,þÿH…ÀtÇD$‹D$…À„ÿÿÿòL$hòD$`èÄ-þÿòL$xH‰ÃòD$pè°-þÿH=H‰ÂH‰Þ1Àè¬+þÿH‰D$8é½þÿÿfI‹EHt$pH‰ßA¼ÿðóT$pó\$tZÒZÛòT$@ò\$HéoþÿÿDHt$@H‰ßA¼ÿðéQþÿÿ€HÇD$HH‹5h0"H‹{H9÷„£èî,þÿ…ÀA‰Ä…“H‹CH‹€¨©€…“©H‰ß…™èj'þÿ…ÀtH‹CH÷€¨„šèì*þÿH…À„âH5œ§H‰ÇèÄ(þÿé¹ýÿÿ€L‹¨è¿ÿhH‰ßH‰ÆAÿÕéWýÿÿ„òCA¼òD$@étýÿÿòH*CA´òD$@é`ýÿÿèa+þÿE1äòD$@èc*þÿH…ÀA”ÄéAýÿÿ1öH‰ßè)þÿH…ÀH‰Ã„PÿÿÿH|$@Hõ¦H‰Æè]/þÿ…ÀH‹t4HƒèA¼H…ÀH‰…úüÿÿH‹CH‰ßÿP0éëüÿÿH‹:/"H‹éÿÿÿHƒèH…ÀH‰…ñþÿÿH‹CH‰ßÿP0éâþÿÿAUH‰÷H‰ÖH
ATUH‰ÍH
D#SHì˜H‹5/"LL$PLD$0HÇD$XÇD$H‰D$0H‰D$P1Àè)&þÿ‰Â1Ò„RH‹\$0HÇD$`HÇD$hH‹5Ÿ."H‹{H9÷„âèí*þÿ…À…ÕL‹-¦."H‹{I‹EH‹°ˆH9÷„èÁ*þÿA‰ÄH‹{I‹EE…ä…õH‹pPH9÷tDèŸ*þÿ…ÀH‹{I‹Eu3H‹pH9÷t
è…*þÿ…À„…‹C…À…zH‹{I‹Ef.„H‹pH9þtèR*þÿ…ÀI‹E„æ¿L‹¨ˆÿh1ÒH‰ÆH‰ßAÿÕH…Àt>H‹@òHòfZÉëH‰ßè*þÿfÉfZÉA¼fÀóL$$fZÐóT$ D‰d$‹D$…À…H‹D$XH‹D$XHĘ[]A\A]ÃDH‹°H9þ„\è£)þÿ…À…KI‹EH‹{H‹°H9÷tè‚)þÿ…ÀI‹E„VHt$pH‰ßÿðÛl$pÝ\$òD$۬$€Ý\$òL$fÉfZÉé<ÿÿÿ@H\$pH‹t$PH¥HÇD$pHÇD$xH‰ßè,þÿ…Àt%ò\$pòd$x¸fZÛfZäó\$@ód$D‰D$‹D$…À„ÿþÿÿHT$`Ht$@H|$ H‰ÙÿÕè'þÿH…ÀtÇD$‹D$…À„ÍþÿÿóD$`óL$dZÀZÉè«(þÿóD$póL$tH‰ÃZÀZÉè‘(þÿH=ýúH‰ÂH‰Þ1Àè&þÿH‰D$Xé~þÿÿI‹EHt$pH‰ßÿðóD$póL$tZÀé*þÿÿf.„Ht$`H‰ßÿðòL$hòD$`fZÉéýýÿÿDHÇD$hH‹5P+"H‹{H9÷„¯èÖ'þÿ…À…ŽH‹CH‹€¨©€…‘©H‰ß…˜èU"þÿ…ÀtH‹CH÷€¨„—è×%þÿH…À„×H5£H‰Çè¯#þÿé„ýÿÿf.„L‹¨è¿ÿhH‰ßH‰ÆAÿÕéýÿÿòL$hfZÉòCé,ýÿÿWÉëñòL$hòH*CfZÉéýÿÿèM&þÿòD$`èR%þÿH…ÀtEE1äéýÿÿ1öH‰ßè$þÿH…ÀH‰Ã„SÿÿÿH|$`Hs¢H‰ÆèK*þÿ…ÀH‹t,HƒèH…ÀH‰t?òD$`òZL$hé§üÿÿH‹0*"H‹éÿÿÿHƒèH…ÀH‰…üþÿÿH‹CH‰ßÿP0éíþÿÿH‹CH‰ßÿP0òZL$hòD$`é^üÿÿfffff.„AVH‰÷H‰ÖHíAUATI‰ÌH
“#USHìðH‹*"dH‹%(H‰„$è1ÀH„$ LŒ$€LD$`HDŽ$¨ÇD$ H‰D$H„$ÇD$LH‰\$PH‰\$`H‰D$HD$PHÇD$pÿÿÿÿH‰œ$€ÇD$0H‰$1ÀH‰œ$ÇD$@H‰œ$ è‚ þÿ1҅À„YH‹l$`HDŽ$¸H‹5)"HDŽ$°H‹}H9÷„×èB%þÿ…À…ÊL‹5û("H‹}I‹H‹°ˆH9÷„,è%þÿA‰ÅH‹}I‹E…í…H‹pPH9÷t;èö$þÿ…ÀH‹}I‹u+H‹pH9÷t
èÝ$þÿ…À„E‹U…Ò…:H‹}I‹H‹pH9þtè²$þÿ…ÀI‹„׿L‹°ˆÿh1ÒH‰ÆH‰ïAÿÖH…ÀtEH‹@òHòfZÉëfH‰ïèx$þÿfÉfZÉA½fÀóŒ$ÄfZÐó”$ÀD‰l$L‹D$L…À…¿H‹„$¨H‹”$¨H‹Œ$èdH3%(H‰Ð…âHÄð[]A\A]A^ÃDH‹°H9þ„ãèÛ#þÿ…À…ÓI‹H‹}H‹°H9÷tè»#þÿ…ÀI‹„ðH´$ÀH‰ïÿð۬$ÀÝ\$òD$۬$ÐÝ\$òL$fÉfZÉéÿÿÿL‹„$€Ht$p¹º¿èßþÿH…ÀH‰Å„¾H‹´$ L‹hH9Þ„^H|$@HêŸè=*þÿ‰D$L‹D$L…À„Þþÿÿ‹D$@…À„	H‹´$H9Þ„@H|$0HìŸèÿ)þÿ‰D$L‹D$L…À„ þÿÿD‹L$0E…Ɉ!H‹D$pIcÑH9H‹t$PH9Þ„~H|$ Hޟè±)þÿ‰D$L‹D$L…À„Rþÿÿ‹L$@‹D$@D‹L$ Hct$0H‹T$pÁù1È)ÈAIÿH)ò¯ÁH˜H9MHœ$àLW0H
„H‰ߺ¾1Àè<#þÿH‹=%³#H‰ÞèMþÿéÙýÿÿ„I‹H´$ÀH‰ïÿðó„$ÀóŒ$ÄZÀérýÿÿfÇD$@éªþÿÿH´$°H‰ïÿðòŒ$¸ò„$°fZÉé4ýÿÿ@HDŽ$¸H‹5å$"H‹}H9÷„/èk!þÿ…À…H‹EH‹€¨©€…©H‰ï…”èêþÿ…ÀtH‹EH÷€¨„–èlþÿH…À„áH5<H‰ÇèDþÿé¿üÿÿ€Hœ$àE1ÉL.H
Ÿéªþÿÿf.„L‹°è¿ÿhH‰ïH‰ÆAÿÖé&üÿÿÇD$0éÈýÿÿHœ$àL1.H
\éUþÿÿèÐþÿH…À…HüÿÿH‹=€±#H5áœè¤þÿé0üÿÿ€òŒ$¸fZÉòEéáûÿÿWÉëñòŒ$¸òH*EfZÉéÄûÿÿH)ЋT$@‹L$@Áú1Ñ)ÑH™HcÉH÷ù‰D$ étýÿÿITõHL$@H´$ÀH|$ AÿÔè2þÿH…ÀtÇD$L‹D$L…À„šûÿÿH=VòH‰î1ÀèèþÿH‰„$¨é|ûÿÿèæþÿò„$°èèþÿH…ÀtJE1íéKûÿÿ1öH‰ïè¡þÿH…ÀH‰Å„TþÿÿH¼$°H–›H‰ÆèÞ"þÿ…ÀH‹Et8HƒèH…ÀH‰EtKò„$°òZŒ$¸éÒúÿÿH‹»""H‹éþÿÿè>þÿHƒèH…ÀH‰E…ìýÿÿH‹EH‰ïÿP0éÝýÿÿH‹EH‰ïÿP0òZŒ$¸ò„$°é}úÿÿffff.„AVH‰÷H‰ÖH´ÿAUATI‰ÌH
Sþ"USHìðH‹ƒ""dH‹%(H‰„$è1ÀH„$ LŒ$€LD$`HDŽ$¨ÇD$ H‰D$H„$ÇD$LH‰\$PH‰\$`H‰D$HD$PHÇD$pÿÿÿÿH‰œ$€ÇD$0H‰$1ÀH‰œ$ÇD$@H‰œ$ èþÿ1҅À„AH‹l$`H‹5Œ!"H‹}H9÷„çèÚþÿ…À…ÚL‹5“!"H‹}I‹H‹°ˆH9÷„,è¯þÿA‰ÅH‹}I‹E…í…H‹pPH9÷t;èŽþÿ…ÀH‹}I‹u+H‹pH9÷t
èuþÿ…À„]‹U…Ò…RH‹}I‹H‹pH9þtèJþÿ…ÀI‹„ï¿L‹°ˆÿh1ÒH‰ÆH‰ïAÿÖH…ÀtEH‹@A½òf@f)„$°ë'€H‰ïA½èúþÿò„$°òŒ$¸D‰l$L‹D$L…À…ÇH‹„$¨H‹”$¨H‹Œ$èdH3%(H‰Ð…øHÄð[]A\A]A^ÃDH‹°H9þ„ëèsþÿ…À…ÛI‹H‹}H‹°H9÷tèSþÿ…ÀI‹„H´$ÀH‰ïA½ÿð۬$ÀD‰l$L‹D$L…Àݜ$°۬$Ðݜ$¸„=ÿÿÿ@L‹„$€Ht$p¹º¿èoþÿH…ÀH‰Å„çH‹´$ L‹hH9Þ„~H|$@HҙèÍ"þÿ‰D$L‹D$L…À„Öþÿÿ‹D$@…À„H‹´$H9Þ„PH|$0Hԙè"þÿ‰D$L‹D$L…À„˜þÿÿD‹L$0E…Ɉ1H‹D$pIcÑH9 H‹t$PH9Þ„ƒH|$ HƙèA"þÿ‰D$L‹D$L…À„Jþÿÿ‹L$@‹D$@D‹L$ Hct$0H‹T$pÁù1È)ÈAIÿH)ò¯ÁH˜H9RHœ$àLç(H
óû„H‰ߺ¾1ÀèÌþÿH‹=µ«#H‰ÞèÝþÿéÑýÿÿ„I‹H´$ÀH‰ïA½ÿðó”$Àóœ$ÄZÒZÛò”$°òœ$¸éoýÿÿ€ÇD$@éŠþÿÿH´$°H‰ïA½ÿðé<ýÿÿ@HDŽ$¸H‹5e"H‹}H9÷„ëèëþÿ…ÀA‰Å…ÛH‹EH‹€¨©€…©H‰ï…‹ègþÿ…ÀtH‹EH÷€¨„èéþÿH…À„ÜH5—H‰ÇèÁþÿé¤üÿÿ@Hœ$àE1ÉL–&H
fúéšþÿÿf.„L‹°è¿ÿhH‰ïH‰ÆAÿÖéüÿÿÇD$0é¸ýÿÿHœ$àL±&H
#úéEþÿÿòEA½ò„$°éüÿÿè7þÿH…À…üÿÿH‹=ç©#H5 –èþÿéÿûÿÿòH*EAµò„$°é×ûÿÿH)ЋT$@‹L$@Áú1Ñ)ÑH™HcÉH÷ù‰D$ éoýÿÿH‰òHL$@H´$°HÁâH|$ LêAÿÔè¸þÿH…ÀtÇD$L‹D$L…À„ˆûÿÿH=ÜêH‰î1ÀènþÿH‰„$¨éjûÿÿèlþÿE1íò„$°èkþÿH…ÀA”Åé7ûÿÿ1öH‰ïè%þÿH…ÀH‰Å„[þÿÿH¼$°Hr•H‰Æèbþÿ…ÀH‹Et:HƒèA½H…ÀH‰E…ëúÿÿH‹EH‰ïÿP0éÜúÿÿH‹="H‹éþÿÿèÀþÿHƒèH…ÀH‰E…ñýÿÿH‹EH‰ïÿP0éâýÿÿAWH‰÷H‰ÖH«øAVAUATI‰ÌH
ú"USHì8H‹1"dH‹%(H‰„$(1ÀH„$LŒ$ðL„$°HDŽ$HDŽ$€H‰D$ H„$ÇD$|ÇD$0H‰œ$H‰D$H„$ÐHDŽ$ ÿÿÿÿH‰œ$°ÇD$@H‰D$H„$ÀH‰œ$ÀÇD$PH‰œ$ÐH‰D$H„$HDŽ$àÿÿÿÿH‰œ$ðÇD$`H‰$1ÀH‰œ$ÇD$pH‰œ$èOþÿ…À„wH‹¬$ÐH9Ý„&H‹Eö€ª€„ÝH‹E‰D$P¸‰D$|‹D$|…À„‚‹T$P…Ò„H‹´$H9Þ„+H|$pHÿ”èúþÿ‰D$|‹D$|…ÀtH‹D$p…À…Hœ$ Lc3H
÷E1ɾH‰ߺ1ÀèµþÿH‹=ž¦#H‰ÞèÆþÿH‹„$H‹„$H‹Œ$(dH3%(…ŸHÄ8[]A\A]A^A_ÃDH‰ïè`þÿH…À„·H‹P‰T$PH‹HQÿH…ÒH‰t ¸éþþÿÿfDÇD$PéïþÿÿH‹PH‰ÇÿR0ëÔ@Hœ$ E1ÉL"H
&öé)ÿÿÿf1ÀéSÿÿÿf„ÇD$péÝþÿÿL‹„$ðH´$๺¿èþÿH…ÀH‰Å„ÿL‹„$°H´$ ¹º¿L‹pèèþÿH…ÀI‰Å„ñH‹´$L‹xH9Þ„§H|$`H”èFþÿ‰D$|‹D$|…À„ID‹L$`E…Ɉ=IcÁH;„$à,H‹´$ÀH9Þ„ØH|$@H
”èõþÿ‰D$|‹D$|…À„øD‹L$@E…Ɉ¶H‹”$ IcÁH9Ѝ¢H‹´$H9Þ„¬H|$0Hö“è¡þÿ‰D$|‹D$|…À„¤‹t$pD‹L$0‹D$pLcD$`H‹”$àÁþAIÿ1ð)ðL)¯ÁH˜H9ÂŽç‹|$P‹D$PHct$@H‹”$ Áÿ1ø)øH)ò¯ÁH˜H9SHœ$ L!H
‹ô„¾H‰ߺ1ÀèüþÿH‹=å£#H‰Þè
þÿL;¬$°tIƒm„(H;¬$ð„$ýÿÿHƒm…ýÿÿH‹EH‰ïÿP0é
ýÿÿÇD$`éaþÿÿH‹}H‹5"H9÷tHèkþÿ…Àu?H‹EH÷€¨„"èþÿH…ÀHDR£#H5‘H‰Çèsþÿ1Àéüÿÿ@H5‘ÙH‰ïè™
þÿH‰ÅH…ít¿èœþÿH|$PHàH‰îèþÿ…ÀH‹Et@HƒèH…ÀH‰E…¿üÿÿH‹EH‰ïÿP0¸é³ûÿÿHœ$ L0H
&óéÀþÿÿHƒèH…ÀH‰E…MÿÿÿH‹EH‰ïÿP0é>ÿÿÿI‹EL‰ïÿP0éÉþÿÿèÌþÿH…À…íûÿÿH‹=|¢#H5Őè 
þÿéÕûÿÿè¦þÿH…À…’þÿÿH‹=S¢#H5äèw
þÿézþÿÿfH‰ïèØþÿ…À„ÎþÿÿH‰ï1öè6þÿH‰ÅéøþÿÿÇD$@é0ýÿÿHœ$ L’H
mòéöýÿÿH)‹D$P‹L$PÁø1Á)ÁH‰ÐHcÉH™H÷ù‰D$0éCýÿÿèÛþÿI÷HL$PHt$0H¼$€LL$pOÆAÿÔèäþÿH…ÀtÇD$|‹D$|…À„®ýÿÿò„$€H=/ð¸è‘þÿH‰„$é‡ýÿÿHœ$ LÝ,éAýÿÿAVH‰÷H‰ÖHÒñAUATI‰ÌH
cÿ"USHì0H‹ó"dH‹%(H‰„$(1ÀHD$pLŒ$ L„$€HDŽ$øH‰œ$€H‰D$(H„$ðÇD$|HDŽ$ÿÿÿÿH‰œ$ H‰D$ H„$àÇD$0H‰œ$°ÇD$@H‰D$H„$ÐH‰œ$ÀÇD$PH‰œ$ÐH‰D$H„$ÀÇD$`H‰œ$àHDŽ$ÿÿÿÿH‰D$H„$°HDŽ$ÿÿÿÿÇD$pH‰œ$ðH‰$1Àè
þÿ…À„H‹¬$°H9Ý„îH‹Eö€ª€„H‹E‰D$0¸‰D$|‹D$|…ÀtHD‹L$0Aƒù†ÅHœ$ LŽH
Vð¾H‰ߺ1Àè«þÿH‹=”Ÿ#H‰Þè¼
þÿH‹„$øH‹„$øH‹Œ$(dH3%(…VHÄ0[]A\A]A^ÃDH‰ïèX
þÿH…À„¿H‹P‰T$0H‹HQÿH…ÒH‰„„¸é:ÿÿÿf.„ÇD$0é'ÿÿÿH‹´$ÀH9Þ„?H|$@HóŽèîþÿ‰D$|‹D$|…À„Bÿÿÿ‹D$@…À„¢H‹´$ÐH9Þ„±H|$PHõŽè°þÿ‰D$|‹D$|…À„ÿÿÿH¬$H‹´$€H	H‰ïèáþÿ‰D$|‹D$|…À„ÕþÿÿL‹„$ H´$¹º¿è½	þÿH…ÀI‰Å„eL‹p‹D$P…ÀˆÐHcÈH‹„$H9Á¼H‹´$àH9Þ„ÃH|$`HHèûþÿ‰D$|‹D$|…À„úHcT$PH‹„$Hœ$ ‹L$@D‹L$`LFHƒèH)ЋT$@ÁùIcñ1Ê)ÊHcÊH™H÷ùHƒÀH9Ə‘E…Ɉyƒ|$pL‹„$ðºH‰´$H‰´$H´$¿Ƀá €ɅèÇþÿH…ÀH‰Ã„·L‹HHcD$PHt$`H=‘ÓLD$@H‰êH‰4$HÁàƒ|$0IHkÓHDøAÿÔè:
þÿH…ÀtÇD$|‹D$|…À…?L;¬$ „GýÿÿIƒm…<ýÿÿI‹EL‰ïÿP0é-ýÿÿf„ÇD$@éÉýÿÿH‹PH‰ÇÿR0émýÿÿ1Àé
ýÿÿf„H‹}H‹5"H9÷„|èWþÿ…ÀusH‹EH÷€¨„Ûè‰	þÿH…ÀHD>œ#H5ϋH‰Çè_þÿ1ÀéHüÿÿ„Hœ$ E1ÉLnH
ÀìéSüÿÿfÇD$PéWýÿÿH5IÒH‰ïèQþÿH‰ÅH…ít‹èTþÿH|$0H`‹H‰îèÐþÿ…ÀH‹Et%HƒèH…ÀH‰E…ƒüÿÿH‹EH‰ïÿP0¸é³ûÿÿHƒèH…ÀH‰E…4ÿÿÿH‹EH‰ïÿP0é%ÿÿÿH‰ïèþÿ…À„ÿÿÿH‰ï1öèiþÿH‰ÅésÿÿÿH‹=J›#H5cŒènþÿéXþÿÿHƒè‹T$@H)ȋL$@Áù1Ê)ÊHcÊH™H÷ùƒÀ‰D$`é(ýÿÿèþÿHœ$ LˌH
¾ëH‰ߺ¾1Àèð
þÿH‹=ٚ#H‰ÞèþÿéëýÿÿèþÿH…À@….ûÿÿH‹=³š#H5„‹è×þÿéûÿÿH=ÜH‰Þ1Àè±þÿH‰„$øé£ýÿÿè¿þÿH…À…•ýÿÿH‹=oš#H5`Œè“þÿé}ýÿÿfffff.„AWH‰÷H‰ÖHëAVAUATI‰ÌH
Aí"USHì8H‹ñ"dH‹%(H‰„$(1ÀH„$LŒ$àL„$ HDŽ$ÇD$0H‰D$ H„$ðÇD$|H‰œ$€HDŽ$ÿÿÿÿH‰D$H„$ÀH‰œ$ ÇD$@H‰œ$°H‰D$H„$°ÇD$PH‰œ$ÀHDŽ$ÐÿÿÿÿH‰D$H„$€H‰œ$àÇD$`H‰œ$ðH‰$1ÀÇD$pH‰œ$èþÿ…À„ƒH‹¬$ÀH9Ý„*H‹Eö€ª€„áH‹E‰D$P¸‰D$|‹D$|…À„‚‹T$P…Ò„H‹´$H9Þ„7H|$pH;‹èÆþÿ‰D$|‹D$|…ÀtH‹D$p…À…Hœ$ L/%H
ˆéE1ɾH‰ߺ1ÀèþÿH‹=j˜#H‰Þè’þÿH‹„$H‹„$H‹Œ$(dH3%(…>HÄ8[]A\A]A^A_Ãf„H‰ïè(þÿH…À„H‹P‰T$PH‹HQÿH…ÒH‰t ¸éúþÿÿfDÇD$PéëþÿÿH‹PH‰ÇÿR0ëÔ@Hœ$ E1ÉLÖH
èé%ÿÿÿf.„1ÀéGÿÿÿf„ÇD$péÑþÿÿL‹„$àH´$йº¿èÜþÿH…ÀH‰Å„uL‹„$ H´$¹º¿L‹pè¨þÿH…ÀI‰Å„jH‹´$ðL‹xH9Þ„ôH|$`H[Šè
þÿ‰D$|‹D$|…À„–D‹L$`E…ɈIcÁH;„$Ѝ|H‹´$°H9Þ„PH|$@HJŠèµþÿ‰D$|‹D$|…À„ED‹L$@E…Ɉ.H‹”$IcÁH9ЍH‹´$€H9Þ„$H|$0H6Šèaþÿ‰D$|‹D$|…À„ñ‹t$pD‹L$0‹D$pHcL$`H‹”$ÐÁþAyÿ1ð)ðH)ʯÇH˜H9ÂŽóD‹D$P‹D$PHœ$ Hct$@H‹”$AÁøD1ÀD)ÀH)òLá¯ÇH˜H9ÂŽÂH‰ÈH‰òHL$PHÁàHÁâHt$0LúH¼$LL$pMAÿÔè×þÿH…ÀtÇD$|‹D$|…Àt2òŒ$ò„$è{þÿH=èÖH‰Æ1ÀèzþÿH‰„$fL;¬$ tIƒm„NH;¬$à„ËüÿÿHƒm…ÀüÿÿH‹EH‰ïÿP0é±üÿÿÇD$`éþÿÿfDH‹}H‹5…"H9÷tHèÛþÿ…Àu?H‹EH÷€¨„Jè
þÿH…ÀHD”#H5û†H‰Çèãÿýÿ1Àé¸ûÿÿ@H5ËH‰ïè	ÿýÿH‰ÅH…ít¿èþÿH|$PHH‰îèˆ
þÿ…ÀH‹EtcHƒèH…ÀH‰E…güÿÿH‹EH‰ïÿP0¸éWûÿÿHœ$ LŒ!H
GåH‰ߺ¾1Àè1þÿH‹=”#H‰ÞèBÿýÿé½þÿÿHƒèH…ÀH‰E…*ÿÿÿH‹EH‰ïÿP0éÿÿÿI‹EL‰ïÿP0é þÿÿèþÿH…À…hûÿÿH‹=Ó#H5|†èçþýÿéPûÿÿèíþÿH…À…iþÿÿH‹=“#H5¦†èÁþýÿéQþÿÿ@H‰ïè ýýÿ…À„¦þÿÿH‰ï1öè~ÿýÿH‰ÅéÐþÿÿÇD$@é¸üÿÿHœ$ LÚH
gäé	ÿÿÿH)‹D$P‹L$PÁø1Á)ÁH‰ÐHcÉH™H÷ù‰D$0éËüÿÿHœ$ L‘H
8äéÈþÿÿèþýÿ„AWH‰÷H‰ÖH&äAVAUATI‰ÌH
¡å"USHì8H‹‘"dH‹%(H‰„$(1ÀH„$LŒ$ðL„$°HDŽ$ÇD$0H‰D$ H„$ÇD$|H‰œ$HDŽ$ ÿÿÿÿH‰D$H„$ÐH‰œ$°ÇD$@H‰œ$ÀH‰D$H„$ÀÇD$PH‰œ$ÐHDŽ$àÿÿÿÿH‰D$H„$H‰œ$ðÇD$`H‰œ$H‰$1ÀÇD$pH‰œ$è»ûýÿ…À„ƒH‹¬$ÐH9Ý„*H‹Eö€ª€„áH‹E‰D$P¸‰D$|‹D$|…À„‚‹T$P…Ò„H‹´$H9Þ„7H|$pH»…èfþÿ‰D$|‹D$|…ÀtH‹D$p…À…Hœ$ LÏH
•âE1ɾH‰ߺ1Àè!þÿH‹=
‘#H‰Þè2üýÿH‹„$H‹„$H‹Œ$(dH3%(…«HÄ8[]A\A]A^A_Ãf„H‰ïèÈþýÿH…À„¿H‹P‰T$PH‹HQÿH…ÒH‰t ¸éúþÿÿfDÇD$PéëþÿÿH‹PH‰ÇÿR0ëÔ@Hœ$ E1ÉLvH
ªáé%ÿÿÿf.„1ÀéGÿÿÿf„ÇD$péÑþÿÿL‹„$ðH´$๺¿è|ûýÿH…ÀH‰Å„ÿL‹„$°H´$ ¹º¿L‹pèHûýÿH…ÀI‰Å„ñH‹´$L‹xH9Þ„§H|$`Hۄè¦þÿ‰D$|‹D$|…À„ID‹L$`E…Ɉ=IcÁH;„$à,H‹´$ÀH9Þ„ØH|$@HʄèUþÿ‰D$|‹D$|…À„øD‹L$@E…Ɉ¶H‹”$ IcÁH9Ѝ¢H‹´$H9Þ„¬H|$0H¶„èþÿ‰D$|‹D$|…À„¤‹t$pD‹L$0‹D$pLcD$`H‹”$àÁþAIÿ1ð)ðL)¯ÁH˜H9ÂŽõ‹|$P‹D$PHct$@H‹”$ Áÿ1ø)øH)ò¯ÁH˜H9SHœ$ LwH
à„¾H‰ߺ1Àè\þýÿH‹=EŽ#H‰ÞèmùýÿL;¬$°tIƒm„(H;¬$ð„ýÿÿHƒm…
ýÿÿH‹EH‰ïÿP0éþüÿÿÇD$`éaþÿÿH‹}H‹5u"H9÷tHèËüýÿ…Àu?H‹EH÷€¨„"èýúýÿH…ÀHD²#H5ˁH‰ÇèÓøýÿ1Àéüÿÿ@H5ñÃH‰ïèù÷ýÿH‰ÅH…ít¿èüùýÿH|$PHH‰îèxþÿ…ÀH‹Et@HƒèH…ÀH‰E…·üÿÿH‹EH‰ïÿP0¸é§ûÿÿHœ$ L|H
¤ÞéÀþÿÿHƒèH…ÀH‰E…MÿÿÿH‹EH‰ïÿP0é>ÿÿÿI‹EL‰ïÿP0éÉþÿÿè,úýÿH…À…áûÿÿH‹=܌#H5uèøýÿéÉûÿÿèúýÿH…À…’þÿÿH‹=³Œ#H5œè×÷ýÿézþÿÿfH‰ïè8öýÿ…À„ÎþÿÿH‰ï1öè–øýÿH‰ÅéøþÿÿÇD$@é0ýÿÿHœ$ LòH
ìÝéöýÿÿH)‹D$P‹L$PÁø1Á)ÁH‰ÐHcÉH™H÷ù‰D$0éCýÿÿè;÷ýÿI÷HL$PHt$0H¼$€LL$pOÆAÿÔèDùýÿH…ÀtÇD$|‹D$|…À„®ýÿÿóZ„$€óZŒ$„èäúýÿH=QÍH‰Æ1ÀèãøýÿH‰„$éyýÿÿHœ$ L/é3ýÿÿfAWH‰÷H‰ÖHCÝAVAUATI‰ÌH
ÑÝ"USHì8H‹Aþ!dH‹%(H‰„$(1ÀH„$LŒ$ðL„$°HDŽ$ÇD$0H‰D$ H„$ÇD$|H‰œ$HDŽ$ ÿÿÿÿH‰D$H„$ÐH‰œ$°ÇD$@H‰œ$ÀH‰D$H„$ÀÇD$PH‰œ$ÐHDŽ$àÿÿÿÿH‰D$H„$H‰œ$ðÇD$`H‰œ$H‰$1ÀÇD$pH‰œ$èkôýÿ…À„ƒH‹¬$ÐH9Ý„*H‹Eö€ª€„áH‹E‰D$P¸‰D$|‹D$|…À„‚‹T$P…Ò„H‹´$H9Þ„7H|$pHK€èþÿ‰D$|‹D$|…ÀtH‹D$p…À…Hœ$ LH
²ÛE1ɾH‰ߺ1ÀèÑùýÿH‹=º‰#H‰ÞèâôýÿH‹„$H‹„$H‹Œ$(dH3%(…«HÄ8[]A\A]A^A_Ãf„H‰ïèx÷ýÿH…À„¿H‹P‰T$PH‹HQÿH…ÒH‰t ¸éúþÿÿfDÇD$PéëþÿÿH‹PH‰ÇÿR0ëÔ@Hœ$ E1ÉL&H
ÇÚé%ÿÿÿf.„1ÀéGÿÿÿf„ÇD$péÑþÿÿL‹„$ðH´$๺¿è,ôýÿH…ÀH‰Å„ÿL‹„$°H´$ ¹º¿L‹pèøóýÿH…ÀI‰Å„ñH‹´$L‹xH9Þ„§H|$`HkèVþýÿ‰D$|‹D$|…À„ID‹L$`E…Ɉ=IcÁH;„$à,H‹´$ÀH9Þ„ØH|$@HZèþýÿ‰D$|‹D$|…À„øD‹L$@E…Ɉ¶H‹”$ IcÁH9Ѝ¢H‹´$H9Þ„¬H|$0HFè±ýýÿ‰D$|‹D$|…À„¤‹t$pD‹L$0‹D$pLcD$`H‹”$àÁþAIÿ1ð)ðL)¯ÁH˜H9ÂŽõ‹|$P‹D$PHct$@H‹”$ Áÿ1ø)øH)ò¯ÁH˜H9SHœ$ L'H
(Ù„¾H‰ߺ1Àè÷ýÿH‹=õ†#H‰ÞèòýÿL;¬$°tIƒm„(H;¬$ð„ýÿÿHƒm…
ýÿÿH‹EH‰ïÿP0éþüÿÿÇD$`éaþÿÿH‹}H‹5%ù!H9÷tHè{õýÿ…Àu?H‹EH÷€¨„"è­óýÿH…ÀHDb†#H5[|H‰Çèƒñýÿ1Àéüÿÿ@H5¡¼H‰ïè©ðýÿH‰ÅH…ít¿è¬òýÿH|$PH |H‰îè(üýÿ…ÀH‹Et@HƒèH…ÀH‰E…·üÿÿH‹EH‰ïÿP0¸é§ûÿÿHœ$ L,H
Á×éÀþÿÿHƒèH…ÀH‰E…MÿÿÿH‹EH‰ïÿP0é>ÿÿÿI‹EL‰ïÿP0éÉþÿÿèÜòýÿH…À…áûÿÿH‹=Œ…#H5|è°ðýÿéÉûÿÿè¶òýÿH…À…’þÿÿH‹=c…#H5,|è‡ðýÿézþÿÿfH‰ïèèîýÿ…À„ÎþÿÿH‰ï1öèFñýÿH‰ÅéøþÿÿÇD$@é0ýÿÿHœ$ L¢H
	×éöýÿÿH)‹D$P‹L$PÁø1Á)ÁH‰ÐHcÉH™H÷ù‰D$0éCýÿÿèëïýÿI÷HL$PHt$0H¼$€LL$pOÆAÿÔèôñýÿH…ÀtÇD$|‹D$|…À„®ýÿÿóZ„$€óZŒ$„è”óýÿH=ÆH‰Æ1Àè“ñýÿH‰„$éyýÿÿHœ$ Lßé3ýÿÿfAWH‰÷H‰ÖH`ÖAVAUATI‰ÌH
ÁÖ"USHì8H‹ñö!dH‹%(H‰„$(1ÀH„$LŒ$àL„$ HDŽ$ÇD$0H‰D$ H„$ðÇD$|H‰œ$€HDŽ$ÿÿÿÿH‰D$H„$ÀH‰œ$ ÇD$@H‰œ$°H‰D$H„$°ÇD$PH‰œ$ÀHDŽ$ÐÿÿÿÿH‰D$H„$€H‰œ$àÇD$`H‰œ$ðH‰$1ÀÇD$pH‰œ$èíýÿ…À„ƒH‹¬$ÀH9Ý„*H‹Eö€ª€„áH‹E‰D$P¸‰D$|‹D$|…À„‚‹T$P…Ò„H‹´$H9Þ„7H|$pHÛzèÆøýÿ‰D$|‹D$|…ÀtH‹D$p…À…Hœ$ L/H
ÏÔE1ɾH‰ߺ1ÀèòýÿH‹=j‚#H‰Þè’íýÿH‹„$H‹„$H‹Œ$(dH3%(…>HÄ8[]A\A]A^A_Ãf„H‰ïè(ðýÿH…À„H‹P‰T$PH‹HQÿH…ÒH‰t ¸éúþÿÿfDÇD$PéëþÿÿH‹PH‰ÇÿR0ëÔ@Hœ$ E1ÉLÖýH
äÓé%ÿÿÿf.„1ÀéGÿÿÿf„ÇD$péÑþÿÿL‹„$àH´$йº¿èÜìýÿH…ÀH‰Å„uL‹„$ H´$¹º¿L‹pè¨ìýÿH…ÀI‰Å„jH‹´$ðL‹xH9Þ„ôH|$`Hûyè÷ýÿ‰D$|‹D$|…À„–D‹L$`E…ɈIcÁH;„$Ѝ|H‹´$°H9Þ„PH|$@Hêyèµöýÿ‰D$|‹D$|…À„ED‹L$@E…Ɉ.H‹”$IcÁH9ЍH‹´$€H9Þ„$H|$0HÖyèaöýÿ‰D$|‹D$|…À„ñ‹t$pD‹L$0‹D$pHcL$`H‹”$ÐÁþAyÿ1ð)ðH)ʯÇH˜H9ÂŽóD‹D$P‹D$PHœ$ Hct$@H‹”$AÁøD1ÀD)ÀH)òLáü¯ÇH˜H9ÂŽÂH‰ÈH‰òHL$PHÁàHÁâHt$0LúH¼$LL$pMAÿÔè×ìýÿH…ÀtÇD$|‹D$|…Àt2òŒ$ò„$è{îýÿH=èÀH‰Æ1ÀèzìýÿH‰„$fL;¬$ tIƒm„NH;¬$à„ËüÿÿHƒm…ÀüÿÿH‹EH‰ïÿP0é±üÿÿÇD$`éþÿÿfDH‹}H‹5…ñ!H9÷tHèÛíýÿ…Àu?H‹EH÷€¨„Jè
ìýÿH…ÀHDÂ~#H5›vH‰Çèãéýÿ1Àé¸ûÿÿ@H5µH‰ïè	éýÿH‰ÅH…ít¿èëýÿH|$PH`vH‰îèˆôýÿ…ÀH‹EtcHƒèH…ÀH‰E…güÿÿH‹EH‰ïÿP0¸éWûÿÿHœ$ LŒH
ŽÐH‰ߺ¾1Àè1îýÿH‹=~#H‰ÞèBéýÿé½þÿÿHƒèH…ÀH‰E…*ÿÿÿH‹EH‰ïÿP0éÿÿÿI‹EL‰ïÿP0é þÿÿèëýÿH…À…hûÿÿH‹=Ã}#H5vèçèýÿéPûÿÿèíêýÿH…À…iþÿÿH‹=}#H5FvèÁèýÿéQþÿÿ@H‰ïè çýÿ…À„¦þÿÿH‰ï1öè~éýÿH‰ÅéÐþÿÿÇD$@é¸üÿÿHœ$ LÚùH
®Ïé	ÿÿÿH)‹D$P‹L$PÁø1Á)ÁH‰ÐHcÉH™H÷ù‰D$0éËüÿÿHœ$ L‘H
ÏéÈþÿÿèèýÿ„AWH‰÷H‰ÖHmÏAVAUATI‰ÌH
¡Î"USHì8H‹‘ï!dH‹%(H‰„$(1ÀH„$LŒ$ðL„$°HDŽ$ÇD$0H‰D$ H„$DŽ$ŒÇD$@H‰œ$H‰D$H„$ÐHDŽ$ ÿÿÿÿH‰œ$°ÇD$PH‰D$H„$ÀH‰œ$ÀÇD$`H‰œ$ÐH‰D$H„$HDŽ$àÿÿÿÿH‰œ$ðÇD$pH‰$1ÀH‰œ$DŽ$€H‰œ$è­åýÿ…À„•H‹¬$ÐH9Ý„<H‹Eö€ª€„óH‹E‰D$`¸‰„$Œ‹„$Œ…À„Ž‹T$`…Ò„H‹´$H9Þ„CH¼$€HDuèOñýÿ‰„$Œ‹„$Œ…ÀtK‹„$€…À…Hœ$ L¯H
ºÍE1ɾH‰ߺ1ÀèëýÿH‹=êz#H‰ÞèæýÿH‹„$H‹„$H‹Œ$(dH3%(…ÅHÄ8[]A\A]A^A_Ãf„H‰ïè¨èýÿH…À„ÏH‹P‰T$`H‹HQÿH…ÒH‰t ¸éèþÿÿfDÇD$`éÜþÿÿH‹PH‰ÇÿR0ëÔ@Hœ$ E1ÉLVöH
ÐÌé%ÿÿÿf.„1ÀéGÿÿÿf„DŽ$€éÈþÿÿL‹„$ðH´$๺¿è\åýÿH…ÀH‰Å„L‹„$°H´$ ¹º¿L‹pè(åýÿH…ÀI‰Å„H‹´$ÀL‹xH9Þ„·H|$PHKtè†ïýÿ‰„$Œ‹„$Œ…À„SD‹L$PE…ɈGIcÁH;„$ 6H‹´$H9Þ„âH|$pH4tè/ïýÿ‰„$Œ‹„$Œ…À„üD‹L$pE…ɈºIcÁH;„$à©H‹´$H9Þ„³H|$@HtèØîýÿ‰„$Œ‹„$Œ…À„¥‹´$€D‹L$@‹„$€LcD$pH‹”$àÁþAIÿ1ð)ðL)¯ÁH˜H9ÂŽï‹|$`‹D$`Hct$PH‹”$ Áÿ1ø)øH)ò¯ÁH˜H9XHœ$ LBõH
˾H‰ߺ1Àè,èýÿH‹=x#H‰Þè=ãýÿL;¬$°tIƒm„(H;¬$ð„ýÿÿHƒm…ýüÿÿH‹EH‰ïÿP0éîüÿÿÇD$PéTþÿÿH‹}H‹5Eê!H9÷tHè›æýÿ…Àu?H‹EH÷€¨„"èÍäýÿH…ÀHD‚w#H5;qH‰Çè£âýÿ1Àéæûÿÿ@H5mH‰ïèÉáýÿH‰ÅH…ít¿èÌãýÿH|$`HqH‰îèHíýÿ…ÀH‹Et@HƒèH…ÀH‰E…§üÿÿH‹EH‰ïÿP0¸é…ûÿÿHœ$ LŒóH
¸ÉéÀþÿÿHƒèH…ÀH‰E…MÿÿÿH‹EH‰ïÿP0é>ÿÿÿI‹EL‰ïÿP0éÉþÿÿèüãýÿH…À…ÑûÿÿH‹=¬v#H5åpèÐáýÿé¹ûÿÿèÖãýÿH…À…’þÿÿH‹=ƒv#H5qè§áýÿézþÿÿfH‰ïèàýÿ…À„ÎþÿÿH‰ï1öèfâýÿH‰ÅéøþÿÿÇD$pé)ýÿÿHœ$ L‚H
ÿÈéöýÿÿHcT$PH‹„$ ‹L$`H)ЋT$`Áù1Ê)ÊHcÊH™H÷ù‰D$@é5ýÿÿèáýÿI·HL$`Ht$@H|$0LŒ$€O†AÿÔè
ãýÿH…ÀtDŽ$Œ‹„$Œ…À„žýÿÿóZD$0H=¿À¸è´âýÿH‰„$ézýÿÿHœ$ Lé9ýÿÿAVH‰÷H‰ÖHTÈAUATI‰ÌH
ÃÒ"USHì0H‹è!dH‹%(H‰„$(1ÀHD$pLŒ$°L„$HDŽ$HDŽ$€H‰D$(H„$ÇD$|H‰œ$HDŽ$ ÿÿÿÿH‰D$ H„$ðH‰œ$°ÇD$0H‰œ$ÀH‰D$H„$àÇD$@H‰œ$ÐÇD$PH‰D$H„$ÐH‰œ$àÇD$`H‰œ$ðH‰D$H„$ÀHDŽ$ÿÿÿÿHDŽ$ÿÿÿÿÇD$pH‰$1ÀH‰œ$èÞýÿ…À„ƒH‹¬$ÀH9Ý„òH‹Eö€ª€„¡H‹E‰D$0¸‰D$|‹D$|…ÀtHD‹L$0Aƒù†ÉHœ$ L¢cH
ÌÆ¾H‰ߺ1Àè¿ãýÿH‹=¨s#H‰ÞèÐÞýÿH‹„$H‹„$H‹Œ$(dH3%(…ZHÄ0[]A\A]A^Ãf„H‰ïèháýÿH…À„¿H‹P‰T$0H‹HQÿH…ÒH‰„|¸é6ÿÿÿf.„ÇD$0é#ÿÿÿH‹´$ÐH9Þ„7H|$@H»nèþèýÿ‰D$|‹D$|…À„>ÿÿÿ‹D$@…À„¢H‹´$àH9Þ„±H|$PH½nèÀèýÿ‰D$|‹D$|…À„ÿÿÿH¬$€H‹´$HÑnH‰ï葮þÿ‰D$|‹D$|…À„ÑþÿÿL‹„$°H´$ ¹º¿èÍÝýÿH…ÀI‰Å„eL‹p‹D$P…ÀˆÐHcÈH‹„$ H9Á¼H‹´$ðH9Þ„ÃH|$`HÐnèèýÿ‰D$|‹D$|…À„öHcT$PH‹„$ Hœ$ ‹L$@D‹L$`LVcHƒèH)ЋT$@ÁùIcñ1Ê)ÊHcÊH™H÷ùHƒÀH9Ə‘E…Ɉyƒ|$pL‹„$ºH‰´$H‰´$H´$¿Ƀá €Ʌè×ÜýÿH…ÀH‰Ã„·L‹HHcD$PHt$`ƒ|$0H=œ§LD$@H‰4$H‰êIÆH§HDøAÿÔèNÞýÿH…ÀtÇD$|‹D$|…À…CL;¬$°„GýÿÿIƒm…<ýÿÿI‹EL‰ïÿP0é-ýÿÿDÇD$@éÑýÿÿH‹PH‰ÇÿR0éuýÿÿf„1Àé	ýÿÿf„H‹}H‹5ã!H9÷„|ègßýÿ…ÀusH‹EH÷€¨„Ûè™ÝýÿH…ÀHDNp#H5ÏkH‰ÇèoÛýÿ1ÀéDüÿÿ„Hœ$ E1ÉL~ÜH
2ÃéOüÿÿfÇD$PéWýÿÿH5Y¦H‰ïèaÚýÿH‰ÅH…ít‹èdÜýÿH|$0H`kH‰îèàåýÿ…ÀH‹Et%HƒèH…ÀH‰E…ƒüÿÿH‹EH‰ïÿP0¸é¯ûÿÿHƒèH…ÀH‰E…4ÿÿÿH‹EH‰ïÿP0é%ÿÿÿH‰ïèÙýÿ…À„ÿÿÿH‰ï1öèyÛýÿH‰ÅésÿÿÿH‹=Zo#H5s`è~ÚýÿéTþÿÿHƒè‹T$@H)ȋL$@Áù1Ê)ÊHcÊH™H÷ùƒÀ‰D$`é(ýÿÿè*ÚýÿHœ$ LÛ`H
0ÂH‰ߺ¾1ÀèßýÿH‹=én#H‰ÞèÚýÿéçýÿÿèÜýÿH…À@…*ûÿÿH‹=Ãn#H5DkèçÙýÿéûÿÿH=/°H‰Þ1ÀèÁÛýÿH‰„$éŸýÿÿèÏÛýÿH…À…‘ýÿÿH‹=n#H5€kè£Ùýÿéyýÿÿfffff.„AUH‰÷H‰ÖH‹ÁATI‰ÌH
UË"USHìHH‹á!dH‹%(H‰„$81ÀH„$€LŒ$°L„$HDŽ$ÇD$0H‰D$(H„$DŽ$ŒH‰œ$HDŽ$ ÿÿÿÿH‰D$ H„$ðH‰œ$°ÇD$@H‰œ$ÀH‰D$H„$àÇD$PH‰œ$ÐÇD$`H‰D$H„$ÐH‰œ$àÇD$pH‰œ$ðH‰D$H„$ÀHDŽ$ ÿÿÿÿHDŽ$(ÿÿÿÿDŽ$€H‰$1ÀH‰œ$è×ýÿ…À„ÀH‹¬$ÀH9Ý„ïH‹Eö€ª€„žH‹E‰D$@¸‰„$Œ‹„$Œ…ÀtHD‹L$@Aƒù†ÀHœ$0L‰\H
ú¿¾H‰ߺ1Àè¦ÜýÿH‹=l#H‰Þè·×ýÿH‹„$H‹„$H‹Œ$8dH3%(…‘HÄH[]A\A]ÃfH‰ïèXÚýÿH…À„ÿH‹P‰T$@H‹HQÿH…ÒH‰„ĸé9ÿÿÿf.„ÇD$@é)ÿÿÿH‹´$ÐH9Þ„H|$PHsièîáýÿ‰„$Œ‹„$Œ…À„Aÿÿÿ‹D$P…À„ÜH‹´$àH9Þ„ëH|$`Hoièªáýÿ‰„$Œ‹„$Œ…À„ýþÿÿH‹´$H¼$H}iHDŽ$èl§þÿ…Àtò„$¸fZÀóD$0‰„$Œ‹„$Œ…À„£þÿÿL‹„$°H´$ ¹º¿è†ÖýÿH…ÀH‰Å„nL‹h‹D$`…ÀˆÙHcÈH‹„$ H9ÁÅH‹´$ðH9Þ„ÌH|$pHQièÄàýÿ‰„$Œ‹„$Œ…À„HcT$`H‹„$ Hœ$0‹L$PD‹L$pL	\HƒèH)ЋT$PÁùIcñ1Ê)ÊHcÊH™H÷ùHƒÀH9Ə”E…Ɉ|ƒ¼$€L‹„$ºH‰´$ H‰´$(H´$ ¿Ƀá €Ʌè‡ÕýÿH…ÀH‰Ã„·L‹HHcD$`Ht$pƒ|$@H=L HT$0H‰4$LD$PIL…H, HDøAÿÔèûÖýÿH…ÀtDŽ$Œ‹„$Œ…À…:H;¬$°„ýÿÿHƒm…üüÿÿH‹EH‰ïÿP0éíüÿÿ@ÇD$PéŒýÿÿH‹PH‰ÇÿR0é-ýÿÿ1ÀéÒüÿÿf„H‹}H‹5ÅÛ!H9÷„|èØýÿ…ÀusH‹EH÷€¨„ÛèIÖýÿH…ÀHDþh#H5GfH‰ÇèÔýÿ1Àéüÿÿ„Hœ$0E1ÉL.ÕH
)¼éüÿÿfÇD$`é ýÿÿH5	ŸH‰ïèÓýÿH‰ÅH…ít‹èÕýÿH|$@HØeH‰îèÞýÿ…ÀH‹Et%HƒèH…ÀH‰E…CüÿÿH‹EH‰ïÿP0¸érûÿÿHƒèH…ÀH‰E…4ÿÿÿH‹EH‰ïÿP0é%ÿÿÿH‰ïèËÑýÿ…À„ÿÿÿH‰ï1öè)ÔýÿH‰ÅésÿÿÿH‹=
h#H5#Yè.Óýÿé]þÿÿHƒè‹T$PH)ȋL$PÁù1Ê)ÊHcÊH™H÷ùƒÀ‰D$pé"ýÿÿèÚÒýÿHœ$0L‹YH
'»H‰ߺ¾1Àè°×ýÿH‹=™g#H‰ÞèÁÒýÿéðýÿÿèÇÔýÿH…À@…óúÿÿH‹=sg#H5¼eè—ÒýÿéÛúÿÿH=ߨH‰Þ1ÀèqÔýÿH‰„$é¨ýÿÿèÔýÿH…À…šýÿÿH‹=/g#H5øeèSÒýÿé‚ýÿÿfffff.„AVH‰÷H‰ÖH‚ºAUATI‰ÌH
ãÅ"USHì0H‹³Ù!dH‹%(H‰„$(1ÀHD$pLŒ$ L„$€HDŽ$øH‰œ$€H‰D$(H„$ðÇD$|HDŽ$ÿÿÿÿH‰œ$ H‰D$ H„$àÇD$0H‰œ$°ÇD$@H‰D$H„$ÐH‰œ$ÀÇD$PH‰œ$ÐH‰D$H„$ÀÇD$`H‰œ$àHDŽ$ÿÿÿÿH‰D$H„$°HDŽ$ÿÿÿÿÇD$pH‰œ$ðH‰$1ÀèÇÏýÿ…À„H‹¬$°H9Ý„îH‹Eö€ª€„H‹E‰D$0¸‰D$|‹D$|…ÀtHD‹L$0Aƒù†ÅHœ$ LNUH
¹¾H‰ߺ1ÀèkÕýÿH‹=Te#H‰Þè|ÐýÿH‹„$øH‹„$øH‹Œ$(dH3%(…VHÄ0[]A\A]A^ÃDH‰ïèÓýÿH…À„¿H‹P‰T$0H‹HQÿH…ÒH‰„„¸é:ÿÿÿf.„ÇD$0é'ÿÿÿH‹´$ÀH9Þ„?H|$@Hûcè®Úýÿ‰D$|‹D$|…À„Bÿÿÿ‹D$@…À„¢H‹´$ÐH9Þ„±H|$PHýcèpÚýÿ‰D$|‹D$|…À„ÿÿÿH¬$H‹´$€HdH‰ïè¡Öýÿ‰D$|‹D$|…À„ÕþÿÿL‹„$ H´$¹º¿è}ÏýÿH…ÀI‰Å„eL‹p‹D$P…ÀˆÐHcÈH‹„$H9Á¼H‹´$àH9Þ„ÃH|$`Hdè»Ùýÿ‰D$|‹D$|…À„úHcT$PH‹„$Hœ$ ‹L$@D‹L$`LUHƒèH)ЋT$@ÁùIcñ1Ê)ÊHcÊH™H÷ùHƒÀH9Ə‘E…Ɉyƒ|$pL‹„$ðºH‰´$H‰´$H´$¿Ƀá €Ʌè‡ÎýÿH…ÀH‰Ã„·L‹HHcD$PHt$`H=Q™LD$@H‰êH‰4$HÁàƒ|$0IH+™HDøAÿÔèúÏýÿH…ÀtÇD$|‹D$|…À…?L;¬$ „GýÿÿIƒm…<ýÿÿI‹EL‰ïÿP0é-ýÿÿf„ÇD$@éÉýÿÿH‹PH‰ÇÿR0émýÿÿ1Àé
ýÿÿf„H‹}H‹5ÅÔ!H9÷„|èÑýÿ…ÀusH‹EH÷€¨„ÛèIÏýÿH…ÀHDþa#H5aH‰ÇèÍýÿ1ÀéHüÿÿ„Hœ$ E1ÉL.ÎH
pµéSüÿÿfÇD$PéWýÿÿH5	˜H‰ïèÌýÿH‰ÅH…ít‹èÎýÿH|$0H `H‰îè×ýÿ…ÀH‹Et%HƒèH…ÀH‰E…ƒüÿÿH‹EH‰ïÿP0¸é³ûÿÿHƒèH…ÀH‰E…4ÿÿÿH‹EH‰ïÿP0é%ÿÿÿH‰ïèËÊýÿ…À„ÿÿÿH‰ï1öè)ÍýÿH‰ÅésÿÿÿH‹=
a#H5#Rè.ÌýÿéXþÿÿHƒè‹T$@H)ȋL$@Áù1Ê)ÊHcÊH™H÷ùƒÀ‰D$`é(ýÿÿèÚËýÿHœ$ L‹RH
n´H‰ߺ¾1Àè°ÐýÿH‹=™`#H‰ÞèÁËýÿéëýÿÿèÇÍýÿH…À@….ûÿÿH‹=s`#H5Œ`è—ËýÿéûÿÿH=ߡH‰Þ1ÀèqÍýÿH‰„$øé£ýÿÿèÍýÿH…À…•ýÿÿH‹=/`#H5È`èSËýÿé}ýÿÿfffff.„AVH‰÷H‰ÖHɳAUATI‰ÌH
ƒ¾"USHì0H‹³Ò!dH‹%(H‰„$(1ÀHD$pLŒ$°L„$HDŽ$H‰œ$H‰D$(H„$ÇD$|HDŽ$ ÿÿÿÿH‰œ$°H‰D$ H„$ðÇD$0H‰œ$ÀÇD$@H‰D$H„$àH‰œ$ÐÇD$PH‰œ$àH‰D$H„$ÐÇD$`H‰œ$ðHDŽ$ÿÿÿÿH‰D$H„$ÀHDŽ$ÿÿÿÿÇD$pH‰œ$H‰$1ÀèÇÈýÿ…À„H‹¬$ÀH9Ý„îH‹Eö€ª€„H‹E‰D$0¸‰D$|‹D$|…ÀtHD‹L$0Aƒù†ÅHœ$ LNNH
M²¾H‰ߺ1ÀèkÎýÿH‹=T^#H‰Þè|ÉýÿH‹„$H‹„$H‹Œ$(dH3%(…VHÄ0[]A\A]A^ÃDH‰ïèÌýÿH…À„¿H‹P‰T$0H‹HQÿH…ÒH‰„|¸é:ÿÿÿf.„ÇD$0é'ÿÿÿH‹´$ÐH9Þ„7H|$@HË^è®Óýÿ‰D$|‹D$|…À„Bÿÿÿ‹D$@…À„¢H‹´$àH9Þ„±H|$PHÍ^èpÓýÿ‰D$|‹D$|…À„ÿÿÿH¬$€H‹´$Há^H‰ïèqzÿÿ‰D$|‹D$|…À„ÕþÿÿL‹„$°H´$ ¹º¿è}ÈýÿH…ÀI‰Å„eL‹p‹D$P…ÀˆÐHcÈH‹„$ H9Á¼H‹´$ðH9Þ„ÃH|$`Hè^è»Òýÿ‰D$|‹D$|…À„öHcT$PH‹„$ Hœ$ ‹L$@D‹L$`LNHƒèH)ЋT$@ÁùIcñ1Ê)ÊHcÊH™H÷ùHƒÀH9Ə‘E…Ɉyƒ|$pL‹„$ºH‰´$H‰´$H´$¿Ƀá €Ʌè‡ÇýÿH…ÀH‰Ã„·L‹HHcD$PHt$`ƒ|$0H=L’LD$@H‰4$H‰êIÆH/’HDøAÿÔèþÈýÿH…ÀtÇD$|‹D$|…À…CL;¬$°„KýÿÿIƒm…@ýÿÿI‹EL‰ïÿP0é1ýÿÿDÇD$@éÑýÿÿH‹PH‰ÇÿR0éuýÿÿf„1Àé
ýÿÿf„H‹}H‹5ÅÍ!H9÷„|èÊýÿ…ÀusH‹EH÷€¨„ÛèIÈýÿH…ÀHDþZ#H5ß[H‰ÇèÆýÿ1ÀéHüÿÿ„Hœ$ E1ÉL.ÇH
·®éSüÿÿfÇD$PéWýÿÿH5	‘H‰ïèÅýÿH‰ÅH…ít‹èÇýÿH|$0Hp[H‰îèÐýÿ…ÀH‹Et%HƒèH…ÀH‰E…ƒüÿÿH‹EH‰ïÿP0¸é³ûÿÿHƒèH…ÀH‰E…4ÿÿÿH‹EH‰ïÿP0é%ÿÿÿH‰ïèËÃýÿ…À„ÿÿÿH‰ï1öè)ÆýÿH‰ÅésÿÿÿH‹=
Z#H5#Kè.ÅýÿéTþÿÿHƒè‹T$@H)ȋL$@Áù1Ê)ÊHcÊH™H÷ùƒÀ‰D$`é(ýÿÿèÚÄýÿHœ$ L‹KH
µ­H‰ߺ¾1Àè°ÉýÿH‹=™Y#H‰ÞèÁÄýÿéçýÿÿèÇÆýÿH…À@….ûÿÿH‹=sY#H5\[è—ÄýÿéûÿÿH=ߚH‰Þ1ÀèqÆýÿH‰„$éŸýÿÿèÆýÿH…À…‘ýÿÿH‹=/Y#H5˜[èSÄýÿéyýÿÿfffff.„AVH‰÷H‰ÖH­AUATI‰ÌH
ö"USHì0H‹³Ë!dH‹%(H‰„$(1ÀHD$pLŒ$°L„$HDŽ$H‰œ$H‰D$(H„$ÇD$|HDŽ$ ÿÿÿÿH‰œ$°H‰D$ H„$ðÇD$0H‰œ$ÀÇD$@H‰D$H„$àH‰œ$ÐÇD$PH‰œ$àH‰D$H„$ÐÇD$`H‰œ$ðHDŽ$ÿÿÿÿH‰D$H„$ÀHDŽ$ÿÿÿÿÇD$pH‰œ$H‰$1ÀèÇÁýÿ…À„H‹¬$ÀH9Ý„îH‹Eö€ª€„H‹E‰D$0¸‰D$|‹D$|…ÀtHD‹L$0Aƒù†ÅHœ$ LNGH
”«¾H‰ߺ1ÀèkÇýÿH‹=TW#H‰Þè|ÂýÿH‹„$H‹„$H‹Œ$(dH3%(…VHÄ0[]A\A]A^ÃDH‰ïèÅýÿH…À„¿H‹P‰T$0H‹HQÿH…ÒH‰„|¸é:ÿÿÿf.„ÇD$0é'ÿÿÿH‹´$ÐH9Þ„7H|$@H›Yè®Ìýÿ‰D$|‹D$|…À„Bÿÿÿ‹D$@…À„¢H‹´$àH9Þ„±H|$PHYèpÌýÿ‰D$|‹D$|…À„ÿÿÿH¬$€H‹´$H±YH‰ïèqsÿÿ‰D$|‹D$|…À„ÕþÿÿL‹„$°H´$ ¹º¿è}ÁýÿH…ÀI‰Å„eL‹p‹D$P…ÀˆÐHcÈH‹„$ H9Á¼H‹´$ðH9Þ„ÃH|$`H¸Yè»Ëýÿ‰D$|‹D$|…À„öHcT$PH‹„$ Hœ$ ‹L$@D‹L$`LGHƒèH)ЋT$@ÁùIcñ1Ê)ÊHcÊH™H÷ùHƒÀH9Ə‘E…Ɉyƒ|$pL‹„$ºH‰´$H‰´$H´$¿Ƀá €Ʌè‡ÀýÿH…ÀH‰Ã„·L‹HHcD$PHt$`ƒ|$0H=L‹LD$@H‰4$H‰êIÆH/‹HDøAÿÔèþÁýÿH…ÀtÇD$|‹D$|…À…CL;¬$°„KýÿÿIƒm…@ýÿÿI‹EL‰ïÿP0é1ýÿÿDÇD$@éÑýÿÿH‹PH‰ÇÿR0éuýÿÿf„1Àé
ýÿÿf„H‹}H‹5ÅÆ!H9÷„|èÃýÿ…ÀusH‹EH÷€¨„ÛèIÁýÿH…ÀHDþS#H5¯VH‰Çè¿ýÿ1ÀéHüÿÿ„Hœ$ E1ÉL.ÀH
þ§éSüÿÿfÇD$PéWýÿÿH5	ŠH‰ïè¾ýÿH‰ÅH…ít‹èÀýÿH|$0H@VH‰îèÉýÿ…ÀH‹Et%HƒèH…ÀH‰E…ƒüÿÿH‹EH‰ïÿP0¸é³ûÿÿHƒèH…ÀH‰E…4ÿÿÿH‹EH‰ïÿP0é%ÿÿÿH‰ïè˼ýÿ…À„ÿÿÿH‰ï1öè)¿ýÿH‰ÅésÿÿÿH‹=
S#H5#Dè.¾ýÿéTþÿÿHƒè‹T$@H)ȋL$@Áù1Ê)ÊHcÊH™H÷ùƒÀ‰D$`é(ýÿÿèڽýÿHœ$ L‹DH
ü¦H‰ߺ¾1Àè°ÂýÿH‹=™R#H‰Þè}ýÿéçýÿÿèǿýÿH…À@….ûÿÿH‹=sR#H5,V藽ýÿéûÿÿH=ߓH‰Þ1Àèq¿ýÿH‰„$éŸýÿÿè¿ýÿH…À…‘ýÿÿH‹=/R#H5hVèS½ýÿéyýÿÿfffff.„AWH‰÷H‰ÖHW¦AVAUATUSH‰ËH
_²"Hì¸L‹=±Ä!dH‹%(H‰„$¨1ÀH„$°HDŽ$xHDŽ$ÐÿÿÿÿDŽ$¼L‰¼$ÀLŒ$àH‰D$@H„$pL‰¼$àHDŽ$ðÿÿÿÿL‰¼$L„$ÀÇD$PL‰¼$ÇD$`L‰¼$ ÇD$pL‰¼$0DŽ$€L‰¼$@DŽ$L‰¼$PDŽ$ L‰¼$`HDŽ$ÿÿÿÿHDŽ$˜ÿÿÿÿDŽ$°L‰¼$pH‰D$8H„$`H‰D$0H„$PH‰D$(H„$@H‰D$ H„$0H‰D$H„$ H‰D$H„$H‰D$H„$H‰$1ÀèXºýÿ…À„ðH‹¬$L9ý„ïH‹Eö€ª€„¦H‹E‰D$P¸‰„$¼‹„$¼…ÀtHD‹L$PAƒù†ÀHœ$ LÙ?H
j¤¾H‰ߺ1Àèö¿ýÿH‹=ßO#H‰Þè»ýÿH‹„$xH‹„$xH‹œ$¨dH3%(…ºHĸ[]A\A]A^A_ÃfDH‰ï蠽ýÿH…À„'H‹P‰T$PH‹HQÿH…ÒH‰„ì¸é1ÿÿÿfÇD$Pé)ÿÿÿH‹´$ L9þ„¯H|$`HûSè>Åýÿ‰„$¼‹„$¼…À„Aÿÿÿ‹T$`…Ò„H‹´$@L9þ„H¼$€HôSè÷Äýÿ‰„$¼‹„$¼…À„úþÿÿ‹„$€…À„oH‹´$PL9þ„|H¼$HTè­Äýÿ‰„$¼‹„$¼…À„°þÿÿH¬$€H‹´$ÀH(TH‰ïèØÀýÿ‰„$¼‹„$¼…À„{þÿÿH‹´$0L9þ„>H|$pH=Tè@Äýÿ‰„$¼‹„$¼…À„CþÿÿL‹„$H´$𹺿èv¹ýÿH…ÀI‰Ä„ƒL‹pHc„$…ÀxH;„$ðŒÛH‹=ÅM#H5VTèé¸ýÿL;¤$„ÔýÿÿIƒ,$…ÉýÿÿI‹D$L‰çÿP0é¹ýÿÿÇD$`é\þÿÿH‹PH‰ÇÿR0éþÿÿ1Àé¢ýÿÿf„H‹}H‹5å¿!H9÷„|è7¼ýÿ…ÀusH‹EH÷€¨„	èiºýÿH…ÀHDM#H5ŸQH‰Çè?¸ýÿ1Àé×üÿÿ„Hœ$ E1ÉLN¹H
j¡éèüÿÿfDŽ$€éðýÿÿH5)ƒH‰ïè1·ýÿH‰ÅH…ít‹è4¹ýÿH|$PH0QH‰îè°Âýÿ…ÀH‹Et%HƒèH…ÀH‰E…ýÿÿH‹EH‰ïÿP0¸éBüÿÿHƒèH…ÀH‰E…4ÿÿÿH‹EH‰ïÿP0é%ÿÿÿHœ$ E1ÉL‰QH
Ϡé;üÿÿDŽ$éýÿÿH‰ï轵ýÿ…À„çþÿÿH‰ï1öè¸ýÿH‰ÅéEÿÿÿÇD$péÍýÿÿè·ýÿL‹„$àH´$йº¿èM·ýÿH…ÀI‰Å„/Hc|$pH‹@H‰D$H…ÿx
L‹„$ÐL9Ç|aH‹=›K#H5´<迶ýÿL;¬$à„ÈýÿÿIƒm…½ýÿÿI‹EL‰ïÿP0é®ýÿÿ袸ýÿH…À…‚ûÿÿH‹=RK#H5“Qèv¶ýÿéjûÿÿH‹´$`L9þ„.H¼$ HARè,Áýÿ‰„$¼‹„$¼…À„wÿÿÿHc”$H‹„$ð‹Œ$€D‹Œ$ HƒèH)Ћ”$€ÁùIcñ1Ê)ÊHcÊH™H÷ùHƒÀH9Ə§HcT$pH‹„$ЋL$`HƒèH)ЋT$`Áù1Ê)ÊHcÊH™H÷ùHƒÀH9Ə^E…Ɉƒ¼$°L‹„$pºH‰´$H‰´$˜H´$¿Ƀá €Ʌ躵ýÿH…ÀI‰Ç„¦HcT$pL‹@H=‰€Hc„$H‹L$HH´$ L‰D$H‰t$LD$`HÁâHÁàHу|$PHH€MHDúH”$€H‰$H‰êÿÓè·ýÿH…ÀtDŽ$¼‹„$¼…À„þÿÿH=#‹L‰þ1À赶ýÿH‰„$xéùýÿÿèöýÿH…À…ëýÿÿH‹=sI#H5lQ藴ýÿéÓýÿÿHœ$ L3QH
óH‰ߺ¾1ÀèH¹ýÿH‹=1I#H‰ÞèY´ýÿé•ýÿÿHœ$ LµPëÀHœ$ LdPë¯H‹„$ð‹Œ$€‹t$`HPÿHc„$ÁþH)‹„$€Áø1Á)ÁH‰ÐHcÉH™H÷ù‹T$`1ò)òHHI@ÿHcòH)øH™H÷þHƒÀH9ÁHNI„$ é}ýÿÿè͵ýÿH…À…ËúÿÿH‹=}H#H5FO衳ýÿé³úÿÿfff.„AWH‰÷H‰ÖHAVAUATUSH‰ËH
O¨"HìÈL‹5»!dH‹%(H‰„$¸1ÀH„$ÀHDŽ$˜HDŽ$ðÿÿÿÿDŽ$ÌL‰´$àLŒ$H‰D$@H„$L‰´$HDŽ$ÿÿÿÿL‰´$ L„$àÇD$`L‰´$0ÇD$pL‰´$@DŽ$€L‰´$PDŽ$L‰´$`DŽ$ L‰´$pDŽ$°L‰´$€HDŽ$ ÿÿÿÿHDŽ$¨ÿÿÿÿDŽ$ÀL‰´$H‰D$8H„$€H‰D$0H„$pH‰D$(H„$`H‰D$ H„$PH‰D$H„$@H‰D$H„$0H‰D$H„$ H‰$1À襰ýÿ…À„ýH‹¬$0L9õ„ìH‹Eö€ª€„£H‹E‰D$`¸‰„$̋„$̅ÀtHD‹L$`Aƒù†½Hœ$°L&6H
›¾H‰ߺ1ÀèC¶ýÿH‹=,F#H‰ÞèT±ýÿH‹„$˜H‹„$˜H‹œ$¸dH3%(…ÊHÄÈ[]A\A]A^A_ÃH‰ïèð³ýÿH…À„7H‹P‰T$`H‹HQÿH…ÒH‰„ü¸é4ÿÿÿfÇD$`é,ÿÿÿH‹´$@L9ö„¿H|$pHN莻ýÿ‰„$̋„$̅À„Dÿÿÿ‹T$p…Ò„H‹´$`L9ö„+H¼$HNèG»ýÿ‰„$̋„$̅À„ýþÿÿ‹„$…À„H‹´$pL9ö„ŒH¼$ HúMèýºýÿ‰„$̋„$̅À„³þÿÿH¬$ÐH‹´$àHNH‰ïèøaÿÿ‰„$̋„$̅À„~þÿÿH‹´$PL9ö„NH¼$€HN荺ýÿ‰„$̋„$̅À„CþÿÿL‹„$ H´$¹º¿èïýÿH…ÀI‰Ä„‘H‹@H‰D$PHc„$ …ÀxH;„$ŒæH‹=
D#H5žJè1¯ýÿL;¤$ „ÏýÿÿIƒ,$…ÄýÿÿI‹D$L‰çÿP0é´ýÿÿ„ÇD$péLþÿÿH‹PH‰ÇÿR0éõýÿÿ1Àé•ýÿÿf„H‹}H‹5%¶!H9÷„|èw²ýÿ…ÀusH‹EH÷€¨„	詰ýÿH…ÀHD^C#H5ŸKH‰Çè®ýÿ1ÀéÊüÿÿ„Hœ$°E1ÉLޝH
˜éÛüÿÿfDŽ$éàýÿÿH5iyH‰ïèq­ýÿH‰ÅH…ít‹èt¯ýÿH|$`H0KH‰îèð¸ýÿ…ÀH‹Et%HƒèH…ÀH‰E…ýÿÿH‹EH‰ïÿP0¸é5üÿÿHƒèH…ÀH‰E…4ÿÿÿH‹EH‰ïÿP0é%ÿÿÿHœ$°E1ÉLÉGH
o—é.üÿÿDŽ$ éýÿÿH‰ïèý«ýÿ…À„çþÿÿH‰ï1öè[®ýÿH‰ÅéEÿÿÿDŽ$€é½ýÿÿè>­ýÿL‹„$H´$𹺿芭ýÿH…ÀI‰Å„3Hc¼$€L‹x…ÿx
L‹„$ðL9Ç|aH‹=ÚA#H5ó2èþ¬ýÿL;¬$„¿ýÿÿIƒm…´ýÿÿI‹EL‰ïÿP0é¥ýÿÿèá®ýÿH…À…tûÿÿH‹=‘A#H5ZK赬ýÿé\ûÿÿH‹´$€L9ö„4H¼$°HÐKèk·ýÿ‰„$̋„$̅À„wÿÿÿHc”$ H‹„$‹Œ$D‹Œ$°HƒèH)Ћ”$ÁùIcñ1Ê)ÊHcÊH™H÷ùHƒÀH9Ə­Hc”$€H‹„$ð‹L$pHƒèH)ЋT$pÁù1Ê)ÊHcÊH™H÷ùHƒÀH9ƏaE…Ɉƒ¼$ÀL‹„$ºH‰´$ H‰´$¨H´$ ¿Ƀá €Ʌèö«ýÿH…À„¬H‹Pƒ|$`H5ÂvH‰D$XHcŒ$€H=´vHc„$ LD$pH‰T$H”$HDþH´$°H‰$H‹T$PIÏH‰t$LÂH‰êÿÓèC­ýÿH…ÀL‹T$XtDŽ$̋„$̅À„þÿÿH=\L‰Ö1Àèî¬ýÿH‰„$˜éóýÿÿèü¬ýÿH…À…åýÿÿH‹=¬?#H5UJèЪýÿéÍýÿÿHœ$°LlGH
Œ”H‰ߺ¾1À聯ýÿH‹=j?#H‰Þ蒪ýÿéýÿÿHœ$°LîFëÀHœ$°LFë¯H‹„$‹Œ$‹t$pHPÿHc„$ ÁþH)‹„$Áø1Á)ÁH‰ÐHcÉH™H÷ù‹T$p1ò)òHHI@ÿHcòH)øH™H÷þHƒÀH9ÁHNI„$°éwýÿÿè¬ýÿH…À…¼úÿÿH‹=¶>#H5ÏHèکýÿé¤úÿÿDAWH‰÷H‰ÖH§“AVAUATUSH‰ËH
/ž"HìÈL‹5A±!dH‹%(H‰„$¸1ÀH„$ÀHDŽ$˜HDŽ$ÐDŽ$ÌL‰´$àLŒ$HDŽ$ðÿÿÿÿL‰´$L„$àHDŽ$ÿÿÿÿL‰´$ ÇD$`L‰´$0ÇD$pL‰´$@DŽ$€L‰´$PDŽ$L‰´$`DŽ$ L‰´$pDŽ$°L‰´$€HDŽ$ ÿÿÿÿHDŽ$¨ÿÿÿÿDŽ$ÀL‰´$H‰D$@H„$H‰D$8H„$€H‰D$0H„$pH‰D$(H„$`H‰D$ H„$PH‰D$H„$@H‰D$H„$0H‰D$H„$ H‰$1Àè٦ýÿ…À„H‹¬$0L9õ„ðH‹Eö€ª€„§H‹E‰D$`¸‰„$̋„$̅ÀtHD‹L$`Aƒù†ÁHœ$°LZ,H
«‘¾H‰ߺ1Àèw¬ýÿH‹=`<#H‰Þ舧ýÿH‹„$˜H‹„$˜H‹œ$¸dH3%(…ÎHÄÈ[]A\A]A^A_ÀH‰ïè ªýÿH…À„7H‹P‰T$`H‹HQÿH…ÒH‰„ü¸é0ÿÿÿfÇD$`é(ÿÿÿH‹´$@L9ö„¿H|$pHëF辱ýÿ‰„$̋„$̅À„@ÿÿÿ‹T$p…Ò„H‹´$`L9ö„+H¼$HäFèw±ýÿ‰„$̋„$̅À„ùþÿÿ‹„$…À„H‹´$pL9ö„ŒH¼$ HÚFè-±ýÿ‰„$̋„$̅À„¯þÿÿH¬$ÐH‹´$àHèFH‰ïèøvþÿ‰„$̋„$̅À„zþÿÿH‹´$PL9ö„NH¼$€HòF轰ýÿ‰„$̋„$̅À„?þÿÿL‹„$ H´$¹º¿èó¥ýÿH…ÀI‰Ä„‘H‹@H‰D$PHc„$ …ÀxH;„$ŒæH‹==:#H5Î@èa¥ýÿL;¤$ „ËýÿÿIƒ,$…ÀýÿÿI‹D$L‰çÿP0é°ýÿÿ„ÇD$péLþÿÿH‹PH‰ÇÿR0éõýÿÿ1Àé‘ýÿÿf„H‹}H‹5U¬!H9÷„|觨ýÿ…ÀusH‹EH÷€¨„	è٦ýÿH…ÀHDŽ9#H5DH‰Ç诤ýÿ1ÀéÆüÿÿ„Hœ$°E1ÉL¾¥H
šŽé×üÿÿfDŽ$éàýÿÿH5™oH‰ï衣ýÿH‰ÅH…ít‹褥ýÿH|$`HDH‰îè ¯ýÿ…ÀH‹Et%HƒèH…ÀH‰E…ýÿÿH‹EH‰ïÿP0¸é1üÿÿHƒèH…ÀH‰E…4ÿÿÿH‹EH‰ïÿP0é%ÿÿÿHœ$°E1ÉLù=H
ÿé*üÿÿDŽ$ éýÿÿH‰ïè-¢ýÿ…À„çþÿÿH‰ï1ö苤ýÿH‰ÅéEÿÿÿDŽ$€é½ýÿÿèn£ýÿL‹„$H´$𹺿躣ýÿH…ÀI‰Å„3Hc¼$€L‹x…ÿx
L‹„$ðL9Ç|aH‹=
8#H5#)è.£ýÿL;¬$„¿ýÿÿIƒm…´ýÿÿI‹EL‰ïÿP0é¥ýÿÿè¥ýÿH…À…pûÿÿH‹=Á7#H5:Dèå¢ýÿéXûÿÿH‹´$€L9ö„4H¼$°H°D蛭ýÿ‰„$̋„$̅À„wÿÿÿHc”$ H‹„$‹Œ$D‹Œ$°HƒèH)Ћ”$ÁùIcñ1Ê)ÊHcÊH™H÷ùHƒÀH9Ə­Hc”$€H‹„$ð‹L$pHƒèH)ЋT$pÁù1Ê)ÊHcÊH™H÷ùHƒÀH9ƏaE…Ɉƒ¼$ÀL‹„$ºH‰´$ H‰´$¨H´$ ¿Ƀá €Ʌè&¢ýÿH…À„¬H‹Pƒ|$`H5òlH‰D$XHcŒ$€H=älHc„$ LD$pH‰T$H”$HDþH´$°H‰$H‹T$PIÏH‰t$LÂH‰êÿÓès£ýÿH…ÀL‹T$XtDŽ$̋„$̅À„þÿÿH=ŒwL‰Ö1Àè£ýÿH‰„$˜éóýÿÿè,£ýÿH…À…åýÿÿH‹=Ü5#H55Cè¡ýÿéÍýÿÿHœ$°Lœ=H
‹H‰ߺ¾1À豥ýÿH‹=š5#H‰Þè ýÿéýÿÿHœ$°L=ëÀHœ$°LÍ<ë¯H‹„$‹Œ$‹t$pHPÿHc„$ ÁþH)‹„$Áø1Á)ÁH‰ÐHcÉH™H÷ù‹T$p1ò)òHHI@ÿHcòH)øH™H÷þHƒÀH9ÁHNI„$°éwýÿÿè6¢ýÿH…À…¼úÿÿH‹=æ4#H5¯Aè
 ýÿé¤úÿÿDAWH‰÷H‰ÖH7ŠAVAUATUH‰ÍH
`‘"SHì˜H‹q§!dH‹%(H‰„$ˆ1ÀH„$ÀHDŽ$XÇD$`DŽ$ÜÇD$pLŒ$H‰D$0H„$ H‰œ$àHDŽ$ðÿÿÿÿDŽ$€L„$àH‰D$(H„$€H‰œ$DŽ$H‰œ$H‰D$ H„$PHDŽ$ ÿÿÿÿDŽ$ H‰œ$0H‰D$H„$@DŽ$°H‰œ$@HDŽ$pÿÿÿÿHDŽ$xÿÿÿÿDŽ$ÀH‰œ$PDŽ$ÐH‰D$H„$H‰D$H„$0H‰$1ÀèDýÿ…À„TL‹¤$I9Ü„I‹D$ö€ª€„¹I‹D$‰„$¸‰„$܋„$܅ÀtVD‹Œ$Aƒùÿ…ÔH‹´$@H9Þ„óH¼$°Hì@èߨýÿ‰„$܋„$܅À…™f„H‹„$XH‹„$XH‹Œ$ˆdH3%(…ÛHĘ[]A\A]A^A_ÀL‰çèx ýÿH…À„H‹P‰”$H‹HQÿH…ÒH‰t}¸é#ÿÿÿDŽ$éÿÿÿ„D‹Œ$°AƒùÿtbAƒùt\Hœ$€LU@H
–‡H‰ߺ¾1Àèò¡ýÿH‹=Û1#H‰ÞèýÿéÿÿÿfDH‹PH‰ÇÿR0étÿÿÿf„L¬$`H‹´$àH!@L‰ïè¤ýÿ‰„$܋„$܅À„Ëþÿÿƒ¼$ L‹„$0H´$ º¿Ƀá ƒÁè̜ýÿH…ÀI‰Ä„ÿƒ¼$€H‹@H´$ðL‹„$º¿H‰D$@Ƀá ƒÁ舜ýÿH…ÀI‰Ç„䃼$ÀH‹@H´$pH‹”$ðL‹„$P¿H‰D$HH‹„$ ɉT$`Hc҃á H‰”$pº‰D$pEH˜H‰„$xèœýÿH…ÀI‰Æ„˜H9œ$PH‹@H‰D$8„‹„$܅À…dL;¼$t
Iƒ/„áL;¤$0„ýÿÿIƒ,$……ýÿÿI‹D$L‰çÿP0éuýÿÿDAƒù„"ýÿÿHœ$€Lï=H
Ž…éþÿÿ1ÀéQýÿÿDŽ$°éýÿÿI‹|$H‹5d¢!H9÷tO躞ýÿ…ÀuFI‹D$H÷€¨„MèëœýÿH…ÀHD /#H5A=H‰ÇèZýÿ1Àérüÿÿf.„H5ÙeL‰çèá™ýÿI‰ÄM…ät¹èä›ýÿH¼$Hý<L‰æè]¥ýÿ…ÀI‹$t&HƒèH…ÀI‰$…ïüÿÿI‹D$L‰çÿP0¸éüÿÿHƒèH…ÀI‰$…^ÿÿÿI‹D$L‰çÿP0éNÿÿÿ‹D$`Ht$pH|$`L‹L$@L„$H‹L$HL‰ꉄ$ÐH„$ÐH‰D$H‹D$8H‰D$H„$°H‰$ÿÕèê›ýÿH…ÀtDŽ$܋„$܅À„)þÿÿH=pL‰ö1À蚛ýÿH‰„$XéþÿÿI‹GL‰ÿÿP0éþÿÿI‹F A‹vH…À„ƒ…öˆ{Hcމ5.#H‰
.#HÁãÇ.#‰t$XH‰ß軛ýÿH…ÀH‰ñ-#H‰D$P„<H‰ß螛ýÿH…ÀH‰ÁH‰Ù-#„!‹t$XL‹D$P~ÿƒþ‰ú~5HcƒêÇDüuð‰úIx1öHÁâH‰L$XL‰D$Pè}™ýÿL‹D$PH‹L$XÇDüÿÿÿÿAÇÿÿÿÿ1ÛëHcÃÃHÁàHD$8HÇHÇ@譞ýÿH…ÀuØéòüÿÿL‰çèû–ýÿ…À„£ýÿÿL‰ç1öèY™ýÿI‰ÄéÓýÿÿè|šýÿH…À…ƒúÿÿH‹=,-#H5ý;èP˜ýÿékúÿÿèSšýÿH…À…¼üÿÿH‹=-#H5$<è'˜ýÿé¤üÿÿfè+šýÿH…À…€üÿÿH‹=Û,#H5L<èÿ—ýÿéhüÿÿèšýÿH…ÀftDŽ$Üé=üÿÿ蹗ýÿH‹=¢,#H5[<èƗýÿëÖ@AWH‰÷H‰ÖH3‚AVAUATI‰ÌH
K"USHìÈH‹1Ÿ!dH‹%(H‰„$¸1ÀH„$ÀHDŽ$˜ÇD$PDŽ$ÌH‰œ$ÐLŒ$ðHDŽ$àÿÿÿÿH‰œ$ðL„$ÐHDŽ$ÿÿÿÿH‰œ$ÇD$`H‰œ$ ÇD$pH‰œ$0DŽ$€H‰œ$@DŽ$H‰œ$PDŽ$ H‰œ$`DŽ$°H‰œ$pHDŽ$ ÿÿÿÿHDŽ$¨ÿÿÿÿDŽ$ÀH‰œ$€H‰D$@H„$€H‰D$8H„$pH‰D$0H„$`H‰D$(H„$PH‰D$ H„$@H‰D$H„$0H‰D$H„$ H‰D$H„$H‰$1Àè͔ýÿ…À„%H‹¬$ H9Ý„ôH‹Eö€ª€„£H‹E‰D$`¸‰„$̋„$̅ÀtHD‹L$`Aƒù†ÅHœ$°LNH
;€¾H‰ߺ1ÀèkšýÿH‹=T*#H‰Þè|•ýÿH‹„$˜H‹„$˜H‹Œ$¸dH3%(…òHÄÈ[]A\A]A^A_ÃH‰ïè˜ýÿH…À„_H‹P‰T$`H‹HQÿH…ÒH‰„$¸é4ÿÿÿf.„ÇD$`é$ÿÿÿH‹´$0H9Þ„ßH|$pHÛ9讟ýÿ‰„$̋„$̅À„<ÿÿÿ‹T$p…Ò„<H‹´$PH9Þ„KH¼$HÔ9ègŸýÿ‰„$̋„$̅À„õþÿÿ‹„$…À„ŸH‹´$`H9Þ„¬H¼$ HÊ9èŸýÿ‰„$̋„$̅À„«þÿÿH‹´$ÐH¼$HØ9HDŽ$èßdþÿ…Àtò„$¸fZÀóD$P‰„$̋„$̅À„QþÿÿH‹´$@H9Þ„IH¼$€Hµ9舞ýÿ‰„$̋„$̅À„þÿÿL‹„$H´$¹º¿输ýÿH…ÀH‰Å„ŒL‹pHc„$ …ÀxH;„$ŒæH‹=
(#H5ž.è1“ýÿH;¬$„§ýÿÿHƒm…œýÿÿH‹EH‰ïÿP0éýÿÿf„ÇD$pé,þÿÿH‹PH‰ÇÿR0éÍýÿÿ1Àémýÿÿf„H‹}H‹5%š!H9÷„|èw–ýÿ…ÀusH‹EH÷€¨„	詔ýÿH…ÀHD^'#H5O7H‰Çè’ýÿ1Àé¢üÿÿ„Hœ$°E1ÉLŽ“H
}é³üÿÿfDŽ$éÀýÿÿH5i]H‰ïèq‘ýÿH‰ÅH…ít‹èt“ýÿH|$`Hà6H‰îèðœýÿ…ÀH‹Et%HƒèH…ÀH‰E…ãüÿÿH‹EH‰ïÿP0¸é
üÿÿHƒèH…ÀH‰E…4ÿÿÿH‹EH‰ïÿP0é%ÿÿÿHœ$°E1ÉLÉ+H
k|éüÿÿDŽ$ é_ýÿÿH‰ïèýýÿ…À„çþÿÿH‰ï1öè[’ýÿH‰ÅéEÿÿÿDŽ$€éÂýÿÿè>‘ýÿL‹„$ðH´$๺¿芑ýÿH…ÀI‰Å„(Hc¼$€L‹x…ÿx
L‹„$àL9Ç|aH‹=Ú%#H5óèþýÿL;¬$ð„¿ýÿÿIƒm…´ýÿÿI‹EL‰ïÿP0é¥ýÿÿèá’ýÿH…À…LûÿÿH‹=‘%#H57赐ýÿé4ûÿÿH‹´$pH9Þ„)H¼$°Hx7èk›ýÿ‰„$̋„$̅À„wÿÿÿHc”$ H‹„$‹Œ$D‹Œ$°HƒèH)Ћ”$ÁùIcñ1Ê)ÊHcÊH™H÷ùHƒÀH9Ə¢Hc”$€H‹„$à‹L$pHƒèH)ЋT$pÁù1Ê)ÊHcÊH™H÷ùHƒÀH9Ə)E…ÉHœ$°LŒ,ˆ ƒ¼$ÀL‹„$€ºH‰´$ H‰´$¨H´$ ¿Ƀá €ɅèçýÿH…ÀH‰Ã„ Hc”$€L‹@H´$°ƒ|$`Hc„$ H=žZH‰t$L‰D$L„$I—H{ZL‰$M†LD$pHDúHT$PAÿÔè8‘ýÿH…ÀtDŽ$̋„$̅À„þÿÿH=VeH‰Þ1ÀèèýÿH‰„$˜éíýÿÿèöýÿH…À…ßýÿÿH‹=¦##H5÷5èʎýÿéÇýÿÿHœ$°L&+H
‚yH‰ߺ¾1Àè{“ýÿH‹=d##H‰Þ茎ýÿé‰ýÿÿHœ$°L¨*ëÀH‹„$‹Œ$‹t$pHPÿHc„$ ÁþH)‹„$Áø1Á)ÁH‰ÐHcÉH™H÷ù‹T$p1ò)òHHI@ÿHcòH)øH™H÷þHƒÀH9ÁHNI„$°é‚ýÿÿèýÿH…À…ÇúÿÿH‹=Á"#H5‚4èåýÿé¯úÿÿAWH‰÷H‰ÖH³xAVAUATUSH‰ËH
_}"Hì¨L‹=Q•!dH‹%(H‰„$˜1ÀH„$ÐHDŽ$xÇD$`DŽ$ìÇD$pLŒ$H‰D$0H„$°DŽ$€L‰¼$ðHDŽ$ÿÿÿÿL„$ðH‰D$(H„$DŽ$L‰¼$DŽ$ H‰D$ H„$`L‰¼$ HDŽ$0ÿÿÿÿDŽ$°L‰¼$@DŽ$ÀL‰¼$PHDŽ$€ÿÿÿÿHDŽ$ˆÿÿÿÿDŽ$ÐL‰¼$`DŽ$àH‰D$H„$PH‰D$H„$ H‰D$H„$@H‰$1Àè‹ýÿ…À„iH‹¬$ L9ý„øH‹Eö€ª€„¯H‹E‰„$ ¸‰„$싄$ì…ÀtMD‹Œ$ Aƒùÿ…ëH‹´$PL9þ„
H¼$ÀH‹3趖ýÿ‰„$싄$ì…À…H‹„$xH‹„$xH‹œ$˜dH3%(…ûHĨ[]A\A]A^A_ÀH‰ïèXŽýÿH…À„ŸH‹P‰”$ H‹HQÿH…ÒH‰t}¸é,ÿÿÿDŽ$ é ÿÿÿ„D‹Œ$ÀAƒùÿtbAƒùt\Hœ$L5.H
vH‰ߺ¾1ÀèҏýÿH‹=»#H‰ÞèãŠýÿéÿÿÿfDH‹PH‰ÇÿR0étÿÿÿf„H‹´$ðH¼$pH™2HDŽ$pèx[þÿ…Àtò„$p¸fZÀó„$€‰„$싄$ì…À„£þÿÿƒ¼$°L‹„$@H´$0º¿Ƀá ƒÁ脊ýÿH…ÀH‰Å„胼$H‹@H´$L‹„$º¿H‰D$@Ƀá ƒÁè@ŠýÿH…ÀI‰Æ„Ôƒ¼$ÐH‹@H´$€H‹”$L‹„$`¿H‰D$HH‹„$0ɉT$`Hc҃á H‰”$€º‰D$pEH˜H‰„$ˆè̉ýÿH…ÀI‰Å„L9¼$`L‹`„‹„$ì…À…WL;´$t
Iƒ.„ÔH;¬$@„mýÿÿHƒm…býÿÿH‹EH‰ïÿP0éSýÿÿAƒù„ýÿÿHœ$L¯+H
éséåýÿÿ1Àé1ýÿÿDŽ$ÀéýÿÿH‹}H‹5%!H9÷tHè{Œýÿ…Àu?H‹EH÷€¨„@譊ýÿH…ÀHDb#H5û/H‰Ç胈ýÿ1Àé]üÿÿ@H5¡SH‰ï詇ýÿH‰ÅH…ít¿謉ýÿH¼$ H½/H‰îè%“ýÿ…ÀH‹Et%HƒèH…ÀH‰E…×üÿÿH‹EH‰ïÿP0¸éùûÿÿHƒèH…ÀH‰E…eÿÿÿH‹EH‰ïÿP0éVÿÿÿ‹D$`H”$€Ht$pH|$`L‹L$@L„$ H‹L$HL‰d$‰„$àH„$àH‰D$H„$ÀH‰$ÿÓ贉ýÿH…ÀtDŽ$싄$ì…À„6þÿÿH=Ò]L‰î1Àèd‰ýÿH‰„$xéþÿÿI‹FL‰÷ÿP0éþÿÿ‹pH‹@ H…À„Ž…öˆ†Lcþ‰5×#H‰Ø#IÁçÇâ#‰t$XL‰ÿ膉ýÿH…ÀH‰¼#H‰D$P„GL‰ÿèi‰ýÿH…ÀH‰ÁH‰¤#„,‹t$XL‹D$P~ÿƒþ‰ú~5HcƒêÇDüuð‰úIx1öHÁâH‰L$XL‰D$PèH‡ýÿL‹D$PH‹L$XBÇD9üÿÿÿÿAÇÿÿÿÿE1ÿëf„IcÇAƒÇAÇ„è|ŒýÿH…ÀuçéýÿÿH‰ïèʄýÿ…À„°ýÿÿH‰ï1öè(‡ýÿH‰ÅéÚýÿÿèKˆýÿH…À…rúÿÿH‹=û#H5T.è†ýÿéZúÿÿf.„èˆýÿH…À…ÇüÿÿH‹=Ë#H5l.èï…ýÿé¯üÿÿf.„èë‡ýÿH…À…ƒüÿÿH‹=›#H5„.迅ýÿéküÿÿèŇýÿH…ÀftDŽ$ìé@üÿÿèy…ýÿH‹=b#H5*膅ýÿëÖ@AWH‰÷H‰ÖHŒpAVAUATUH‰ÍH
`u"SHì˜H‹ñŒ!dH‹%(H‰„$ˆ1ÀH„$ÀHDŽ$hÇD$`DŽ$ÜÇD$pLŒ$H‰D$0H„$ HDŽ$àH‰œ$ðHDŽ$ÿÿÿÿL„$ðH‰D$(H„$€DŽ$€H‰œ$DŽ$H‰D$ H„$`H‰œ$ HDŽ$0ÿÿÿÿDŽ$ H‰œ$@DŽ$°H‰œ$PHDŽ$pÿÿÿÿHDŽ$xÿÿÿÿDŽ$ÀH‰œ$`DŽ$ÐH‰D$H„$PH‰D$H„$ H‰D$H„$@H‰$1À踂ýÿ…À„HL‹¤$ I9Ü„ÿI‹D$ö€ª€„µI‹D$‰„$¸‰„$܋„$܅ÀtRD‹Œ$Aƒùÿ…ÈH‹´$PH9Þ„çH¼$°HÀ,èSŽýÿ‰„$܋„$܅À…DH‹„$hH‹„$hH‹Œ$ˆdH3%(…ÓHĘ[]A\A]A^A_ÀL‰çèð…ýÿH…À„wH‹P‰”$H‹HQÿH…ÒH‰tu¸é'ÿÿÿDŽ$éÿÿÿD‹Œ$°AƒùÿtbAƒùt\Hœ$€LÕ%H
émH‰ߺ¾1Àèr‡ýÿH‹=[#H‰Þ胂ýÿé&ÿÿÿfDH‹PH‰ÇÿR0é|ÿÿÿf„L¬$àH‹´$ðHÑ+L‰ïè!Sþÿ‰„$܋„$܅À„Óþÿÿƒ¼$ L‹„$@H´$0º¿Ƀá ƒÁèL‚ýÿH…ÀI‰Ä„ôƒ¼$€H‹@H´$L‹„$º¿H‰D$@Ƀá ƒÁè‚ýÿH…ÀI‰Ç„܃¼$ÀH‹@H´$pH‹”$L‹„$`¿H‰D$HH‹„$0ɉT$`Hc҃á H‰”$pº‰D$pEH˜H‰„$x蔁ýÿH…ÀI‰Æ„˜H9œ$`H‹@H‰D$8„‹„$܅À…dL;¼$t
Iƒ/„áL;¤$@„˜ýÿÿIƒ,$…ýÿÿI‹D$L‰çÿP0é}ýÿÿDAƒù„.ýÿÿHœ$€Lo#H
âkéþÿÿ1ÀéYýÿÿDŽ$°é$ýÿÿI‹|$H‹5ä‡!H9÷tOè:„ýÿ…ÀuFI‹D$H÷€¨„Bèk‚ýÿH…ÀHD #H5Q)H‰ÇèA€ýÿ1Àé~üÿÿf.„H5YKL‰çèaýÿI‰ÄM…ät¹èdýÿH¼$H
)L‰æè݊ýÿ…ÀI‹$t&HƒèH…ÀI‰$…÷üÿÿI‹D$L‰çÿP0¸éüÿÿHƒèH…ÀI‰$…^ÿÿÿI‹D$L‰çÿP0éNÿÿÿ‹D$`Ht$pH|$`L‹L$@L„$H‹L$HL‰ꉄ$ÐH„$ÐH‰D$H‹D$8H‰D$H„$°H‰$ÿÕèjýÿH…ÀtDŽ$܋„$܅À„)þÿÿH=ˆUL‰ö1ÀèýÿH‰„$héþÿÿI‹GL‰ÿÿP0éþÿÿI‹F A‹vH…À„ƒ…öˆ{Hcމ5Œ#H‰#HÁãÇ—#‰t$XH‰ßè;ýÿH…ÀH‰q#H‰D$P„<H‰ßèýÿH…ÀH‰ÁH‰Y#„!‹t$XL‹D$P~ÿƒþ‰ú~5HcƒêÇDüuð‰úIx1öHÁâH‰L$XL‰D$Pèý~ýÿL‹D$PH‹L$XÇDüÿÿÿÿAÇÿÿÿÿ1ÛëH‹T$8HcÃÃHÇÂè8„ýÿH…ÀuãéýüÿÿL‰çè†|ýÿ…À„®ýÿÿL‰ç1öèä~ýÿI‰ÄéÞýÿÿè€ýÿH…À…–úÿÿH‹=·#H5¨'èÛ}ýÿé~úÿÿfDèÛýÿH…À…ÄüÿÿH‹=‹#H5Ä'è¯}ýÿé¬üÿÿf.„è«ýÿH…À…€üÿÿH‹=[#H5Ü'è}ýÿéhüÿÿè…ýÿH…ÀftDŽ$Üé=üÿÿè9}ýÿH‹="#H5Û!èF}ýÿëÖ@AWH‰÷H‰ÖH…hAVAUATUSH‰ËH
m"Hì¨L‹=±„!dH‹%(H‰„$˜1ÀH„$ÀHDŽ$hÇD$`DŽ$ÜÇD$pLŒ$H‰D$0H„$ L‰¼$ðHDŽ$ÿÿÿÿDŽ$€L„$ðH‰D$(H„$€L‰¼$DŽ$L‰¼$ H‰D$ H„$`HDŽ$0ÿÿÿÿDŽ$ L‰¼$@H‰D$H„$PDŽ$°L‰¼$PHDŽ$pÿÿÿÿHDŽ$xÿÿÿÿDŽ$ÀL‰¼$`DŽ$ÐH‰D$H„$ H‰D$H„$@H‰$1Àè„zýÿ…À„„H‹¬$ L9ý„ûH‹Eö€ª€„²H‹E‰„$¸‰„$܋„$܅ÀtPD‹Œ$Aƒùÿ…H‹´$PL9þ„%H¼$°H&&è!†ýÿ‰„$܋„$܅À…‹H‹„$hH‹„$hH‹œ$˜dH3%(…HĨ[]A\A]A^A_ÀH‰ïèÀ}ýÿH…À„·H‹P‰”$H‹HQÿH…ÒH‰tu¸é)ÿÿÿDŽ$éÿÿÿD‹Œ$°AƒùÿtbAƒùt\Hœ$L¥H
ôeH‰ߺ¾1ÀèBýÿH‹=+#H‰ÞèSzýÿé&ÿÿÿfDH‹PH‰ÇÿR0é|ÿÿÿf„H‹´$ðH¼$€H9%HDŽ$€HDŽ$ˆè<ýÿ…Àt1ò„$€òŒ$ˆ¸fZÀfZÉó„$àóŒ$䉄$܋„$܅À„‰þÿÿƒ¼$ L‹„$@H´$0º¿Ƀá ƒÁèÒyýÿH…ÀH‰Å„$€H‹@H´$L‹„$º¿H‰D$@Ƀá ƒÁèŽyýÿH…ÀI‰Æ„Òƒ¼$ÀH‹@H´$pH‹”$L‹„$`¿H‰D$HH‹„$0ɉT$`Hc҃á H‰”$pº‰D$pEH˜H‰„$xèyýÿH…ÀI‰Å„ŽL9¼$`L‹`„‹„$܅À…UL;´$t
Iƒ.„ÒH;¬$@„SýÿÿHƒm…HýÿÿH‹EH‰ïÿP0é9ýÿÿAƒù„ðüÿÿHœ$LÿH
¬céÅýÿÿ1ÀéýÿÿDŽ$°éæüÿÿH‹}H‹5u!H9÷tHèË{ýÿ…Àu?H‹EH÷€¨„IèýyýÿH…ÀHD²#H5{"H‰ÇèÓwýÿ1ÀéBüÿÿ@H5ñBH‰ïèùvýÿH‰ÅH…ít¿èüxýÿH¼$H="H‰îèu‚ýÿ…ÀH‹Et%HƒèH…ÀH‰E…¿üÿÿH‹EH‰ïÿP0¸éÞûÿÿHƒèH…ÀH‰E…eÿÿÿH‹EH‰ïÿP0éVÿÿÿ‹D$`H”$àHt$pH|$`L‹L$@L„$H‹L$HL‰d$‰„$ÐH„$ÐH‰D$H„$°H‰$ÿÓèyýÿH…ÀtDŽ$܋„$܅À„8þÿÿH="ML‰î1Àè´xýÿH‰„$héþÿÿI‹FL‰÷ÿP0éþÿÿ‹pH‹@ H…À„Ž…öˆ†Lcþ‰5'#H‰(#IÁçÇ2#‰t$XL‰ÿèÖxýÿH…ÀH‰#H‰D$P„GL‰ÿè¹xýÿH…ÀH‰ÁH‰ô
#„,‹t$XL‹D$P~ÿƒþ‰ú~5HcƒêÇDüuð‰úIx1öHÁâH‰L$XL‰D$Pè˜výÿL‹D$PH‹L$XBÇD9üÿÿÿÿAÇÿÿÿÿE1ÿë!f„IcÇAƒÇIÄÇÇ@èÃ{ýÿH…ÀuÞéýüÿÿH‰ïètýÿ…À„§ýÿÿH‰ï1öèovýÿH‰ÅéÑýÿÿè’wýÿH…À…QúÿÿH‹=B
#H5Ó èfuýÿé9úÿÿèkwýÿH…À…ÉüÿÿH‹=
#H5ü è?uýÿé±üÿÿf.„è;wýÿH…À……üÿÿH‹=ë	#H5!èuýÿémüÿÿèwýÿH…ÀftDŽ$ÜéBüÿÿèÉtýÿH‹=²	#H5kèÖtýÿëÖ@AWH‰÷H‰ÖHQ`AVAUATUH‰ÍH
pe"SHì˜H‹A|!dH‹%(H‰„$ˆ1ÀH„$ÀHDŽ$XÇD$`DŽ$ÜÇD$pLŒ$H‰D$0H„$ H‰œ$àHDŽ$ðÿÿÿÿDŽ$€L„$àH‰D$(H„$€H‰œ$DŽ$H‰œ$H‰D$ H„$PHDŽ$ ÿÿÿÿDŽ$ H‰œ$0H‰D$H„$@DŽ$°H‰œ$@HDŽ$pÿÿÿÿHDŽ$xÿÿÿÿDŽ$ÀH‰œ$PDŽ$ÐH‰D$H„$H‰D$H„$0H‰$1Àèrýÿ…À„TL‹¤$I9Ü„I‹D$ö€ª€„¹I‹D$‰„$¸‰„$܋„$܅ÀtVD‹Œ$Aƒùÿ…ÔH‹´$@H9Þ„óH¼$°Hdè¯}ýÿ‰„$܋„$܅À…™f„H‹„$XH‹„$XH‹Œ$ˆdH3%(…ÛHĘ[]A\A]A^A_ÀL‰çèHuýÿH…À„H‹P‰”$H‹HQÿH…ÒH‰t}¸é#ÿÿÿDŽ$éÿÿÿ„D‹Œ$°AƒùÿtbAƒùt\Hœ$€L%H
°]H‰ߺ¾1ÀèÂvýÿH‹=«#H‰ÞèÓqýÿéÿÿÿfDH‹PH‰ÇÿR0étÿÿÿf„L¬$`H‹´$àHiL‰ïèÑxýÿ‰„$܋„$܅À„Ëþÿÿƒ¼$ L‹„$0H´$ º¿Ƀá ƒÁèœqýÿH…ÀI‰Ä„ÿƒ¼$€H‹@H´$ðL‹„$º¿H‰D$@Ƀá ƒÁèXqýÿH…ÀI‰Ç„䃼$ÀH‹@H´$pH‹”$ðL‹„$P¿H‰D$HH‹„$ ɉT$`Hc҃á H‰”$pº‰D$pEH˜H‰„$xèäpýÿH…ÀI‰Æ„˜H9œ$PH‹@H‰D$8„‹„$܅À…dL;¼$t
Iƒ/„áL;¤$0„ýÿÿIƒ,$……ýÿÿI‹D$L‰çÿP0éuýÿÿDAƒù„"ýÿÿHœ$€L¿H
¨[éþÿÿ1ÀéQýÿÿDŽ$°éýÿÿI‹|$H‹54w!H9÷tOèŠsýÿ…ÀuFI‹D$H÷€¨„Mè»qýÿH…ÀHDp#H5éH‰Çè‘oýÿ1Àérüÿÿf.„H5©:L‰çè±nýÿI‰ÄM…ät¹è´pýÿH¼$H¥L‰æè-zýÿ…ÀI‹$t&HƒèH…ÀI‰$…ïüÿÿI‹D$L‰çÿP0¸éüÿÿHƒèH…ÀI‰$…^ÿÿÿI‹D$L‰çÿP0éNÿÿÿ‹D$`Ht$pH|$`L‹L$@L„$H‹L$HL‰ꉄ$ÐH„$ÐH‰D$H‹D$8H‰D$H„$°H‰$ÿÕèºpýÿH…ÀtDŽ$܋„$܅À„)þÿÿH=ØDL‰ö1ÀèjpýÿH‰„$XéþÿÿI‹GL‰ÿÿP0éþÿÿI‹F A‹vH…À„ƒ…öˆ{Hcމ5Ü#H‰Ý#HÁãÇç#‰t$XH‰ßè‹pýÿH…ÀH‰Á#H‰D$P„<H‰ßènpýÿH…ÀH‰ÁH‰©#„!‹t$XL‹D$P~ÿƒþ‰ú~5HcƒêÇDüuð‰úIx1öHÁâH‰L$XL‰D$PèMnýÿL‹D$PH‹L$XÇDüÿÿÿÿAÇÿÿÿÿ1ÛëHcÃÃHÁàHD$8HÇHÇ@è}sýÿH…ÀuØéòüÿÿL‰çèËkýÿ…À„£ýÿÿL‰ç1öè)nýÿI‰ÄéÓýÿÿèLoýÿH…À…ƒúÿÿH‹=ü#H5Eè mýÿékúÿÿè#oýÿH…À…¼üÿÿH‹=Ó#H5lè÷lýÿé¤üÿÿfèûnýÿH…À…€üÿÿH‹=«#H5”èÏlýÿéhüÿÿèÕnýÿH…ÀftDŽ$Üé=üÿÿè‰lýÿH‹=r#H5+è–lýÿëÖ@AWH‰÷H‰ÖHMXAVAUATUSH‰ËH
]"Hì¨L‹=t!dH‹%(H‰„$˜1ÀH„$ÀHDŽ$hÇD$`DŽ$ÜÇD$pLŒ$H‰D$0H„$ L‰¼$ðHDŽ$ÿÿÿÿDŽ$€L„$ðH‰D$(H„$€L‰¼$DŽ$L‰¼$ H‰D$ H„$`HDŽ$0ÿÿÿÿDŽ$ L‰¼$@H‰D$H„$PDŽ$°L‰¼$PHDŽ$pÿÿÿÿHDŽ$xÿÿÿÿDŽ$ÀL‰¼$`DŽ$ÐH‰D$H„$ H‰D$H„$@H‰$1ÀèÔiýÿ…À„„H‹¬$ L9ý„ûH‹Eö€ª€„²H‹E‰„$¸‰„$܋„$܅ÀtPD‹Œ$Aƒùÿ…H‹´$PL9þ„%H¼$°HÞèquýÿ‰„$܋„$܅À…‹H‹„$hH‹„$hH‹œ$˜dH3%(…HĨ[]A\A]A^A_ÀH‰ïèmýÿH…À„·H‹P‰”$H‹HQÿH…ÒH‰tu¸é)ÿÿÿDŽ$éÿÿÿD‹Œ$°AƒùÿtbAƒùt\Hœ$LõH
¼UH‰ߺ¾1Àè’nýÿH‹={þ"H‰Þè£iýÿé&ÿÿÿfDH‹PH‰ÇÿR0é|ÿÿÿf„H‹´$ðH¼$€HñHDŽ$€HDŽ$ˆèŒpýÿ…Àt1ò„$€òŒ$ˆ¸fZÀfZÉó„$àóŒ$䉄$܋„$܅À„‰þÿÿƒ¼$ L‹„$@H´$0º¿Ƀá ƒÁè"iýÿH…ÀH‰Å„$€H‹@H´$L‹„$º¿H‰D$@Ƀá ƒÁèÞhýÿH…ÀI‰Æ„Òƒ¼$ÀH‹@H´$pH‹”$L‹„$`¿H‰D$HH‹„$0ɉT$`Hc҃á H‰”$pº‰D$pEH˜H‰„$xèjhýÿH…ÀI‰Å„ŽL9¼$`L‹`„‹„$܅À…UL;´$t
Iƒ.„ÒH;¬$@„SýÿÿHƒm…HýÿÿH‹EH‰ïÿP0é9ýÿÿAƒù„ðüÿÿHœ$LO
H
tSéÅýÿÿ1ÀéýÿÿDŽ$°éæüÿÿH‹}H‹5Ån!H9÷tHèkýÿ…Àu?H‹EH÷€¨„IèMiýÿH…ÀHDü"H53H‰Çè#gýÿ1ÀéBüÿÿ@H5A2H‰ïèIfýÿH‰ÅH…ít¿èLhýÿH¼$HõH‰îèÅqýÿ…ÀH‹Et%HƒèH…ÀH‰E…¿üÿÿH‹EH‰ïÿP0¸éÞûÿÿHƒèH…ÀH‰E…eÿÿÿH‹EH‰ïÿP0éVÿÿÿ‹D$`H”$àHt$pH|$`L‹L$@L„$H‹L$HL‰d$‰„$ÐH„$ÐH‰D$H„$°H‰$ÿÓèThýÿH…ÀtDŽ$܋„$܅À„8þÿÿH=r<L‰î1ÀèhýÿH‰„$héþÿÿI‹FL‰÷ÿP0éþÿÿ‹pH‹@ H…À„Ž…öˆ†Lcþ‰5wú"H‰xú"IÁçÇ‚ú"‰t$XL‰ÿè&hýÿH…ÀH‰\ú"H‰D$P„GL‰ÿè	hýÿH…ÀH‰ÁH‰Dú"„,‹t$XL‹D$P~ÿƒþ‰ú~5HcƒêÇDüuð‰úIx1öHÁâH‰L$XL‰D$PèèeýÿL‹D$PH‹L$XBÇD9üÿÿÿÿAÇÿÿÿÿE1ÿë!f„IcÇAƒÇIÄÇÇ@èkýÿH…ÀuÞéýüÿÿH‰ïèacýÿ…À„§ýÿÿH‰ï1öè¿eýÿH‰ÅéÑýÿÿèâfýÿH…À…QúÿÿH‹=’ù"H5‹è¶dýÿé9úÿÿè»fýÿH…À…ÉüÿÿH‹=kù"H5´èdýÿé±üÿÿf.„è‹fýÿH…À……üÿÿH‹=;ù"H5Ôè_dýÿémüÿÿèefýÿH…ÀftDŽ$ÜéBüÿÿèdýÿH‹=ù"H5»è&dýÿëÖ@ATH5—ø"H=P1É1ÒA¸õUSè/cýÿH‹xk!H‰¹ø"I‰ÄH‹Ÿk!H=ïOH‰Pè÷eýÿH…ÀH‰Å„H5éOH‰ÇèübýÿH‰ÃH‹EHPÿH…ÒH‰UtXH…Û„£H‹(k!H9CteH‹Ëj!H5dH‹8è|cýÿHƒ+t6H‹?k!èÚcýÿH‹;H5[]A\éWcýÿ€H‹EH‰ïÿP0ëœ@H‹CH‰ßÿP0H‹ÿj!ë¾H‰ßèufýÿH‹-¦j!H‰EHƒ+„ŠH‹EH…À„2ÿ=	H‹E…{ÿ˜ƒø	H‹E†Íÿ…À„÷ƒø…™èÓdýÿH…Àt[H‹†j!H5Ï]A\H‹8é¤býÿL‰çèÌfýÿH=õNH‰ÅèýcýÿH5óNH‰ÂH‰ïèû`ýÿH=ÌèßcýÿH5áNH‰ÂH‰ïH‰ÃèÚ`ýÿH=ÔN1Ò1öèŠcýÿHƒ+H‰÷"„¤Hƒ=Ñ`"t6HÈ`"„H‰ßHÃpè±dýÿH‹³þÿÿH‰ÂH‰ïè`ýÿHƒ;uÙH5^IH‰ïè:dýÿH‹=»i!1öH‰ÃèÙ`ýÿH5`NH‰ÂH‰ßè7aýÿH=,Iè+cýÿH5LNH‰ÂH‰ßèaýÿH5¬FH‰ïèêcýÿH‹=Ëh!1öH‰Ãè‰`ýÿH5NH‰ÂH‰ßèç`ýÿH=zFèÛbýÿH5üMH‰ÂH‰ßèÉ`ýÿH5äGH‰ïèšcýÿH‹=Si!1öH‰Ãè9`ýÿH5ÀMH‰ÂH‰ßè—`ýÿH=²Gè‹býÿH5¬MH‰ÂH‰ßèy`ýÿH5HH‰ïèJcýÿH‹=›h!1öH‰Ãèé_ýÿH5pMH‰ÂH‰ßèG`ýÿH=ÏGè;býÿH5\MH‰ÂH‰ßè)`ýÿH5×FH‰ïèúbýÿH‹=‹h!1öH‰Ãè™_ýÿH5 MH‰ÂH‰ßè÷_ýÿH=¥FèëaýÿH5MH‰ÂH‰ßèÙ_ýÿH5FH‰ïèªbýÿH‹=h!1öH‰ÃèI_ýÿH5ÐLH‰ÂH‰ßè§_ýÿH=èEè›aýÿH5¼LH‰ÂH‰ßè‰_ýÿH53H‰ïèZbýÿH‹=h!1öH‰Ãèù^ýÿH5€LH‰ÂH‰ßèW_ýÿH=k3èKaýÿH5lLH‰ÂH‰ßè9_ýÿH53H‰ïè
býÿH‹=g!1öH‰Ãè©^ýÿH50LH‰ÂH‰ßè_ýÿH=Ñ2èû`ýÿH5LH‰ÂH‰ßèé^ýÿH5m2H‰ïèºaýÿH‹=Ëf!1öH‰ÃèY^ýÿH5àKH‰ÂH‰ßè·^ýÿH=;2è«`ýÿH5ÌKH‰ÂH‰ßè™^ýÿH5Ó1H‰ïèjaýÿH‹=Cf!1öH‰Ãè	^ýÿH5KH‰ÂH‰ßèg^ýÿH=¡1è[`ýÿH5|KH‰ÂH‰ßèI^ýÿH5=1H‰ïèaýÿH‹=3f!1öH‰Ãè¹]ýÿH5@KH‰ÂH‰ßè^ýÿH=1è`ýÿH5,KH‰ÂH‰ßèù]ýÿH5£0H‰ïèÊ`ýÿH‹=f!1öH‰Ãèi]ýÿH5ðJH‰ÂH‰ßèÇ]ýÿH=q0è»_ýÿH5ÜJH‰ÂH‰ßè©]ýÿH5
0H‰ïèz`ýÿH‹=ãe!1öH‰Ãè]ýÿH5 JH‰ÂH‰ßèw]ýÿH=Û/èk_ýÿH5ŒJH‰ÂH‰ßèY]ýÿH5s/H‰ïè*`ýÿH‹=Ãe!1öH‰ÃèÉ\ýÿH5PJH‰ÂH‰ßè']ýÿH=A/è_ýÿH‰ßH59JH‰Â[]A\é]ýÿH‹CH‰ßÿP0éMûÿÿH‹CH‰ßÿP0égúÿÿÿH5v
‰z	H‹ d!H‹81ÀèFaýÿH‹e!éÛùÿÿH‹e!H5ôH‹;è4]ýÿéÀùÿÿH5ð
H‹ad!H‹81Àèaýÿéœùÿÿÿ˜º
‰ÁH5N
ë•H‹Õd!H5IH‹8èæ\ýÿH‹¯d!ékùÿÿH5k
ë©H‹
d!H5IH‹8è»\ýÿH‹„d!é@ùÿÿf.„DHƒ>H‹uñ"uHǀXÀH‰¸XÄAWAVA‰öAUI‰ÕATI‰üUSHƒì(‹_…Û…·E…ö¾ŽÊ1ۿA9Þ~]HcÉÙM‹DÅIƒøÔƒÁA9Î~,HcÁIDÅL‹Iƒø·…ÛˆëƒÁHÇA9ÎԅÛxH‰ðH™H÷ÿH¯øI‰DÝH9÷„qHW,I‰ðH‰ùH‹Òc!¾H‹81ÀèË_ýÿHƒÄ(¸[]A\A]A^A_ÃH‹c!H‹ÿØIc\$H‰ÆA9ޏãA9Þ„˜1ÿ…Û~"I‹L$ 1À1ÿfDHƒ<ÁWOúHƒÀ9ÃíIcÆM|ÅøIƒ?x	A9þŒNE…öŽÊL‰è1ÉE1ÒDA9Ú}6I‹l$ IcÒL‹\ÕIƒû~éMcÚN‹\ÝIƒûîAƒÂA9Ú|åHƒ8A¹ˆ-uHÇA‹\$ƒÁHƒÀD9ñu›D9ó~gM‹E‰ð„A9Ú}5I‹D$ IcÒH‹ÐHƒú~é@IcÊH‹ÈHƒúïAƒÂA9Ú|æºI¯ÑAƒÀI‰A‹\$D9Ã~I‰Ñë§E…öŽL‰èHÁà<HÁè?D9ðAGÆAƒþ‰ÂD‰ð‡ƒøI‹M†ªI¯Mƒø†‘I¯Mƒø†xI¯Mƒø†_I¯M ƒø†FI¯M(ƒø†-I¯M0A¹D9ð„ÆE‰ò‰ÂA)ÂE‰ÐAÑèE‰ÃEÛ„£ITÕfo.1ÀDfo
foÐfoàƒÀfoÙHƒÂfôÑD9ÀfsÔ fôÌfsÓ fôÃfÔÁfsð fÔÂrÁfoèEÙfoØfsÝfoÕfoÍfoåfsÓ fôÈfôÓfsÔ fôÄfÔÂfsð fÔÈfÖL$H¯L$E9Út	McÉK¯LÍH9ñ„ŠH‹-ø`!‰\$H*‰<$I‰ð1ÀE‰ñ¾H‹}èÜ\ýÿAFÿE…öI\Å~*fDI‹MH‹}H`,1>IƒÅè©\ýÿI9ÝuÜH‹MH=1,º¾1Ûèx\ýÿA‹D$…À~4€I‹D$ HcÓH‹}¾ƒÃH‹ÐH,1ÀèR\ýÿA9\$ÓH‹MH=ì+º¾è!\ýÿHƒÄ(¸[]A\A]A^A_ÃDL‹D‰ÒAƒÂM‰ÙM…ÀxFM9È„ýÿÿH‹î_!‰$H<)¾H‹81ÀèÝ[ýÿHƒÄ(¸[]A\A]A^A_Ãf„L‰A‹\$éÔüÿÿ…ÛŽä1ɿAºë@Iƒù~BM9ÁugƒÁI¯ù9ٍ%ûÿÿI‹T$ HcÁL‹ÂIDÅL‹M…ÀyÍM…ÉMDÊL‰Ic\$ëÇ@M…À…ÔHÇA¹Ic\$ë¦HcÙéèúÿÿ‰ÁH‹_!H'¾H‹81Àè	[ýÿ¸HƒÄ([]A\A]A^A_ÃE…öޱ19ëIƒù~CM9Áu­HƒÀI¯ÉA9ÆŽŽM‹DÅI‹T$ M…ÀL‹ÂyÑM‰LÅëÕf.„AƒÂéüÿÿM…À…#IÇDÅA¹ë¨HƒÄ(1À[]A\A]A^A_ÃH‹]^!H–&¾H‹81ÀèOZýÿHƒÄ(¸[]A\A]A^A_ùH9ñt´I‰ðH÷&éAúÿÿ1ÀE1Ʌҹ„:üÿÿ‰ÐéÌûÿÿf„H‹ñ]!A‰øH'E‰ñ‰پH‹81ÀèÛYýÿ¸éÍþÿÿ¹é·üÿÿ¿éiùÿÿA¹éÓûÿÿA¹éÈûÿÿA¹é½ûÿÿA¹é²ûÿÿA¹é§ûÿÿA¹éœûÿÿE1Òé úÿÿM‰ÁéÞýÿÿM‰ÁéŽþÿÿSH5ÐAHƒìèoTýÿH‰ÃèwVýÿH…ÛtbH‹Cö€«u5H=ë(èyVýÿH‹HQÿH…ÒH‰uH‹SH‰D$H‰ßÿR0H‹D$HƒÄ[ÃH‰ßèWýÿH=¡(H‰Æ1ÀèXýÿë¼DHƒÄH=’([éVýÿffffff.„SH‹G H‰ûH…ÀtH‹HQÿH…ÒH‰uH‹ H‹GÿP0H‰ß[é`SýÿHƒìH‹Gƒxÿu"L‹€`M…Àt5H‹ˆXHƒÄAÿà„H‹‰[!H5B&H‹81ÀèXýÿ1ÀHƒÄÃH‹Z[!H5(H‹81ÀèùWýÿë߀H…ÒtévRýÿfDHƒìH‹ý[!Hà'H‰ñ¾H‹81ÀèìWýÿè×UýÿH…Àtfè+TýÿèUýÿ¸ÿÿÿÿHƒÄÃfff.„UH‰ýSHƒìH‹=H[!èëVýÿH…ÀH‰Ãt#èžVýÿH…ÀH‰C tÇCH‰kH‰ØHƒÄ[]Ã1Àëõfff.„AUATUH‰ýSHƒì(H…ötÿÖH‹=íZ!èVýÿH…ÀH‰Ã„Lè?VýÿH…ÀH‰C „:ÇCHƒ}„(¸‰IC@HcÑHiÒpHƒ|uæƒù„ýH‰kŽSI‰èE1í1íëfH‹AZ!IPE1ÀH‹H‹xHÇD$ÇD$Ç$ÿèI‰ÅM…í„©H‹CH‹{ L‰êJ‹4 èíPýÿ‹KƒÅ9͍¯L‹CLcåMiäpMàA‹pƒþÿt}M‹ˆXM…ÉtÏA‹ˆPƒù…iÿÿÿH‹ªY!ƒîIPHcÎH‹H‹xHÇD$ÇD$I‹LÈE1	$¹ÿèI‰ÅM…í…]ÿÿÿfD1ÀHƒÄ([]A\A]ÃL‰Çè`TýÿH…ÀI‰Å…3ÿÿÿëÚfM…ít3I‹EHPÿH‰ØH…ÒI‰UuÁI‹UH‰\$L‰ïÿR0H‹D$HƒÄ([]A\A]ÃH‰ØëAWA‰ÿAVAUATA‰ÌUH‰õS‰ÓHìdH‹%(H‰„$ø1ÀöÁ…‰ÈM‰ƃà‰D$$„¾L;5¿X!„ùL‹-šX!D‰ÿI‹Eÿh‹p ‰t$(¶p@ˆt$/H‹0HVÿH…ÒH‰„"I‹EI‹~H‹pH9÷„…èˆTýÿ…À…xA÷Ä…I‹EAÁäD‰ÿAÁüAÄL‹¨(ÿhE1ÉE‰à1É1ÒH‰ÆL‰÷AÿÕH…ÀI‰Ä„ÙH‰ê‰ÞH‰Çèôóÿÿ…À…ÄL‰ãf„H‹´$ødH34%(H‰Ø…]	HÄ[]A\A]A^A_Ã@1À1҅Û~$„Hƒ|ōJNÑHƒÀ9Ãì…Ò…ÜL‹-uW!1ÒAöÄ@”ÂD‰ùE1ÉE1	ÞI‹EH‹x‰T$H‰êHÇD$Ç$ÿèH…À„AƒäH‰Ã…NÿÿÿH‹@8‹sH‹{ Hch I‹EÿðH¯ÅH‹{1öH‰ÂèPýÿéÿÿÿfDö@„FþÿÿL;5øV!…9þÿÿé-ÿÿÿD‹D$$…ÀtPA‹F…ÀtAöF@„M‹n8‹t$(A;u ¢H‰ê‰ÞL‰÷èžòÿÿ…À…nAƒätIƒL‰óé¤þÿÿ@H‰ê‰ÞL‰÷èsòÿÿ…À…CAöÄ …±I‹N8‹D$(9A … ‹APÿƒú	w	AWÿƒú	v+Põƒú†#ƒø„Pòƒúw	AWòƒúvD	øuaA÷ÄI‹F…éA÷Ä…)A÷ľ…AöÄ@A‹F@„z%1Ò=„z„Ò…#ÿÿÿf„D‰áƒá@AöÄ…îI‹E…ÉI‹V ”ÁA‹vE1ɶÉE1ÀH‹x‰L$D‰ùHÇD$Ç$ÿèH…ÀH‰Å„1I‹EL‰öH‰ïÿ…À… A÷ÄH‰ë„QýÿÿH‹UI‹FI‰V‹UH‰EA‹FA‰VH‹U ‰EI‹F I‰V H‹U(H‰E I‹F(I‰V(H‹U0H‰E(I‹F0I‰V0H‹U8H‰E0I‹F8I‰V8‹U@H‰E8A‹F@A‰V@Hƒm‰E@…$þÿÿH‹EH‰ïÿP0éþÿÿH¸failed tDŽ$ˆt (H‰D$0H¸o createH‰D$8H¸ intent(H‰D$@H¸cache|hiH‰D$HH¸de)|optiH‰D$PH¸onal arrH‰D$XH¸ay-- musH‰D$`H¸t have dH‰D$hH¸efined dH‰D$pH¸imensionH‰D$xH¸s but goH‰„$€CÿH\$0LdÅ„H‰ًHƒÁ‚ÿþþþ÷Ò!Ð%€€€€té‰ÂHyL‹EÁê©€€¾DÂHEùH
' ÀHÇÂÿÿÿÿHƒß1ÀHƒÅèÙPýÿL9åu¤H5 ºÈH‰ßè JýÿH‹!S!H‰Þ1ÛH‹8èÌKýÿéwûÿÿ€H‹PH‰ÇÿR0éÏúÿÿH‹úR!H5ƒH‹8è›Kýÿ1ÛéAûÿÿHƒmuòH‹EH‰ï1ÛÿP0é)ûÿÿH¿failed tH¾e) array…ÀH‰|$0H¿o initiaH‰t$PH‰|$8H¿lize intÆD$XH‰|$@H¿ent(cachH\$0H‰|$HukMcM D9L$(Ž1ÿÿÿH‰ڋ
HƒÂÿþþþ÷Ñ!È%€€€€té‰ÁD‹D$(¾Áé©€€DÁHJHDÑÀH
/HƒÚ1ÀH‰×HÇÂÿÿÿÿèšOýÿéÕþÿÿAöF@uŽH\$0H5ÚºÈH‰ßèÕHýÿépÿÿÿH¸failed tÆD$XM‹n8H‰D$0H¸o initiaH‰D$8H¸lize intH‰D$@H¸ent(cachH‰D$HH¸e) arrayH‰D$P댾1ÒH÷öH…Ò…üÿÿéÑûÿÿH¸failed t…ÉÆD$XH‰D$0H¸o initiaH‰D$8H¸lize intH‰D$@H¸ent(inouH‰D$HH¸t) arrayH‰D$PA‹F@„¢%I‹V8=…€z>H\$0„øLcJ D;L$(t[H‰ڋ
HƒÂÿþþþ÷Ñ!È%€€€€té‰ÁD‹D$(¾Áé©€€DÁHJHDÑÀH
æHƒÚ1ÀH‰×HÇÂÿÿÿÿè!NýÿI‹V8‹BHÿƒù	w	AOÿƒù	v/Hõƒù†Ýƒø„ԍHòƒùw	AOòƒùv	A	Ç…¿A÷ÄI‹F„ˆ¨A¸„ûüÿÿH‰ڋ
HƒÂÿþþþ÷Ñ!È%€€€€té‰ÁHz¾Áé©€€DÁHEúH
»ÀHÇÂÿÿÿÿHƒß1ÀèlMýÿé§üÿÿ¾éHþÿÿAWõƒú†ïùÿÿAƒÿ…ÏùÿÿéàùÿÿA÷Ä„â¨A¸…kÿÿÿéaüÿÿAOõƒù†9ÿÿÿAƒÿ…ÿÿÿé*ÿÿÿ%I‹V8=„ÀH\$0H¾ -- inpuH¿t not foH‰t$XH¾rtran coH‰{0H¿ntiguousH‰s8H‰{@ÆCHé&þÿÿ%1Ò=…†ùÿÿ€y>•ÂézùÿÿH\$0H¿ -- inpuH‰|$XH¿t not coH‰{0H¿ntiguousÆC@H‰{8éÏýÿÿAä„…ûÿÿ¨A¸…|þÿÿérûÿÿf€z>H\$0…žýÿÿé+ÿÿÿH‰ً1HƒÁ†ÿþþþ÷Ö!ð%€€€€t鉯D¾BD¾L$/Áî©€€HÇÂÿÿÿÿDÆHqHDÎ>HƒÙ1ÀH‰ÏH
›è¾Kýÿéßýÿÿè´Fýÿ@AWAVI‰þAUATI‰ôUSHìh‹GH‰T$…ÀމƒèH‹_HiÀpI‰ßL¬pëfDIÇpM9ï„XI‹7L‰ýL‰çH)ÝèÇGýÿ…ÀuÛA‹Gƒøÿ„¾M‹`M…É„~H‹\$H;ÚM!H\$ L‰=Û"„™1ɅÀH‰Þ~€HÇÿÿÿÿA‹GƒÁHƒÆ9ÈêA‹¿PL‹D$¹‰ÂH‰Þè7FýÿH…ÀI‰Ä„H‰èIFHL$I‹t$ H#éÿÿHxÿ`H‰îIv‹NH~HcÑH‰ÞHÁâèlGýÿH‰ïI~Hƒ¿X„çH‹M!HƒÇA‹t$H‹ÿðHƒøÿ„„H…ÀxwI‹VI‹t$H‹¼*XI‹T$8HcR H¯ÐèGýÿH…ÀtOL;d$tIƒ,$„1Àë#I‹~ H…ÿ„Hƒ|$t<H‹T$L‰æè~CýÿHÄh[]A\A]A^A_Ã@L;d$tIƒ,$„³¸ÿÿÿÿëÑL‰æèIýÿ…ÀyÅH‹œL!H5å‰D$H‹:è©Dýÿ‹D$ë¥1ÀHƒ¿`”À÷Ø둅À~H‰Ú1ÀfDHǃÀHƒÂA9GìHL$HÀçÿÿH‰ÞIAÿÑH‰îIv1ÀH‰ڋN…É~HÇÿÿÿÿ‹NƒÀHƒÂ9ÁëE1äétþÿÿI‹D$L‰çÿP0é=ÿÿÿI‹D$L‰çÿP01ÀéÿÿÿèGýÿH…ÀH‰ÇI‰F …Ùþÿÿéÿÿÿ€H‹A‹t$I‹|$ ÿðédþÿÿA‹¿PL‹D$Iw¹‰ÂèüCýÿH…ÀI‰Ä…þÿÿéÅþÿÿH‹qK!H5¾‰D$H‹:è~Cýÿ‹D$éwþÿÿDH‹ñJ!H‰úH‰÷H‰ÖH‹H‹€ÿà@éËDýÿff.„AWAVAUI‰ýATUSHìèH‹ H‰t$H…ÿt&èiEýÿH…ÀtHƒHÄè[]A\A]A^A_ÃfDA‹E…	D$(Ž=ƒèI‹mL‰l$ HiÀpL‹t$I‰íL¤pëIÅpM9å„I‹uL‰ëL‰÷H)ëèþCýÿ…ÀuÚM‰îI‰ßL‹l$ A‹Fƒøÿ„×I‹–`H…Ò„…ÀŽ1À„HcЃÀIÇDÖÿÿÿÿM‰þMuA;F|äI‹†`L‰5×"HŒ$pIvI~HåÿÿÿÐM}ƒ¼$p„šA‹wM‹XM…É„ÅH‹xI!A‹PIWE1ÀH‹H‹xHÇD$ÇD$Ç$ÿèé¨þÿÿ„L‹l$ H‹t$H=ð¹	ó¦tVH‹t$H=.¹ó¦tRH‹t$H=.¹
ó¦uƒ|$(„ŠH‹T$H=UÖ"L‰îè=Fýÿé8þÿÿ„I‹E HƒI‹E éþÿÿH=÷è“BýÿA‹MH‰„$€…ÉŽþH„$E1öL‰l$(H‰D$@H„$€H‰D$XH„$pH‰D$`H„$H‰D$hH„$H‰D$pH„$ H‰D$xé‹@H…턎H‰ïèo@ýÿL‹|$ I‰ÄI9ÇŒöH‰îH‰ÂH‰ßèPBýÿL‰øJ4#L)àH‰ñH)ÙHƒøŽ$Æ
HƒÆH‰ßH)Þè´>ýÿH‰ßH‰Åè9?ýÿH‰îH‹|$XAƒÆèX?ýÿH‹D$(D;p¨H‹L$(IcÆH‹|$@HiÀpHA¹.H‰ÆH‹¨hD‹hóH¥H‹L‹¸XH…íH‰L$P‹ˆP‰L$4„)H‰ïè¡?ýÿL`dL‰d$ L‰çèPDýÿH…ÀH‰Ã„ŽAƒýÿ„úþÿÿH‹+G!‹|$4H‹ÿh¾HHüH‰D$8L‰æ1ÀH‰ßèI@ýÿL‹D$8LcàIƒ(„×H‹L$ L9áŽÁL‰àHÁè?„À…²J#H‰D$8H‰ÈL)àM…ÿH‰D$H„[E…íŽ<H‹D$PL‰¼$è¹.H‰¬$øD‰¬$˜HrH‹|$`H‹t$@H‰„$‹D$4L‹|$HH‹l$8‰„$à1ÀóH¥L‰þH‰ïH‹Œ$€èŒ?ýÿ…ÀxnH˜I9Ç~gI)ÇAƒýLd„:H‹|$`H‹L$hAEþHoL,Áë!€H˜L9ø}/HƒÅIÄI)ÇL9í„H‹MHÜ1ÀL‰þL‰çè?ýÿ…ÀyÊH‹L$8H)ÙH‹SF!L‹D$ H‡¾H‹81Àè@BýÿH‰ßè=ýÿ1öéËýÿÿH‰ÂI‹} H‹t$è€<ýÿ‰Â1ÒHD„$€éÜúÿÿ@Hƒ|$H~–H‹D$8ºarÇscalf‰PHpH‹D$HHƒèéDýÿÿf.„A¼dHÇD$ déÔýÿÿ@1ÉéOÿÿÿI‹@L‰ÇÿP0éþÿÿI‰ÅH‹”$€écÿÿÿA‹Gpé^ûÿÿM…ÿŽÿÿÿML$L+L$8CÆ<)ˆýþÿÿH‹t$8H‹D$HLÎL)Èé¼üÿÿH‹ËD!éúÿÿèÁ<ýÿH‰ÆéÓüÿÿH‹L$PHgH‰ÇL‰æ1ÀèÐ=ýÿH‹L$ H˜H9ÁŽXÿÿÿH‰ÂHÁê?„Ò…IÿÿÿH)ÁH4H‰Èé\üÿÿH‹D$PD‰¬$˜¹.HDŽ$èH‰¬$øHH‹|$pH‹t$@H‰„$‹D$4‰„$à1ÀóH¥H‹t$HH‹|$8H‹Œ$è<=ýÿ…ÀxrL‹|$HH˜I9Ç~fH‹L$8I)ÇAƒýL$Ž¡H‹D$pH‹L$xHhAEþL,ÁëfDH˜L9ø}+HƒÅIÄI)ÇL9ítmH‹MHˆ1ÀL‰þL‰çèÊ<ýÿ…Àyξ¸H‹L$HHt$8H)ÁH‰ÈéaûÿÿI‹E1öH‹¸XèÅ:ýÿI‹} H‹t$H‰ÂH‰Ãè1:ýÿ…ÀuTH‰Øé•øÿÿM…ÿf~¨CÆ<)IƒïIƒÿv™H¸, not alI‰D$H¸locatedI‰D$	ID$H;D$8”À¶ÀH‰Æémÿÿÿ1ÀéBøÿÿH‰Ðé
ùÿÿf.„é‹>ýÿff.„H‹¹B!H9G”À¶ÀÃf.„@1Àé™>ýÿf„1ÀéÉ?ýÿf„1Àé>ýÿf„1Àé©=ýÿf„1Àé):ýÿf„1Àéy:ýÿf„1Àé)>ýÿf„1Àéy<ýÿf„1Àé¹;ýÿf„1Àéù>ýÿf„1Àéé<ýÿf„1Àé¹:ýÿf„1ÀÇD$é;ýÿ1ÀÇD$éñ>ýÿA¹1ÀéC:ýÿ1ÀÇD$ÇD$é;ýÿf„1ÀÇD$ÇD$éù9ýÿf„A¹1ÀÇD$é{=ýÿff.„A¹1Àé£<ýÿA¸1Àé#:ýÿ1ÀÇD$ÇD$é9;ýÿf„A¹1ÀÇD$éË=ýÿff.„1ÀÇD$ÇD$éù;ýÿf„1ÀÇD$(ÇD$ ÇD$é!;ýÿ1ÀÇD$ÇD$ÇD$é±=ýÿ1ÀÇD$(ÇD$ ÇD$é‘8ýÿ1Àé)=ýÿf„1ÀÇD$éQ:ýÿ1ÀÇD$éa7ýÿA¹1Àéc;ýÿA¹1Àéc7ýÿ1ÀÇD$ÇD$é¹:ýÿf„A¹1ÀÇD$é›8ýÿff.„A¸1Àéã;ýÿ1ÀÇD$ÇD$é	7ýÿf„1ÀÇD$(ÇD$ ÇD$éa:ýÿ1ÀÇD$ÇD$ÇD$éq8ýÿ1ÀÇD$(ÇD$ ÇD$éQ:ýÿ1Àé¹8ýÿf„1Àé¹<ýÿf„¾1Àé<ýÿ@1Àé‰<ýÿf„SH‰ûH‰÷H‰ÖH‰ÊL‰ÁHƒìM‰ÈH‹D$(L‹L$ H‰$1Àè¤5ýÿóHƒÄ[Ãf.„SH‰ûH‰÷H‰ÖH‰ÊL‰ÁHƒìM‰ÈH‹D$(L‹L$ H‰$1Àè¤6ýÿòHƒÄ[Ãf.„SH‰ûH‰÷H‰ÖH‰ÊL‰ÁHƒìM‰ÈH‹D$(L‹L$ H‰$1Àè”8ýÿfÖD$óD$óóD$óCHƒÄ[ÃSH‰ûH‰÷H‰ÖH‰ÊL‰ÁHƒìM‰ÈH‹D$(L‹L$ H‰$1Àè´6ýÿòòKHƒÄ[ÃDSH‰ûH‰÷H‰ÖH‰ÊL‰ÁHƒìM‰ÈH‹D$(L‹L$ H‰$1Àèd7ýÿfÖD$óD$óóD$óCHƒÄ[ÃSH‰ûH‰÷H‰ÖH‰ÊL‰ÁHƒìM‰ÈH‹D$(L‹L$ H‰$1Àè5ýÿòòKHƒÄ[ÃDS1ÀH‰ûH‰÷H‰ÖH‰ÊL‰Áèy6ýÿó[ÃS1ÀH‰ûH‰÷H‰ÖH‰ÊL‰ÁèI4ýÿó[ÃS1ÀH‰ûH‰÷H‰ÖH‰ÊL‰Áèy6ýÿò[ÃS1ÀH‰ûH‰÷H‰ÖH‰ÊL‰Áè¹4ýÿò[ÃS1ÀH‰ûH‰÷H‰ÖH‰ÊL‰Áè95ýÿó[ÃS1ÀH‰ûH‰÷H‰ÖH‰ÊL‰Áè98ýÿó[ÃS1ÀH‰ûH‰÷H‰ÖH‰ÊL‰Áèy8ýÿò[ÃS1ÀH‰ûH‰÷H‰ÖH‰ÊL‰Áèé8ýÿò[ÃHƒìHƒÄÃrealUTCLROOO|OOOOi:_fblas.ztrmm%s: ztrmm:lower=%d%s: ztrmm:trans_a=%d%s: ztrmm:diag=%d%s: ztrmm:side=%dOOO|OOOOi:_fblas.zher2k%s: zher2k:lower=%d%s: zher2k:trans=%d%s: zher2k:k=%dOOO|OOOOi:_fblas.zsyr2k%s: zsyr2k:lower=%d%s: zsyr2k:trans=%d%s: zsyr2k:k=%dOO|OOOOi:_fblas.zherk%s: zherk:lower=%d%s: zherk:trans=%dOO|OOOOi:_fblas.zsyrk%s: zsyrk:lower=%d%s: zsyrk:trans=%dOOO|OOOOi:_fblas.zhemm%s: zhemm:lower=%d%s: zhemm:side=%d%s: zhemm:n=%dOOO|OOOOi:_fblas.zsymm%s: zsymm:lower=%d%s: zsymm:side=%d%s: zsymm:n=%dOOO|OOOOi:_fblas.zgemm%s: zgemm:trans_a=%d%s: zgemm:trans_b=%d%s: zgemm:n=%dOO|OOOOOi:_fblas.ztrmv%s: ztrmv:lower=%d%s: ztrmv:unitdiag=%d%s: ztrmv:incx=%d%s: ztrmv:trans=%d%s: ztrmv:offx=%d%s: ztrmv:n=%dOO|OOOOOi:_fblas.ctrmv%s: ctrmv:lower=%d%s: ctrmv:unitdiag=%d%s: ctrmv:incx=%d%s: ctrmv:trans=%d%s: ctrmv:offx=%d%s: ctrmv:n=%dOO|OOOOOi:_fblas.dtrmv%s: dtrmv:lower=%d%s: dtrmv:unitdiag=%d%s: dtrmv:incx=%d%s: dtrmv:trans=%d%s: dtrmv:offx=%d%s: dtrmv:n=%dOO|OOOOOi:_fblas.strmv%s: strmv:lower=%d%s: strmv:unitdiag=%d%s: strmv:incx=%d%s: strmv:trans=%d%s: strmv:offx=%d%s: strmv:n=%dOOO|OOOOOOOi:_fblas.zhemv%s: zhemv:lower=%d%s: zhemv:incx=%d%s: zhemv:incy=%dOOO|OOOOOOOi:_fblas.zgemv%s: zgemv:incx=%d%s: zgemv:incy=%d%s: zgemv:trans=%dO|OOO:_fblas.izamax%s: izamax:incx=%d%s: izamax:offx=%d%s: izamax:n=%diO|OOO:_fblas.icamax%s: icamax:incx=%d%s: icamax:offx=%d%s: icamax:n=%dO|OOO:_fblas.idamax%s: idamax:incx=%d%s: idamax:offx=%d%s: idamax:n=%dO|OOO:_fblas.isamax%s: isamax:incx=%d%s: isamax:offx=%d%s: isamax:n=%dO|OOO:_fblas.dzasum%s: dzasum:incx=%d%s: dzasum:offx=%d%s: dzasum:n=%dO|OOO:_fblas.dasum%s: dasum:incx=%d%s: dasum:offx=%d%s: dasum:n=%dO|OOO:_fblas.scasum%s: scasum:incx=%d%s: scasum:offx=%d%s: scasum:n=%dO|OOO:_fblas.sasum%s: sasum:incx=%d%s: sasum:offx=%d%s: sasum:n=%dO|OOO:_fblas.dznrm2%s: dznrm2:incx=%d%s: dznrm2:offx=%d%s: dznrm2:n=%dO|OOO:_fblas.dnrm2%s: dnrm2:incx=%d%s: dnrm2:offx=%d%s: dnrm2:n=%dO|OOO:_fblas.scnrm2%s: scnrm2:incx=%d%s: scnrm2:offx=%d%s: scnrm2:n=%dO|OOO:_fblas.snrm2%s: snrm2:incx=%d%s: snrm2:offx=%d%s: snrm2:n=%dOO|OOOOOO:_fblas.zaxpy%s: zaxpy:incx=%d%s: zaxpy:incy=%d%s: zaxpy:offx=%d%s: zaxpy:offy=%d%s: zaxpy:n=%dOO|OOOOO:_fblas.zcopy%s: zcopy:incy=%d%s: zcopy:incx=%d%s: zcopy:offy=%d%s: zcopy:offx=%d%s: zcopy:n=%dOO|OOOOO:_fblas.ccopy%s: ccopy:incy=%d%s: ccopy:incx=%d%s: ccopy:offy=%d%s: ccopy:offx=%d%s: ccopy:n=%dOO|OOOOO:_fblas.dcopy%s: dcopy:incy=%d%s: dcopy:incx=%d%s: dcopy:offy=%d%s: dcopy:offx=%d%s: dcopy:n=%dOO|OOOOO:_fblas.scopy%s: scopy:incy=%d%s: scopy:incx=%d%s: scopy:offy=%d%s: scopy:offx=%d%s: scopy:n=%dOO|OOOOO:_fblas.zswap%s: zswap:incy=%d%s: zswap:incx=%d%s: zswap:offy=%d%s: zswap:offx=%d%s: zswap:n=%dNNOO|OOOOO:_fblas.cswap%s: cswap:incy=%d%s: cswap:incx=%d%s: cswap:offy=%d%s: cswap:offx=%d%s: cswap:n=%dOO|OOOOO:_fblas.dswap%s: dswap:incy=%d%s: dswap:incx=%d%s: dswap:offy=%d%s: dswap:offx=%d%s: dswap:n=%dOO|OOOOO:_fblas.sswap%s: sswap:incy=%d%s: sswap:incx=%d%s: sswap:offy=%d%s: sswap:offx=%d%s: sswap:n=%dOOO|OOOOOii:_fblas.drotm%s: drotm:incx=%d%s: drotm:incy=%d%s: drotm:offx=%d%s: drotm:offy=%d%s: drotm:n=%dOOO|OOOOOii:_fblas.srotm%s: srotm:incx=%d%s: srotm:incy=%d%s: srotm:offx=%d%s: srotm:offy=%d%s: srotm:n=%dOOO|OOOOi:_fblas.dtrmm%s: dtrmm:lower=%d%s: dtrmm:trans_a=%d%s: dtrmm:diag=%d%s: dtrmm:side=%dOOO|OOOOi:_fblas.strmm%s: strmm:lower=%d%s: strmm:trans_a=%d%s: strmm:diag=%d%s: strmm:side=%dOOO|OOOOi:_fblas.ssyr2k%s: ssyr2k:lower=%d%s: ssyr2k:trans=%d%s: ssyr2k:k=%dOO|OOOOi:_fblas.ssyrk%s: ssyrk:lower=%d%s: ssyrk:trans=%dOOO|OOOOi:_fblas.ssymm%s: ssymm:lower=%d%s: ssymm:side=%d%s: ssymm:n=%dOOO|OOOOi:_fblas.sgemm%s: sgemm:trans_a=%d%s: sgemm:trans_b=%d%s: sgemm:n=%dOOO|OOOOOOOi:_fblas.ssymv%s: ssymv:lower=%d%s: ssymv:incx=%d%s: ssymv:incy=%dOOO|OOOOOOOi:_fblas.sgemv%s: sgemv:incx=%d%s: sgemv:incy=%d%s: sgemv:trans=%dOO|OOOOOO:_fblas.saxpy%s: saxpy:incx=%d%s: saxpy:incy=%d%s: saxpy:offx=%d%s: saxpy:offy=%d%s: saxpy:n=%dOOO|OOOOi:_fblas.dsyr2k%s: dsyr2k:lower=%d%s: dsyr2k:trans=%d%s: dsyr2k:k=%dOO|OOOOi:_fblas.dsyrk%s: dsyrk:lower=%d%s: dsyrk:trans=%dOOO|OOOOi:_fblas.dsymm%s: dsymm:lower=%d%s: dsymm:side=%d%s: dsymm:n=%dOOO|OOOOi:_fblas.dgemm%s: dgemm:trans_a=%d%s: dgemm:trans_b=%d%s: dgemm:n=%dOOO|OOOOOOOi:_fblas.dsymv%s: dsymv:lower=%d%s: dsymv:incx=%d%s: dsymv:incy=%dOOO|OOOOOOOi:_fblas.dgemv%s: dgemv:incx=%d%s: dgemv:incy=%d%s: dgemv:trans=%dOO|OOOOOO:_fblas.daxpy%s: daxpy:incx=%d%s: daxpy:incy=%d%s: daxpy:offx=%d%s: daxpy:offy=%d%s: daxpy:n=%dOO|OOOOOO:_fblas.caxpy%s: caxpy:incx=%d%s: caxpy:incy=%d%s: caxpy:offx=%d%s: caxpy:offy=%d%s: caxpy:n=%dOO|OOOOi:_fblas.csyrk%s: csyrk:lower=%d%s: csyrk:trans=%dOO|OOOOi:_fblas.cherk%s: cherk:lower=%d%s: cherk:trans=%dOOO|OOOOi:_fblas.chemm%s: chemm:lower=%d%s: chemm:side=%d%s: chemm:n=%dOOO|OOOOi:_fblas.csyr2k%s: csyr2k:lower=%d%s: csyr2k:trans=%d%s: csyr2k:k=%dOOO|OOOOi:_fblas.cher2k%s: cher2k:lower=%d%s: cher2k:trans=%d%s: cher2k:k=%dOOO|OOOOi:_fblas.csymm%s: csymm:lower=%d%s: csymm:side=%d%s: csymm:n=%dOO:_fblas.drotgddOO:_fblas.srotgffOOOO:_fblas.drotmgOOOO:_fblas.srotmgOO|OOO:_fblas.dscal%s: dscal:incx=%d%s: dscal:offx=%d%s: dscal:n=%dOO|OOO:_fblas.sscal%s: sscal:incx=%d%s: sscal:offx=%d%s: sscal:n=%dOO|OOOi:_fblas.zdscal%s: zdscal:incx=%d%s: zdscal:offx=%d%s: zdscal:n=%dOO|OOOi:_fblas.csscal%s: csscal:incx=%d%s: csscal:offx=%d%s: csscal:n=%dOOOO|OOOOOii:_fblas.drot%s: drot:incx=%d%s: drot:incy=%d%s: drot:offy=%d%s: drot:offx=%d%s: drot:n=%dOOOO|OOOOOii:_fblas.zdrot%s: zdrot:incx=%d%s: zdrot:incy=%d%s: zdrot:offy=%d%s: zdrot:offx=%d%s: zdrot:n=%dOOOO|OOOOOii:_fblas.csrot%s: csrot:incx=%d%s: csrot:incy=%d%s: csrot:offy=%d%s: csrot:offx=%d%s: csrot:n=%dOOOO|OOOOOii:_fblas.srot%s: srot:incx=%d%s: srot:incy=%d%s: srot:offy=%d%s: srot:offx=%d%s: srot:n=%dOOO|OOOOi:_fblas.ctrmm%s: ctrmm:lower=%d%s: ctrmm:trans_a=%d%s: ctrmm:diag=%d%s: ctrmm:side=%dOOO|OOOOi:_fblas.cgemm%s: cgemm:trans_a=%d%s: cgemm:trans_b=%d%s: cgemm:n=%dOOO|OOOOOOOi:_fblas.chemv%s: chemv:lower=%d%s: chemv:incx=%d%s: chemv:incy=%dOOO|OOOOOOOi:_fblas.cgemv%s: cgemv:incx=%d%s: cgemv:incy=%d%s: cgemv:trans=%dOO:_fblas.zrotgOO:_fblas.crotgOO|OOO:_fblas.cscal%s: cscal:incx=%d%s: cscal:offx=%d%s: cscal:n=%dOO|OOO:_fblas.zscal%s: zscal:incx=%d%s: zscal:offx=%d%s: zscal:n=%dOO|OOOOO:_fblas.ddot%s: ddot:incx=%d%s: ddot:incy=%d%s: ddot:offy=%d%s: ddot:offx=%d%s: ddot:n=%dOO|OOOOOi:_fblas.zsyr%s: zsyr:lower=%d%s: zsyr:incx=%d%s: zsyr:n=%dOO|OOOOO:_fblas.zdotc%s: zdotc:incx=%d%s: zdotc:incy=%d%s: zdotc:offy=%d%s: zdotc:offx=%d%s: zdotc:n=%dOO|OOOOO:_fblas.cdotc%s: cdotc:incx=%d%s: cdotc:incy=%d%s: cdotc:offy=%d%s: cdotc:offx=%d%s: cdotc:n=%dOO|OOOOO:_fblas.cdotu%s: cdotu:incx=%d%s: cdotu:incy=%d%s: cdotu:offy=%d%s: cdotu:offx=%d%s: cdotu:n=%dOO|OOOOO:_fblas.zdotu%s: zdotu:incx=%d%s: zdotu:incy=%d%s: zdotu:offy=%d%s: zdotu:offx=%d%s: zdotu:n=%dOO|OOOOO:_fblas.sdot%s: sdot:incx=%d%s: sdot:incy=%d%s: sdot:offx=%d%s: sdot:offy=%d%s: sdot:n=%dOO|OOOOOi:_fblas.dsyr%s: dsyr:lower=%d%s: dsyr:incx=%d%s: dsyr:n=%dOO|OOOOOi:_fblas.ssyr%s: ssyr:lower=%d%s: ssyr:incx=%d%s: ssyr:n=%dOO|OOOOOi:_fblas.zher%s: zher:lower=%d%s: zher:incx=%d%s: zher:n=%dOO|OOOOOi:_fblas.cher%s: cher:lower=%d%s: cher:incx=%d%s: cher:n=%dOO|OOOOOi:_fblas.csyr%s: csyr:lower=%d%s: csyr:incx=%d%s: csyr:n=%dOOO|OOOOOOOi:_fblas.zher2%s: zher2:lower=%d%s: zher2:incx=%d%s: zher2:incy=%d%s: zher2:n=%dOOO|OOOOOOOi:_fblas.cher2%s: cher2:lower=%d%s: cher2:incx=%d%s: cher2:incy=%d%s: cher2:n=%dOOO|OOOOOOOi:_fblas.dsyr2%s: dsyr2:lower=%d%s: dsyr2:incx=%d%s: dsyr2:incy=%d%s: dsyr2:n=%dOOO|OOOiii:_fblas.zgerc%s: zgerc:incx=%d%s: zgerc:incy=%dOOO|OOOOOOOi:_fblas.ssyr2%s: ssyr2:lower=%d%s: ssyr2:incx=%d%s: ssyr2:incy=%d%s: ssyr2:n=%dOOO|OOOiii:_fblas.sger%s: sger:incx=%d%s: sger:incy=%dOOO|OOOiii:_fblas.dger%s: dger:incx=%d%s: dger:incy=%dOOO|OOOiii:_fblas.cgeru%s: cgeru:incx=%d%s: cgeru:incy=%dOOO|OOOiii:_fblas.zgeru%s: zgeru:incx=%d%s: zgeru:incy=%dOOO|OOOiii:_fblas.cgerc%s: cgerc:incx=%d%s: cgerc:incy=%d_fblasnumpy.core.multiarray_ARRAY_API_ARRAY_API not found_ARRAY_API is NULL pointer$Revision: $__version____doc___fblas.error_cpointer__name__d1d2x1y1offxincxoffyincyoverwrite_xoverwrite_yparamalphabetatranslowerunitdiagoverwrite_atrans_atrans_boverwrite_csideoverwrite_bfailed in converting 2nd argument `a' of _fblas.ztrmm to C/Fortran array_fblas.ztrmm() 2nd keyword (lower) can't be converted to int(lower==0 || lower==1) failed for 2nd keyword lowerfailed in converting 3rd argument `b' of _fblas.ztrmm to C/Fortran array_fblas.ztrmm() 3rd keyword (trans_a) can't be converted to int(trans_a>=0 && trans_a <=2) failed for 3rd keyword trans_a_fblas.ztrmm() 4th keyword (diag) can't be converted to int(diag==0 || diag==1) failed for 4th keyword diag_fblas.ztrmm() 1st argument (alpha) can't be converted to complex_double_fblas.ztrmm() 1st keyword (side) can't be converted to int(side==0 || side==1) failed for 1st keyword sidefailed in converting 2nd argument `a' of _fblas.zher2k to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.zher2k to C/Fortran array_fblas.zher2k() 4th keyword (lower) can't be converted to int(lower==0||lower==1) failed for 4th keyword lower_fblas.zher2k() 1st keyword (beta) can't be converted to complex_double_fblas.zher2k() 1st argument (alpha) can't be converted to complex_double_fblas.zher2k() 3rd keyword (trans) can't be converted to int(trans>=0 && trans <=2) failed for 3rd keyword trans(trans ? lda==ldb: ka==kb) failed for hidden kfailed in converting 2nd keyword `c' of _fblas.zher2k to C/Fortran array(shape(c,0)==n && shape(c,1)==n) failed for 2nd keyword cfailed in converting 2nd argument `a' of _fblas.zsyr2k to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.zsyr2k to C/Fortran array_fblas.zsyr2k() 4th keyword (lower) can't be converted to int_fblas.zsyr2k() 1st keyword (beta) can't be converted to complex_double_fblas.zsyr2k() 1st argument (alpha) can't be converted to complex_double_fblas.zsyr2k() 3rd keyword (trans) can't be converted to intfailed in converting 2nd keyword `c' of _fblas.zsyr2k to C/Fortran arrayfailed in converting 2nd argument `a' of _fblas.zherk to C/Fortran array_fblas.zherk() 4th keyword (lower) can't be converted to int_fblas.zherk() 1st keyword (beta) can't be converted to complex_double_fblas.zherk() 1st argument (alpha) can't be converted to complex_double_fblas.zherk() 3rd keyword (trans) can't be converted to intfailed in converting 2nd keyword `c' of _fblas.zherk to C/Fortran arrayfailed in converting 2nd argument `a' of _fblas.zsyrk to C/Fortran array_fblas.zsyrk() 4th keyword (lower) can't be converted to int_fblas.zsyrk() 1st keyword (beta) can't be converted to complex_double_fblas.zsyrk() 1st argument (alpha) can't be converted to complex_double_fblas.zsyrk() 3rd keyword (trans) can't be converted to intfailed in converting 2nd keyword `c' of _fblas.zsyrk to C/Fortran arrayfailed in converting 2nd argument `a' of _fblas.zhemm to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.zhemm to C/Fortran array_fblas.zhemm() 4th keyword (lower) can't be converted to int_fblas.zhemm() 1st keyword (beta) can't be converted to complex_double_fblas.zhemm() 1st argument (alpha) can't be converted to complex_double_fblas.zhemm() 3rd keyword (side) can't be converted to int(side==0||side==1) failed for 3rd keyword side(side? kb==lda : ka==ldb) failed for hidden nfailed in converting 2nd keyword `c' of _fblas.zhemm to C/Fortran array(shape(c,0)==m && shape(c,1)==n) failed for 2nd keyword cfailed in converting 2nd argument `a' of _fblas.zsymm to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.zsymm to C/Fortran array_fblas.zsymm() 4th keyword (lower) can't be converted to int_fblas.zsymm() 1st keyword (beta) can't be converted to complex_double_fblas.zsymm() 1st argument (alpha) can't be converted to complex_double_fblas.zsymm() 3rd keyword (side) can't be converted to intfailed in converting 2nd keyword `c' of _fblas.zsymm to C/Fortran arrayfailed in converting 2nd argument `a' of _fblas.zgemm to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.zgemm to C/Fortran array_fblas.zgemm() 3rd keyword (trans_a) can't be converted to int_fblas.zgemm() 4th keyword (trans_b) can't be converted to int(trans_b>=0 && trans_b <=2) failed for 4th keyword trans_b_fblas.zgemm() 1st keyword (beta) can't be converted to complex_double_fblas.zgemm() 1st argument (alpha) can't be converted to complex_double(trans_b?kb==k:ldb==k) failed for hidden nfailed in converting 2nd keyword `c' of _fblas.zgemm to C/Fortran arrayfailed in converting 1st argument `a' of _fblas.ztrmv to C/Fortran array(shape(a,0)==shape(a,1)) failed for 1st argument a_fblas.ztrmv() 3rd keyword (lower) can't be converted to int(lower==0||lower==1) failed for 3rd keyword lower_fblas.ztrmv() 5th keyword (unitdiag) can't be converted to int(unitdiag==0||unitdiag==1) failed for 5th keyword unitdiag_fblas.ztrmv() 2nd keyword (incx) can't be converted to int(incx>0||incx<0) failed for 2nd keyword incxfailed in converting 2nd argument `x' of _fblas.ztrmv to C/Fortran array_fblas.ztrmv() 4th keyword (trans) can't be converted to int(trans>=0 && trans <=2) failed for 4th keyword trans_fblas.ztrmv() 1st keyword (offx) can't be converted to int(offx>=0 && offx<len(x)) failed for 1st keyword offx(len(x)>offx+(n-1)*abs(incx)) failed for hidden nfailed in converting 1st argument `a' of _fblas.ctrmv to C/Fortran array_fblas.ctrmv() 3rd keyword (lower) can't be converted to int_fblas.ctrmv() 5th keyword (unitdiag) can't be converted to int_fblas.ctrmv() 2nd keyword (incx) can't be converted to intfailed in converting 2nd argument `x' of _fblas.ctrmv to C/Fortran array_fblas.ctrmv() 4th keyword (trans) can't be converted to int_fblas.ctrmv() 1st keyword (offx) can't be converted to intfailed in converting 1st argument `a' of _fblas.dtrmv to C/Fortran array_fblas.dtrmv() 3rd keyword (lower) can't be converted to int_fblas.dtrmv() 5th keyword (unitdiag) can't be converted to int_fblas.dtrmv() 2nd keyword (incx) can't be converted to intfailed in converting 2nd argument `x' of _fblas.dtrmv to C/Fortran array_fblas.dtrmv() 4th keyword (trans) can't be converted to int_fblas.dtrmv() 1st keyword (offx) can't be converted to intfailed in converting 1st argument `a' of _fblas.strmv to C/Fortran array_fblas.strmv() 3rd keyword (lower) can't be converted to int_fblas.strmv() 5th keyword (unitdiag) can't be converted to int_fblas.strmv() 2nd keyword (incx) can't be converted to intfailed in converting 2nd argument `x' of _fblas.strmv to C/Fortran array_fblas.strmv() 4th keyword (trans) can't be converted to int_fblas.strmv() 1st keyword (offx) can't be converted to intfailed in converting 2nd argument `a' of _fblas.zhemv to C/Fortran array(shape(a,0)==shape(a,1)) failed for 2nd argument a_fblas.zhemv() 7th keyword (lower) can't be converted to int(lower==0||lower==1) failed for 7th keyword lower_fblas.zhemv() 4th keyword (incx) can't be converted to int(incx>0||incx<0) failed for 4th keyword incx_fblas.zhemv() 6th keyword (incy) can't be converted to int(incy>0||incy<0) failed for 6th keyword incy_fblas.zhemv() 5th keyword (offy) can't be converted to int_fblas.zhemv() 1st keyword (beta) can't be converted to complex_double_fblas.zhemv() 1st argument (alpha) can't be converted to complex_double_fblas.zhemv() 3rd keyword (offx) can't be converted to intfailed in converting 3rd argument `x' of _fblas.zhemv to C/Fortran array(len(x)>offx+(n-1)*abs(incx)) failed for 3rd argument x(offx>=0 && offx<len(x)) failed for 3rd argument xfailed in converting 2nd keyword `y' of _fblas.zhemv to C/Fortran array(len(y)>offy+(n-1)*abs(incy)) failed for 2nd keyword y(offy>=0 && offy<len(y)) failed for 2nd keyword yfailed in converting 2nd argument `a' of _fblas.zgemv to C/Fortran array_fblas.zgemv() 4th keyword (incx) can't be converted to int_fblas.zgemv() 6th keyword (incy) can't be converted to int_fblas.zgemv() 5th keyword (offy) can't be converted to int_fblas.zgemv() 1st keyword (beta) can't be converted to complex_double_fblas.zgemv() 1st argument (alpha) can't be converted to complex_double_fblas.zgemv() 7th keyword (trans) can't be converted to int(trans>=0 && trans <=2) failed for 7th keyword trans_fblas.zgemv() 3rd keyword (offx) can't be converted to intfailed in converting 3rd argument `x' of _fblas.zgemv to C/Fortran array(len(x)>offx+(cols-1)*abs(incx)) failed for 3rd argument xfailed in converting 2nd keyword `y' of _fblas.zgemv to C/Fortran array(len(y)>offy+(rows-1)*abs(incy)) failed for 2nd keyword yfailed in converting 1st argument `x' of _fblas.izamax to C/Fortran array_fblas.izamax() 3rd keyword (incx) can't be converted to int(incx>0||incx<0) failed for 3rd keyword incx_fblas.izamax() 2nd keyword (offx) can't be converted to int(offx>=0 && offx<len(x)) failed for 2nd keyword offx_fblas.izamax() 1st keyword (n) can't be converted to int(len(x)-offx>(n-1)*abs(incx)) failed for 1st keyword nfailed in converting 1st argument `x' of _fblas.icamax to C/Fortran array_fblas.icamax() 3rd keyword (incx) can't be converted to int_fblas.icamax() 2nd keyword (offx) can't be converted to int_fblas.icamax() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.idamax to C/Fortran array_fblas.idamax() 3rd keyword (incx) can't be converted to int_fblas.idamax() 2nd keyword (offx) can't be converted to int_fblas.idamax() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.isamax to C/Fortran array_fblas.isamax() 3rd keyword (incx) can't be converted to int_fblas.isamax() 2nd keyword (offx) can't be converted to int_fblas.isamax() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.dzasum to C/Fortran array_fblas.dzasum() 3rd keyword (incx) can't be converted to int_fblas.dzasum() 2nd keyword (offx) can't be converted to int_fblas.dzasum() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.dasum to C/Fortran array_fblas.dasum() 3rd keyword (incx) can't be converted to int_fblas.dasum() 2nd keyword (offx) can't be converted to int_fblas.dasum() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.scasum to C/Fortran array_fblas.scasum() 3rd keyword (incx) can't be converted to int_fblas.scasum() 2nd keyword (offx) can't be converted to int_fblas.scasum() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.sasum to C/Fortran array_fblas.sasum() 3rd keyword (incx) can't be converted to int_fblas.sasum() 2nd keyword (offx) can't be converted to int_fblas.sasum() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.dznrm2 to C/Fortran array_fblas.dznrm2() 3rd keyword (incx) can't be converted to int_fblas.dznrm2() 2nd keyword (offx) can't be converted to int_fblas.dznrm2() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.dnrm2 to C/Fortran array_fblas.dnrm2() 3rd keyword (incx) can't be converted to int_fblas.dnrm2() 2nd keyword (offx) can't be converted to int_fblas.dnrm2() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.scnrm2 to C/Fortran array_fblas.scnrm2() 3rd keyword (incx) can't be converted to int_fblas.scnrm2() 2nd keyword (offx) can't be converted to int_fblas.scnrm2() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.snrm2 to C/Fortran array_fblas.snrm2() 3rd keyword (incx) can't be converted to int_fblas.snrm2() 2nd keyword (offx) can't be converted to int_fblas.snrm2() 1st keyword (n) can't be converted to int_fblas.zaxpy() 2nd keyword (a) can't be converted to complex_double_fblas.zaxpy() 4th keyword (incx) can't be converted to int_fblas.zaxpy() 6th keyword (incy) can't be converted to intfailed in converting 2nd argument `y' of _fblas.zaxpy to C/Fortran arrayfailed in converting 1st argument `x' of _fblas.zaxpy to C/Fortran array_fblas.zaxpy() 3rd keyword (offx) can't be converted to int(offx>=0 && offx<len(x)) failed for 3rd keyword offx_fblas.zaxpy() 5th keyword (offy) can't be converted to int(offy>=0 && offy<len(y)) failed for 5th keyword offy_fblas.zaxpy() 1st keyword (n) can't be converted to int(len(y)-offy>(n-1)*abs(incy)) failed for 1st keyword nfailed in converting 1st argument `x' of _fblas.zcopy to C/Fortran arrayfailed in converting 2nd argument `y' of _fblas.zcopy to C/Fortran array_fblas.zcopy() 5th keyword (incy) can't be converted to int(incy>0||incy<0) failed for 5th keyword incy_fblas.zcopy() 3rd keyword (incx) can't be converted to int_fblas.zcopy() 4th keyword (offy) can't be converted to int(offy>=0 && offy<len(y)) failed for 4th keyword offy_fblas.zcopy() 2nd keyword (offx) can't be converted to int_fblas.zcopy() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.ccopy to C/Fortran arrayfailed in converting 2nd argument `y' of _fblas.ccopy to C/Fortran array_fblas.ccopy() 5th keyword (incy) can't be converted to int_fblas.ccopy() 3rd keyword (incx) can't be converted to int_fblas.ccopy() 4th keyword (offy) can't be converted to int_fblas.ccopy() 2nd keyword (offx) can't be converted to int_fblas.ccopy() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.dcopy to C/Fortran arrayfailed in converting 2nd argument `y' of _fblas.dcopy to C/Fortran array_fblas.dcopy() 5th keyword (incy) can't be converted to int_fblas.dcopy() 3rd keyword (incx) can't be converted to int_fblas.dcopy() 4th keyword (offy) can't be converted to int_fblas.dcopy() 2nd keyword (offx) can't be converted to int_fblas.dcopy() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.scopy to C/Fortran arrayfailed in converting 2nd argument `y' of _fblas.scopy to C/Fortran array_fblas.scopy() 5th keyword (incy) can't be converted to int_fblas.scopy() 3rd keyword (incx) can't be converted to int_fblas.scopy() 4th keyword (offy) can't be converted to int_fblas.scopy() 2nd keyword (offx) can't be converted to int_fblas.scopy() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.zswap to C/Fortran arrayfailed in converting 2nd argument `y' of _fblas.zswap to C/Fortran array_fblas.zswap() 5th keyword (incy) can't be converted to int_fblas.zswap() 3rd keyword (incx) can't be converted to int_fblas.zswap() 4th keyword (offy) can't be converted to int_fblas.zswap() 2nd keyword (offx) can't be converted to int_fblas.zswap() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.cswap to C/Fortran arrayfailed in converting 2nd argument `y' of _fblas.cswap to C/Fortran array_fblas.cswap() 5th keyword (incy) can't be converted to int_fblas.cswap() 3rd keyword (incx) can't be converted to int_fblas.cswap() 4th keyword (offy) can't be converted to int_fblas.cswap() 2nd keyword (offx) can't be converted to int_fblas.cswap() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.dswap to C/Fortran arrayfailed in converting 2nd argument `y' of _fblas.dswap to C/Fortran array_fblas.dswap() 5th keyword (incy) can't be converted to int_fblas.dswap() 3rd keyword (incx) can't be converted to int_fblas.dswap() 4th keyword (offy) can't be converted to int_fblas.dswap() 2nd keyword (offx) can't be converted to int_fblas.dswap() 1st keyword (n) can't be converted to intfailed in converting 1st argument `x' of _fblas.sswap to C/Fortran arrayfailed in converting 2nd argument `y' of _fblas.sswap to C/Fortran array_fblas.sswap() 5th keyword (incy) can't be converted to int_fblas.sswap() 3rd keyword (incx) can't be converted to int_fblas.sswap() 4th keyword (offy) can't be converted to int_fblas.sswap() 2nd keyword (offx) can't be converted to int_fblas.sswap() 1st keyword (n) can't be converted to int_fblas.drotm() 3rd keyword (incx) can't be converted to intfailed in converting 3rd argument `param' of _fblas.drotm to C/Fortran array_fblas.drotm() 5th keyword (incy) can't be converted to intfailed in converting 2nd argument `y' of _fblas.drotm to C/Fortran arrayfailed in converting 1st argument `x' of _fblas.drotm to C/Fortran array_fblas.drotm() 2nd keyword (offx) can't be converted to int_fblas.drotm() 4th keyword (offy) can't be converted to int_fblas.drotm() 1st keyword (n) can't be converted to int_fblas.srotm() 3rd keyword (incx) can't be converted to intfailed in converting 3rd argument `param' of _fblas.srotm to C/Fortran array_fblas.srotm() 5th keyword (incy) can't be converted to intfailed in converting 2nd argument `y' of _fblas.srotm to C/Fortran arrayfailed in converting 1st argument `x' of _fblas.srotm to C/Fortran array_fblas.srotm() 2nd keyword (offx) can't be converted to int_fblas.srotm() 4th keyword (offy) can't be converted to int_fblas.srotm() 1st keyword (n) can't be converted to intfailed in converting 2nd argument `a' of _fblas.dtrmm to C/Fortran array_fblas.dtrmm() 2nd keyword (lower) can't be converted to intfailed in converting 3rd argument `b' of _fblas.dtrmm to C/Fortran array_fblas.dtrmm() 3rd keyword (trans_a) can't be converted to int_fblas.dtrmm() 4th keyword (diag) can't be converted to int_fblas.dtrmm() 1st argument (alpha) can't be converted to double_fblas.dtrmm() 1st keyword (side) can't be converted to intfailed in converting 2nd argument `a' of _fblas.strmm to C/Fortran array_fblas.strmm() 2nd keyword (lower) can't be converted to intfailed in converting 3rd argument `b' of _fblas.strmm to C/Fortran array_fblas.strmm() 3rd keyword (trans_a) can't be converted to int_fblas.strmm() 4th keyword (diag) can't be converted to int_fblas.strmm() 1st argument (alpha) can't be converted to float_fblas.strmm() 1st keyword (side) can't be converted to intfailed in converting 2nd argument `a' of _fblas.ssyr2k to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.ssyr2k to C/Fortran array_fblas.ssyr2k() 4th keyword (lower) can't be converted to int_fblas.ssyr2k() 1st keyword (beta) can't be converted to float_fblas.ssyr2k() 1st argument (alpha) can't be converted to float_fblas.ssyr2k() 3rd keyword (trans) can't be converted to intfailed in converting 2nd keyword `c' of _fblas.ssyr2k to C/Fortran arrayfailed in converting 2nd argument `a' of _fblas.ssyrk to C/Fortran array_fblas.ssyrk() 4th keyword (lower) can't be converted to int_fblas.ssyrk() 1st keyword (beta) can't be converted to float_fblas.ssyrk() 1st argument (alpha) can't be converted to float_fblas.ssyrk() 3rd keyword (trans) can't be converted to intfailed in converting 2nd keyword `c' of _fblas.ssyrk to C/Fortran arrayfailed in converting 2nd argument `a' of _fblas.ssymm to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.ssymm to C/Fortran array_fblas.ssymm() 4th keyword (lower) can't be converted to int_fblas.ssymm() 1st keyword (beta) can't be converted to float_fblas.ssymm() 1st argument (alpha) can't be converted to float_fblas.ssymm() 3rd keyword (side) can't be converted to intfailed in converting 2nd keyword `c' of _fblas.ssymm to C/Fortran arrayfailed in converting 2nd argument `a' of _fblas.sgemm to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.sgemm to C/Fortran array_fblas.sgemm() 3rd keyword (trans_a) can't be converted to int_fblas.sgemm() 4th keyword (trans_b) can't be converted to int_fblas.sgemm() 1st keyword (beta) can't be converted to float_fblas.sgemm() 1st argument (alpha) can't be converted to floatfailed in converting 2nd keyword `c' of _fblas.sgemm to C/Fortran arrayfailed in converting 2nd argument `a' of _fblas.ssymv to C/Fortran array_fblas.ssymv() 7th keyword (lower) can't be converted to int_fblas.ssymv() 4th keyword (incx) can't be converted to int_fblas.ssymv() 6th keyword (incy) can't be converted to int_fblas.ssymv() 5th keyword (offy) can't be converted to int_fblas.ssymv() 1st keyword (beta) can't be converted to float_fblas.ssymv() 1st argument (alpha) can't be converted to float_fblas.ssymv() 3rd keyword (offx) can't be converted to intfailed in converting 3rd argument `x' of _fblas.ssymv to C/Fortran arrayfailed in converting 2nd keyword `y' of _fblas.ssymv to C/Fortran arrayfailed in converting 2nd argument `a' of _fblas.sgemv to C/Fortran array_fblas.sgemv() 4th keyword (incx) can't be converted to int_fblas.sgemv() 6th keyword (incy) can't be converted to int_fblas.sgemv() 5th keyword (offy) can't be converted to int_fblas.sgemv() 1st keyword (beta) can't be converted to float_fblas.sgemv() 1st argument (alpha) can't be converted to float_fblas.sgemv() 7th keyword (trans) can't be converted to int_fblas.sgemv() 3rd keyword (offx) can't be converted to intfailed in converting 3rd argument `x' of _fblas.sgemv to C/Fortran arrayfailed in converting 2nd keyword `y' of _fblas.sgemv to C/Fortran array_fblas.saxpy() 2nd keyword (a) can't be converted to float_fblas.saxpy() 4th keyword (incx) can't be converted to int_fblas.saxpy() 6th keyword (incy) can't be converted to intfailed in converting 2nd argument `y' of _fblas.saxpy to C/Fortran arrayfailed in converting 1st argument `x' of _fblas.saxpy to C/Fortran array_fblas.saxpy() 3rd keyword (offx) can't be converted to int_fblas.saxpy() 5th keyword (offy) can't be converted to int_fblas.saxpy() 1st keyword (n) can't be converted to intfailed in converting 2nd argument `a' of _fblas.dsyr2k to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.dsyr2k to C/Fortran array_fblas.dsyr2k() 4th keyword (lower) can't be converted to int_fblas.dsyr2k() 1st keyword (beta) can't be converted to double_fblas.dsyr2k() 1st argument (alpha) can't be converted to double_fblas.dsyr2k() 3rd keyword (trans) can't be converted to intfailed in converting 2nd keyword `c' of _fblas.dsyr2k to C/Fortran arrayfailed in converting 2nd argument `a' of _fblas.dsyrk to C/Fortran array_fblas.dsyrk() 4th keyword (lower) can't be converted to int_fblas.dsyrk() 1st keyword (beta) can't be converted to double_fblas.dsyrk() 1st argument (alpha) can't be converted to double_fblas.dsyrk() 3rd keyword (trans) can't be converted to intfailed in converting 2nd keyword `c' of _fblas.dsyrk to C/Fortran arrayfailed in converting 2nd argument `a' of _fblas.dsymm to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.dsymm to C/Fortran array_fblas.dsymm() 4th keyword (lower) can't be converted to int_fblas.dsymm() 1st keyword (beta) can't be converted to double_fblas.dsymm() 1st argument (alpha) can't be converted to double_fblas.dsymm() 3rd keyword (side) can't be converted to intfailed in converting 2nd keyword `c' of _fblas.dsymm to C/Fortran arrayfailed in converting 2nd argument `a' of _fblas.dgemm to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.dgemm to C/Fortran array_fblas.dgemm() 3rd keyword (trans_a) can't be converted to int_fblas.dgemm() 4th keyword (trans_b) can't be converted to int_fblas.dgemm() 1st keyword (beta) can't be converted to double_fblas.dgemm() 1st argument (alpha) can't be converted to doublefailed in converting 2nd keyword `c' of _fblas.dgemm to C/Fortran arrayfailed in converting 2nd argument `a' of _fblas.dsymv to C/Fortran array_fblas.dsymv() 7th keyword (lower) can't be converted to int_fblas.dsymv() 4th keyword (incx) can't be converted to int_fblas.dsymv() 6th keyword (incy) can't be converted to int_fblas.dsymv() 5th keyword (offy) can't be converted to int_fblas.dsymv() 1st keyword (beta) can't be converted to double_fblas.dsymv() 1st argument (alpha) can't be converted to double_fblas.dsymv() 3rd keyword (offx) can't be converted to intfailed in converting 3rd argument `x' of _fblas.dsymv to C/Fortran arrayfailed in converting 2nd keyword `y' of _fblas.dsymv to C/Fortran arrayfailed in converting 2nd argument `a' of _fblas.dgemv to C/Fortran array_fblas.dgemv() 4th keyword (incx) can't be converted to int_fblas.dgemv() 6th keyword (incy) can't be converted to int_fblas.dgemv() 5th keyword (offy) can't be converted to int_fblas.dgemv() 1st keyword (beta) can't be converted to double_fblas.dgemv() 1st argument (alpha) can't be converted to double_fblas.dgemv() 7th keyword (trans) can't be converted to int_fblas.dgemv() 3rd keyword (offx) can't be converted to intfailed in converting 3rd argument `x' of _fblas.dgemv to C/Fortran arrayfailed in converting 2nd keyword `y' of _fblas.dgemv to C/Fortran array_fblas.daxpy() 2nd keyword (a) can't be converted to double_fblas.daxpy() 4th keyword (incx) can't be converted to int_fblas.daxpy() 6th keyword (incy) can't be converted to intfailed in converting 2nd argument `y' of _fblas.daxpy to C/Fortran arrayfailed in converting 1st argument `x' of _fblas.daxpy to C/Fortran array_fblas.daxpy() 3rd keyword (offx) can't be converted to int_fblas.daxpy() 5th keyword (offy) can't be converted to int_fblas.daxpy() 1st keyword (n) can't be converted to int_fblas.caxpy() 2nd keyword (a) can't be converted to complex_float_fblas.caxpy() 4th keyword (incx) can't be converted to int_fblas.caxpy() 6th keyword (incy) can't be converted to intfailed in converting 2nd argument `y' of _fblas.caxpy to C/Fortran arrayfailed in converting 1st argument `x' of _fblas.caxpy to C/Fortran array_fblas.caxpy() 3rd keyword (offx) can't be converted to int_fblas.caxpy() 5th keyword (offy) can't be converted to int_fblas.caxpy() 1st keyword (n) can't be converted to intfailed in converting 2nd argument `a' of _fblas.csyrk to C/Fortran array_fblas.csyrk() 4th keyword (lower) can't be converted to int_fblas.csyrk() 1st keyword (beta) can't be converted to complex_float_fblas.csyrk() 1st argument (alpha) can't be converted to complex_float_fblas.csyrk() 3rd keyword (trans) can't be converted to intfailed in converting 2nd keyword `c' of _fblas.csyrk to C/Fortran arrayfailed in converting 2nd argument `a' of _fblas.cherk to C/Fortran array_fblas.cherk() 4th keyword (lower) can't be converted to int_fblas.cherk() 1st keyword (beta) can't be converted to complex_float_fblas.cherk() 1st argument (alpha) can't be converted to complex_float_fblas.cherk() 3rd keyword (trans) can't be converted to intfailed in converting 2nd keyword `c' of _fblas.cherk to C/Fortran arrayfailed in converting 2nd argument `a' of _fblas.chemm to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.chemm to C/Fortran array_fblas.chemm() 4th keyword (lower) can't be converted to int_fblas.chemm() 1st keyword (beta) can't be converted to complex_float_fblas.chemm() 1st argument (alpha) can't be converted to complex_float_fblas.chemm() 3rd keyword (side) can't be converted to intfailed in converting 2nd keyword `c' of _fblas.chemm to C/Fortran arrayfailed in converting 2nd argument `a' of _fblas.csyr2k to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.csyr2k to C/Fortran array_fblas.csyr2k() 4th keyword (lower) can't be converted to int_fblas.csyr2k() 1st keyword (beta) can't be converted to complex_float_fblas.csyr2k() 1st argument (alpha) can't be converted to complex_float_fblas.csyr2k() 3rd keyword (trans) can't be converted to intfailed in converting 2nd keyword `c' of _fblas.csyr2k to C/Fortran arrayfailed in converting 2nd argument `a' of _fblas.cher2k to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.cher2k to C/Fortran array_fblas.cher2k() 4th keyword (lower) can't be converted to int_fblas.cher2k() 1st keyword (beta) can't be converted to complex_float_fblas.cher2k() 1st argument (alpha) can't be converted to complex_float_fblas.cher2k() 3rd keyword (trans) can't be converted to intfailed in converting 2nd keyword `c' of _fblas.cher2k to C/Fortran arrayfailed in converting 2nd argument `a' of _fblas.csymm to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.csymm to C/Fortran array_fblas.csymm() 4th keyword (lower) can't be converted to int_fblas.csymm() 1st keyword (beta) can't be converted to complex_float_fblas.csymm() 1st argument (alpha) can't be converted to complex_float_fblas.csymm() 3rd keyword (side) can't be converted to intfailed in converting 2nd keyword `c' of _fblas.csymm to C/Fortran array_fblas.drotg() 1st argument (a) can't be converted to double_fblas.drotg() 2nd argument (b) can't be converted to double_fblas.srotg() 1st argument (a) can't be converted to float_fblas.srotg() 2nd argument (b) can't be converted to float_fblas.drotmg() 4th argument (y1) can't be converted to double_fblas.drotmg() 3rd argument (x1) can't be converted to double_fblas.drotmg() 2nd argument (d2) can't be converted to doublefailed in converting hidden `param' of _fblas.drotmg to C/Fortran array_fblas.drotmg() 1st argument (d1) can't be converted to double_fblas.srotmg() 4th argument (y1) can't be converted to float_fblas.srotmg() 3rd argument (x1) can't be converted to float_fblas.srotmg() 2nd argument (d2) can't be converted to floatfailed in converting hidden `param' of _fblas.srotmg to C/Fortran array_fblas.srotmg() 1st argument (d1) can't be converted to float_fblas.dscal() 1st argument (a) can't be converted to doublefailed in converting 2nd argument `x' of _fblas.dscal to C/Fortran array_fblas.dscal() 3rd keyword (incx) can't be converted to int_fblas.dscal() 2nd keyword (offx) can't be converted to int_fblas.dscal() 1st keyword (n) can't be converted to int_fblas.sscal() 1st argument (a) can't be converted to floatfailed in converting 2nd argument `x' of _fblas.sscal to C/Fortran array_fblas.sscal() 3rd keyword (incx) can't be converted to int_fblas.sscal() 2nd keyword (offx) can't be converted to int_fblas.sscal() 1st keyword (n) can't be converted to int_fblas.zdscal() 1st argument (a) can't be converted to doublefailed in converting 2nd argument `x' of _fblas.zdscal to C/Fortran array_fblas.zdscal() 3rd keyword (incx) can't be converted to int_fblas.zdscal() 2nd keyword (offx) can't be converted to int_fblas.zdscal() 1st keyword (n) can't be converted to int_fblas.csscal() 1st argument (a) can't be converted to floatfailed in converting 2nd argument `x' of _fblas.csscal to C/Fortran array_fblas.csscal() 3rd keyword (incx) can't be converted to int_fblas.csscal() 2nd keyword (offx) can't be converted to int_fblas.csscal() 1st keyword (n) can't be converted to int_fblas.drot() 3rd argument (c) can't be converted to double_fblas.drot() 3rd keyword (incx) can't be converted to int_fblas.drot() 5th keyword (incy) can't be converted to int_fblas.drot() 4th argument (s) can't be converted to doublefailed in converting 2nd argument `y' of _fblas.drot to C/Fortran arrayfailed in converting 1st argument `x' of _fblas.drot to C/Fortran array_fblas.drot() 4th keyword (offy) can't be converted to int_fblas.drot() 2nd keyword (offx) can't be converted to int_fblas.drot() 1st keyword (n) can't be converted to int_fblas.zdrot() 3rd argument (c) can't be converted to double_fblas.zdrot() 3rd keyword (incx) can't be converted to int_fblas.zdrot() 5th keyword (incy) can't be converted to int_fblas.zdrot() 4th argument (s) can't be converted to doublefailed in converting 2nd argument `y' of _fblas.zdrot to C/Fortran arrayfailed in converting 1st argument `x' of _fblas.zdrot to C/Fortran array_fblas.zdrot() 4th keyword (offy) can't be converted to int_fblas.zdrot() 2nd keyword (offx) can't be converted to int_fblas.zdrot() 1st keyword (n) can't be converted to int_fblas.csrot() 3rd argument (c) can't be converted to float_fblas.csrot() 3rd keyword (incx) can't be converted to int_fblas.csrot() 5th keyword (incy) can't be converted to int_fblas.csrot() 4th argument (s) can't be converted to floatfailed in converting 2nd argument `y' of _fblas.csrot to C/Fortran arrayfailed in converting 1st argument `x' of _fblas.csrot to C/Fortran array_fblas.csrot() 4th keyword (offy) can't be converted to int_fblas.csrot() 2nd keyword (offx) can't be converted to int_fblas.csrot() 1st keyword (n) can't be converted to int_fblas.srot() 3rd argument (c) can't be converted to float_fblas.srot() 3rd keyword (incx) can't be converted to int_fblas.srot() 5th keyword (incy) can't be converted to int_fblas.srot() 4th argument (s) can't be converted to floatfailed in converting 2nd argument `y' of _fblas.srot to C/Fortran arrayfailed in converting 1st argument `x' of _fblas.srot to C/Fortran array_fblas.srot() 4th keyword (offy) can't be converted to int_fblas.srot() 2nd keyword (offx) can't be converted to int_fblas.srot() 1st keyword (n) can't be converted to intfailed in converting 2nd argument `a' of _fblas.ctrmm to C/Fortran array_fblas.ctrmm() 2nd keyword (lower) can't be converted to intfailed in converting 3rd argument `b' of _fblas.ctrmm to C/Fortran array_fblas.ctrmm() 3rd keyword (trans_a) can't be converted to int_fblas.ctrmm() 4th keyword (diag) can't be converted to int_fblas.ctrmm() 1st argument (alpha) can't be converted to complex_float_fblas.ctrmm() 1st keyword (side) can't be converted to intfailed in converting 2nd argument `a' of _fblas.cgemm to C/Fortran arrayfailed in converting 3rd argument `b' of _fblas.cgemm to C/Fortran array_fblas.cgemm() 3rd keyword (trans_a) can't be converted to int_fblas.cgemm() 4th keyword (trans_b) can't be converted to int_fblas.cgemm() 1st keyword (beta) can't be converted to complex_float_fblas.cgemm() 1st argument (alpha) can't be converted to complex_floatfailed in converting 2nd keyword `c' of _fblas.cgemm to C/Fortran arrayfailed in converting 2nd argument `a' of _fblas.chemv to C/Fortran array_fblas.chemv() 7th keyword (lower) can't be converted to int_fblas.chemv() 4th keyword (incx) can't be converted to int_fblas.chemv() 6th keyword (incy) can't be converted to int_fblas.chemv() 5th keyword (offy) can't be converted to int_fblas.chemv() 1st keyword (beta) can't be converted to complex_float_fblas.chemv() 1st argument (alpha) can't be converted to complex_float_fblas.chemv() 3rd keyword (offx) can't be converted to intfailed in converting 3rd argument `x' of _fblas.chemv to C/Fortran arrayfailed in converting 2nd keyword `y' of _fblas.chemv to C/Fortran arrayfailed in converting 2nd argument `a' of _fblas.cgemv to C/Fortran array_fblas.cgemv() 4th keyword (incx) can't be converted to int_fblas.cgemv() 6th keyword (incy) can't be converted to int_fblas.cgemv() 5th keyword (offy) can't be converted to int_fblas.cgemv() 1st keyword (beta) can't be converted to complex_float_fblas.cgemv() 1st argument (alpha) can't be converted to complex_float_fblas.cgemv() 7th keyword (trans) can't be converted to int_fblas.cgemv() 3rd keyword (offx) can't be converted to intfailed in converting 3rd argument `x' of _fblas.cgemv to C/Fortran arrayfailed in converting 2nd keyword `y' of _fblas.cgemv to C/Fortran array_fblas.zrotg() 1st argument (a) can't be converted to complex_double_fblas.zrotg() 2nd argument (b) can't be converted to complex_double_fblas.crotg() 1st argument (a) can't be converted to complex_float_fblas.crotg() 2nd argument (b) can't be converted to complex_float_fblas.cscal() 1st argument (a) can't be converted to complex_floatfailed in converting 2nd argument `x' of _fblas.cscal to C/Fortran array_fblas.cscal() 3rd keyword (incx) can't be converted to int_fblas.cscal() 2nd keyword (offx) can't be converted to int_fblas.cscal() 1st keyword (n) can't be converted to int_fblas.zscal() 1st argument (a) can't be converted to complex_doublefailed in converting 2nd argument `x' of _fblas.zscal to C/Fortran array_fblas.zscal() 3rd keyword (incx) can't be converted to int_fblas.zscal() 2nd keyword (offx) can't be converted to int_fblas.zscal() 1st keyword (n) can't be converted to int_fblas.ddot() 3rd keyword (incx) can't be converted to int_fblas.ddot() 5th keyword (incy) can't be converted to intfailed in converting 2nd argument `y' of _fblas.ddot to C/Fortran arrayfailed in converting 1st argument `x' of _fblas.ddot to C/Fortran array_fblas.ddot() 4th keyword (offy) can't be converted to int_fblas.ddot() 2nd keyword (offx) can't be converted to int_fblas.ddot() 1st keyword (n) can't be converted to int_fblas.zsyr() 1st keyword (lower) can't be converted to int(lower == 0 || lower == 1) failed for 1st keyword lower_fblas.zsyr() 2nd keyword (incx) can't be converted to int_fblas.zsyr() 3rd keyword (offx) can't be converted to int_fblas.zsyr() 1st argument (alpha) can't be converted to complex_doublefailed in converting 2nd argument `x' of _fblas.zsyr to C/Fortran array(offx >= 0 && offx < len(x)) failed for 2nd argument x_fblas.zsyr() 4th keyword (n) can't be converted to int(n <= (len(x)-1-offx)/abs(incx)+1) failed for 4th keyword n(n >= 0) failed for 4th keyword nfailed in converting 5th keyword `a' of _fblas.zsyr to C/Fortran array_fblas.zdotc() 3rd keyword (incx) can't be converted to int_fblas.zdotc() 5th keyword (incy) can't be converted to intfailed in converting 2nd argument `y' of _fblas.zdotc to C/Fortran arrayfailed in converting 1st argument `x' of _fblas.zdotc to C/Fortran array_fblas.zdotc() 4th keyword (offy) can't be converted to int_fblas.zdotc() 2nd keyword (offx) can't be converted to int_fblas.zdotc() 1st keyword (n) can't be converted to int_fblas.cdotc() 3rd keyword (incx) can't be converted to int_fblas.cdotc() 5th keyword (incy) can't be converted to intfailed in converting 2nd argument `y' of _fblas.cdotc to C/Fortran arrayfailed in converting 1st argument `x' of _fblas.cdotc to C/Fortran array_fblas.cdotc() 4th keyword (offy) can't be converted to int_fblas.cdotc() 2nd keyword (offx) can't be converted to int_fblas.cdotc() 1st keyword (n) can't be converted to int_fblas.cdotu() 3rd keyword (incx) can't be converted to int_fblas.cdotu() 5th keyword (incy) can't be converted to intfailed in converting 2nd argument `y' of _fblas.cdotu to C/Fortran arrayfailed in converting 1st argument `x' of _fblas.cdotu to C/Fortran array_fblas.cdotu() 4th keyword (offy) can't be converted to int_fblas.cdotu() 2nd keyword (offx) can't be converted to int_fblas.cdotu() 1st keyword (n) can't be converted to int_fblas.zdotu() 3rd keyword (incx) can't be converted to int_fblas.zdotu() 5th keyword (incy) can't be converted to intfailed in converting 2nd argument `y' of _fblas.zdotu to C/Fortran arrayfailed in converting 1st argument `x' of _fblas.zdotu to C/Fortran array_fblas.zdotu() 4th keyword (offy) can't be converted to int_fblas.zdotu() 2nd keyword (offx) can't be converted to int_fblas.zdotu() 1st keyword (n) can't be converted to int_fblas.sdot() 3rd keyword (incx) can't be converted to int_fblas.sdot() 5th keyword (incy) can't be converted to intfailed in converting 2nd argument `y' of _fblas.sdot to C/Fortran arrayfailed in converting 1st argument `x' of _fblas.sdot to C/Fortran array_fblas.sdot() 2nd keyword (offx) can't be converted to int_fblas.sdot() 4th keyword (offy) can't be converted to int_fblas.sdot() 1st keyword (n) can't be converted to int_fblas.dsyr() 1st keyword (lower) can't be converted to int_fblas.dsyr() 2nd keyword (incx) can't be converted to int_fblas.dsyr() 3rd keyword (offx) can't be converted to int_fblas.dsyr() 1st argument (alpha) can't be converted to doublefailed in converting 2nd argument `x' of _fblas.dsyr to C/Fortran array_fblas.dsyr() 4th keyword (n) can't be converted to intfailed in converting 5th keyword `a' of _fblas.dsyr to C/Fortran array_fblas.ssyr() 1st keyword (lower) can't be converted to int_fblas.ssyr() 2nd keyword (incx) can't be converted to int_fblas.ssyr() 3rd keyword (offx) can't be converted to int_fblas.ssyr() 1st argument (alpha) can't be converted to floatfailed in converting 2nd argument `x' of _fblas.ssyr to C/Fortran array_fblas.ssyr() 4th keyword (n) can't be converted to intfailed in converting 5th keyword `a' of _fblas.ssyr to C/Fortran array_fblas.zher() 1st keyword (lower) can't be converted to int_fblas.zher() 2nd keyword (incx) can't be converted to int_fblas.zher() 3rd keyword (offx) can't be converted to int_fblas.zher() 1st argument (alpha) can't be converted to complex_doublefailed in converting 2nd argument `x' of _fblas.zher to C/Fortran array_fblas.zher() 4th keyword (n) can't be converted to intfailed in converting 5th keyword `a' of _fblas.zher to C/Fortran array_fblas.cher() 1st keyword (lower) can't be converted to int_fblas.cher() 2nd keyword (incx) can't be converted to int_fblas.cher() 3rd keyword (offx) can't be converted to int_fblas.cher() 1st argument (alpha) can't be converted to complex_floatfailed in converting 2nd argument `x' of _fblas.cher to C/Fortran array_fblas.cher() 4th keyword (n) can't be converted to intfailed in converting 5th keyword `a' of _fblas.cher to C/Fortran array_fblas.csyr() 1st keyword (lower) can't be converted to int_fblas.csyr() 2nd keyword (incx) can't be converted to int_fblas.csyr() 3rd keyword (offx) can't be converted to int_fblas.csyr() 1st argument (alpha) can't be converted to complex_floatfailed in converting 2nd argument `x' of _fblas.csyr to C/Fortran array_fblas.csyr() 4th keyword (n) can't be converted to intfailed in converting 5th keyword `a' of _fblas.csyr to C/Fortran array_fblas.zher2() 1st keyword (lower) can't be converted to int_fblas.zher2() 2nd keyword (incx) can't be converted to int_fblas.zher2() 4th keyword (incy) can't be converted to int(incy>0||incy<0) failed for 4th keyword incy_fblas.zher2() 5th keyword (offy) can't be converted to int_fblas.zher2() 1st argument (alpha) can't be converted to complex_double_fblas.zher2() 3rd keyword (offx) can't be converted to intfailed in converting 3rd argument `y' of _fblas.zher2 to C/Fortran array(offy >= 0 && offy < len(y)) failed for 3rd argument yfailed in converting 2nd argument `x' of _fblas.zher2 to C/Fortran array_fblas.zher2() 6th keyword (n) can't be converted to int(n <= (len(y)-1-offy)/abs(incy)+1) failed for 6th keyword n(n <= (len(x)-1-offx)/abs(incx)+1) failed for 6th keyword n(n>=0) failed for 6th keyword nfailed in converting 7th keyword `a' of _fblas.zher2 to C/Fortran array_fblas.cher2() 1st keyword (lower) can't be converted to int_fblas.cher2() 2nd keyword (incx) can't be converted to int_fblas.cher2() 4th keyword (incy) can't be converted to int_fblas.cher2() 5th keyword (offy) can't be converted to int_fblas.cher2() 1st argument (alpha) can't be converted to complex_float_fblas.cher2() 3rd keyword (offx) can't be converted to intfailed in converting 3rd argument `y' of _fblas.cher2 to C/Fortran arrayfailed in converting 2nd argument `x' of _fblas.cher2 to C/Fortran array_fblas.cher2() 6th keyword (n) can't be converted to intfailed in converting 7th keyword `a' of _fblas.cher2 to C/Fortran array_fblas.dsyr2() 1st keyword (lower) can't be converted to int_fblas.dsyr2() 2nd keyword (incx) can't be converted to int_fblas.dsyr2() 4th keyword (incy) can't be converted to int_fblas.dsyr2() 5th keyword (offy) can't be converted to int_fblas.dsyr2() 1st argument (alpha) can't be converted to double_fblas.dsyr2() 3rd keyword (offx) can't be converted to intfailed in converting 3rd argument `y' of _fblas.dsyr2 to C/Fortran arrayfailed in converting 2nd argument `x' of _fblas.dsyr2 to C/Fortran array_fblas.dsyr2() 6th keyword (n) can't be converted to intfailed in converting 7th keyword `a' of _fblas.dsyr2 to C/Fortran array_fblas.zgerc() 1st keyword (incx) can't be converted to int(incx==1||incx==-1) failed for 1st keyword incx_fblas.zgerc() 2nd keyword (incy) can't be converted to int(incy==1||incy==-1) failed for 2nd keyword incy_fblas.zgerc() 1st argument (alpha) can't be converted to complex_doublefailed in converting 3rd argument `y' of _fblas.zgerc to C/Fortran arrayfailed in converting 2nd argument `x' of _fblas.zgerc to C/Fortran arrayfailed in converting 3rd keyword `a' of _fblas.zgerc to C/Fortran arrayInitialization of 3rd keyword a failed (initforcomb)._fblas.ssyr2() 1st keyword (lower) can't be converted to int_fblas.ssyr2() 2nd keyword (incx) can't be converted to int_fblas.ssyr2() 4th keyword (incy) can't be converted to int_fblas.ssyr2() 5th keyword (offy) can't be converted to int_fblas.ssyr2() 1st argument (alpha) can't be converted to float_fblas.ssyr2() 3rd keyword (offx) can't be converted to intfailed in converting 3rd argument `y' of _fblas.ssyr2 to C/Fortran arrayfailed in converting 2nd argument `x' of _fblas.ssyr2 to C/Fortran array_fblas.ssyr2() 6th keyword (n) can't be converted to intfailed in converting 7th keyword `a' of _fblas.ssyr2 to C/Fortran array_fblas.sger() 1st keyword (incx) can't be converted to int_fblas.sger() 2nd keyword (incy) can't be converted to int_fblas.sger() 1st argument (alpha) can't be converted to floatfailed in converting 3rd argument `y' of _fblas.sger to C/Fortran arrayfailed in converting 2nd argument `x' of _fblas.sger to C/Fortran arrayfailed in converting 3rd keyword `a' of _fblas.sger to C/Fortran array_fblas.dger() 1st keyword (incx) can't be converted to int_fblas.dger() 2nd keyword (incy) can't be converted to int_fblas.dger() 1st argument (alpha) can't be converted to doublefailed in converting 3rd argument `y' of _fblas.dger to C/Fortran arrayfailed in converting 2nd argument `x' of _fblas.dger to C/Fortran arrayfailed in converting 3rd keyword `a' of _fblas.dger to C/Fortran array_fblas.cgeru() 1st keyword (incx) can't be converted to int_fblas.cgeru() 2nd keyword (incy) can't be converted to int_fblas.cgeru() 1st argument (alpha) can't be converted to complex_floatfailed in converting 3rd argument `y' of _fblas.cgeru to C/Fortran arrayfailed in converting 2nd argument `x' of _fblas.cgeru to C/Fortran arrayfailed in converting 3rd keyword `a' of _fblas.cgeru to C/Fortran array_fblas.zgeru() 1st keyword (incx) can't be converted to int_fblas.zgeru() 2nd keyword (incy) can't be converted to int_fblas.zgeru() 1st argument (alpha) can't be converted to complex_doublefailed in converting 3rd argument `y' of _fblas.zgeru to C/Fortran arrayfailed in converting 2nd argument `x' of _fblas.zgeru to C/Fortran arrayfailed in converting 3rd keyword `a' of _fblas.zgeru to C/Fortran array_fblas.cgerc() 1st keyword (incx) can't be converted to int_fblas.cgerc() 2nd keyword (incy) can't be converted to int_fblas.cgerc() 1st argument (alpha) can't be converted to complex_floatfailed in converting 3rd argument `y' of _fblas.cgerc to C/Fortran arrayfailed in converting 2nd argument `x' of _fblas.cgerc to C/Fortran arrayfailed in converting 3rd keyword `a' of _fblas.cgerc to C/Fortran arraynumpy.core.multiarray failed to import_ARRAY_API is not PyCObject objectmodule compiled against ABI version %x but this version of numpy is %xmodule compiled against API version %x but this version of numpy is %xFATAL: module compiled as unknown endianFATAL: module compiled as little endian, but detected different endianness at runtimecan't initialize module _fblas (failed to import numpy)This module '_fblas' is auto-generated with f2py (version:2).
Functions:
  c,s = srotg(a,b)
  c,s = drotg(a,b)
  c,s = crotg(a,b)
  c,s = zrotg(a,b)
  param = srotmg(d1,d2,x1,y1)
  param = drotmg(d1,d2,x1,y1)
  x,y = srot(x,y,c,s,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1,overwrite_x=0,overwrite_y=0)
  x,y = drot(x,y,c,s,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1,overwrite_x=0,overwrite_y=0)
  x,y = csrot(x,y,c,s,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1,overwrite_x=0,overwrite_y=0)
  x,y = zdrot(x,y,c,s,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1,overwrite_x=0,overwrite_y=0)
  x,y = srotm(x,y,param,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1,overwrite_x=0,overwrite_y=0)
  x,y = drotm(x,y,param,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1,overwrite_x=0,overwrite_y=0)
  x,y = sswap(x,y,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1)
  x,y = dswap(x,y,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1)
  x,y = cswap(x,y,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1)
  x,y = zswap(x,y,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1)
  x = sscal(a,x,n=(len(x)-offx)/abs(incx),offx=0,incx=1)
  x = dscal(a,x,n=(len(x)-offx)/abs(incx),offx=0,incx=1)
  x = cscal(a,x,n=(len(x)-offx)/abs(incx),offx=0,incx=1)
  x = zscal(a,x,n=(len(x)-offx)/abs(incx),offx=0,incx=1)
  x = csscal(a,x,n=(len(x)-offx)/abs(incx),offx=0,incx=1,overwrite_x=0)
  x = zdscal(a,x,n=(len(x)-offx)/abs(incx),offx=0,incx=1,overwrite_x=0)
  y = scopy(x,y,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1)
  y = dcopy(x,y,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1)
  y = ccopy(x,y,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1)
  y = zcopy(x,y,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1)
  z = saxpy(x,y,n=(len(x)-offx)/abs(incx),a=1.0,offx=0,incx=1,offy=0,incy=1)
  z = daxpy(x,y,n=(len(x)-offx)/abs(incx),a=1.0,offx=0,incx=1,offy=0,incy=1)
  z = caxpy(x,y,n=(len(x)-offx)/abs(incx),a=(1.0, 0.0),offx=0,incx=1,offy=0,incy=1)
  z = zaxpy(x,y,n=(len(x)-offx)/abs(incx),a=(1.0, 0.0),offx=0,incx=1,offy=0,incy=1)
  xy = sdot(x,y,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1)
  xy = ddot(x,y,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1)
  xy = cdotu(x,y,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1)
  xy = zdotu(x,y,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1)
  xy = cdotc(x,y,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1)
  xy = zdotc(x,y,n=(len(x)-offx)/abs(incx),offx=0,incx=1,offy=0,incy=1)
  n2 = snrm2(x,n=(len(x)-offx)/abs(incx),offx=0,incx=1)
  n2 = scnrm2(x,n=(len(x)-offx)/abs(incx),offx=0,incx=1)
  n2 = dnrm2(x,n=(len(x)-offx)/abs(incx),offx=0,incx=1)
  n2 = dznrm2(x,n=(len(x)-offx)/abs(incx),offx=0,incx=1)
  s = sasum(x,n=(len(x)-offx)/abs(incx),offx=0,incx=1)
  s = scasum(x,n=(len(x)-offx)/abs(incx),offx=0,incx=1)
  s = dasum(x,n=(len(x)-offx)/abs(incx),offx=0,incx=1)
  s = dzasum(x,n=(len(x)-offx)/abs(incx),offx=0,incx=1)
  k = isamax(x,n=(len(x)-offx)/abs(incx),offx=0,incx=1)
  k = idamax(x,n=(len(x)-offx)/abs(incx),offx=0,incx=1)
  k = icamax(x,n=(len(x)-offx)/abs(incx),offx=0,incx=1)
  k = izamax(x,n=(len(x)-offx)/abs(incx),offx=0,incx=1)
  y = sgemv(alpha,a,x,beta=0.0,y=,offx=0,incx=1,offy=0,incy=1,trans=0,overwrite_y=0)
  y = dgemv(alpha,a,x,beta=0.0,y=,offx=0,incx=1,offy=0,incy=1,trans=0,overwrite_y=0)
  y = cgemv(alpha,a,x,beta=(0.0, 0.0),y=,offx=0,incx=1,offy=0,incy=1,trans=0,overwrite_y=0)
  y = zgemv(alpha,a,x,beta=(0.0, 0.0),y=,offx=0,incx=1,offy=0,incy=1,trans=0,overwrite_y=0)
  y = ssymv(alpha,a,x,beta=0.0,y=,offx=0,incx=1,offy=0,incy=1,lower=0,overwrite_y=0)
  y = dsymv(alpha,a,x,beta=0.0,y=,offx=0,incx=1,offy=0,incy=1,lower=0,overwrite_y=0)
  y = chemv(alpha,a,x,beta=(0.0, 0.0),y=,offx=0,incx=1,offy=0,incy=1,lower=0,overwrite_y=0)
  y = zhemv(alpha,a,x,beta=(0.0, 0.0),y=,offx=0,incx=1,offy=0,incy=1,lower=0,overwrite_y=0)
  x = strmv(a,x,offx=0,incx=1,lower=0,trans=0,unitdiag=0,overwrite_x=0)
  x = dtrmv(a,x,offx=0,incx=1,lower=0,trans=0,unitdiag=0,overwrite_x=0)
  x = ctrmv(a,x,offx=0,incx=1,lower=0,trans=0,unitdiag=0,overwrite_x=0)
  x = ztrmv(a,x,offx=0,incx=1,lower=0,trans=0,unitdiag=0,overwrite_x=0)
  a = sger(alpha,x,y,incx=1,incy=1,a=0.0,overwrite_x=1,overwrite_y=1,overwrite_a=0)
  a = dger(alpha,x,y,incx=1,incy=1,a=0.0,overwrite_x=1,overwrite_y=1,overwrite_a=0)
  a = cgeru(alpha,x,y,incx=1,incy=1,a=(0.0,0.0),overwrite_x=1,overwrite_y=1,overwrite_a=0)
  a = zgeru(alpha,x,y,incx=1,incy=1,a=(0.0,0.0),overwrite_x=1,overwrite_y=1,overwrite_a=0)
  a = cgerc(alpha,x,y,incx=1,incy=1,a=(0.0,0.0),overwrite_x=1,overwrite_y=1,overwrite_a=0)
  a = zgerc(alpha,x,y,incx=1,incy=1,a=(0.0,0.0),overwrite_x=1,overwrite_y=1,overwrite_a=0)
  a = ssyr(alpha,x,lower=0,incx=1,offx=0,n=(len(x)-1-offx)/abs(incx)+1,a=,overwrite_a=0)
  a = dsyr(alpha,x,lower=0,incx=1,offx=0,n=(len(x)-1-offx)/abs(incx)+1,a=,overwrite_a=0)
  a = csyr(alpha,x,lower=0,incx=1,offx=0,n=(len(x)-1-offx)/abs(incx)+1,a=,overwrite_a=0)
  a = zsyr(alpha,x,lower=0,incx=1,offx=0,n=(len(x)-1-offx)/abs(incx)+1,a=,overwrite_a=0)
  a = cher(alpha,x,lower=0,incx=1,offx=0,n=(len(x)-1-offx)/abs(incx)+1,a=,overwrite_a=0)
  a = zher(alpha,x,lower=0,incx=1,offx=0,n=(len(x)-1-offx)/abs(incx)+1,a=,overwrite_a=0)
  a = ssyr2(alpha,x,y,lower=0,incx=1,offx=0,incy=1,offy=0,n=((len(x)-1-offx)/abs(incx)+1 <=(len(y)-1-offy)/abs(incy)+1 ?(len(x)-1-offx)/abs(incx)+1 :(len(y)-1-offy)/abs(incy)+1),a=,overwrite_a=0)
  a = dsyr2(alpha,x,y,lower=0,incx=1,offx=0,incy=1,offy=0,n=((len(x)-1-offx)/abs(incx)+1 <=(len(y)-1-offy)/abs(incy)+1 ?(len(x)-1-offx)/abs(incx)+1 :(len(y)-1-offy)/abs(incy)+1),a=,overwrite_a=0)
  a = cher2(alpha,x,y,lower=0,incx=1,offx=0,incy=1,offy=0,n=((len(x)-1-offx)/abs(incx)+1 <=(len(y)-1-offy)/abs(incy)+1 ?(len(x)-1-offx)/abs(incx)+1 :(len(y)-1-offy)/abs(incy)+1),a=,overwrite_a=0)
  a = zher2(alpha,x,y,lower=0,incx=1,offx=0,incy=1,offy=0,n=((len(x)-1-offx)/abs(incx)+1 <=(len(y)-1-offy)/abs(incy)+1 ?(len(x)-1-offx)/abs(incx)+1 :(len(y)-1-offy)/abs(incy)+1),a=,overwrite_a=0)
  c = sgemm(alpha,a,b,beta=0.0,c=,trans_a=0,trans_b=0,overwrite_c=0)
  c = dgemm(alpha,a,b,beta=0.0,c=,trans_a=0,trans_b=0,overwrite_c=0)
  c = cgemm(alpha,a,b,beta=(0.0, 0.0),c=,trans_a=0,trans_b=0,overwrite_c=0)
  c = zgemm(alpha,a,b,beta=(0.0, 0.0),c=,trans_a=0,trans_b=0,overwrite_c=0)
  c = ssymm(alpha,a,b,beta=0.0,c=,side=0,lower=0,overwrite_c=0)
  c = dsymm(alpha,a,b,beta=0.0,c=,side=0,lower=0,overwrite_c=0)
  c = csymm(alpha,a,b,beta=(0.0, 0.0),c=,side=0,lower=0,overwrite_c=0)
  c = zsymm(alpha,a,b,beta=(0.0, 0.0),c=,side=0,lower=0,overwrite_c=0)
  c = chemm(alpha,a,b,beta=(0.0, 0.0),c=,side=0,lower=0,overwrite_c=0)
  c = zhemm(alpha,a,b,beta=(0.0, 0.0),c=,side=0,lower=0,overwrite_c=0)
  c = ssyrk(alpha,a,beta=0.0,c=,trans=0,lower=0,overwrite_c=0)
  c = dsyrk(alpha,a,beta=0.0,c=,trans=0,lower=0,overwrite_c=0)
  c = csyrk(alpha,a,beta=(0.0, 0.0),c=,trans=0,lower=0,overwrite_c=0)
  c = zsyrk(alpha,a,beta=(0.0, 0.0),c=,trans=0,lower=0,overwrite_c=0)
  c = cherk(alpha,a,beta=(0.0, 0.0),c=,trans=0,lower=0,overwrite_c=0)
  c = zherk(alpha,a,beta=(0.0, 0.0),c=,trans=0,lower=0,overwrite_c=0)
  c = ssyr2k(alpha,a,b,beta=0.0,c=,trans=0,lower=0,overwrite_c=0)
  c = dsyr2k(alpha,a,b,beta=0.0,c=,trans=0,lower=0,overwrite_c=0)
  c = csyr2k(alpha,a,b,beta=(0.0, 0.0),c=,trans=0,lower=0,overwrite_c=0)
  c = zsyr2k(alpha,a,b,beta=(0.0, 0.0),c=,trans=0,lower=0,overwrite_c=0)
  c = cher2k(alpha,a,b,beta=(0.0, 0.0),c=,trans=0,lower=0,overwrite_c=0)
  c = zher2k(alpha,a,b,beta=(0.0, 0.0),c=,trans=0,lower=0,overwrite_c=0)
  b = strmm(alpha,a,b,side=0,lower=0,trans_a=0,diag=0,overwrite_b=0)
  b = dtrmm(alpha,a,b,side=0,lower=0,trans_a=0,diag=0,overwrite_b=0)
  b = ctrmm(alpha,a,b,side=0,lower=0,trans_a=0,diag=0,overwrite_b=0)
  b = ztrmm(alpha,a,b,side=0,lower=0,trans_a=0,diag=0,overwrite_b=0)
.ð?%d-th dimension must be fixed to %ld but got %ld
%d-th dimension must be %ld but got 0 (not defined).
unexpected array size: new_size=%ld, got array with arr_size=%ld (maybe too many free indices)
unexpected array size: new_size=%ld, got array with arr_size=%ld
too many axes: %d (effrank=%d), expected rank=%d
%d-th dimension must be fixed to %ld but got %ld (real index=%d)
unexpected array size: size=%ld, arr_size=%ld, rank=%d, effrank=%d, arr.nd=%d, dims=[this fortran object is not callable -- input must be in one segment -- expected at least elsize=%d but got %ld -- expected elsize=%d but got %ld -- input '%c' not compatible to '%c'failed to initialize intent(inout|inplace|cache) array, input not an arraydelete non-existing fortran attributefortranobject.c: fortran_doc: len(p)=%zd>%zd=size: too long docstring required, increase size
 ], arr.dims=[ %ld ]
<fortran %s><fortran object>no function to callError loading %s
)%ld, -- input not %d-alignedover-writing fortran routine__dict__%s - no docs available'%c'-array(%ld,%ldfortran;¤³p1üÿ 2üÿ8@6üÿÀ 7üÿø =üÿHDüÿ˜€JüÿèÀOüÿ0Uüÿxp[üÿÈàaüÿ	 hüÿh	Ðnüÿ¸	uüÿ
0{üÿX
`üÿ¨
€‰üÿø
à‘üÿH@•üÿˆ ˜üÿÈœüÿ`ŸüÿHà¢üÿˆ`¦üÿÈà©üÿ
`­üÿH
à°üÿˆ
`´üÿÈ
à·üÿ`»üÿH°Áüÿ˜PÇüÿèàÌüÿ8pÒüÿˆØüÿØ€Ýüÿ(ãüÿx€èüÿÈîüÿ õüÿh@üüÿ¸àýüÿðýÿX 
ýÿ¨ðýÿøýÿ8Pýÿˆ€$ýÿØð,ýÿ(5ýÿx <ýÿÈ BýÿðGýÿ``Nýÿ° UýÿP]ýÿP°eýÿ àkýÿð`rýÿ@@xýÿ€ ~ýÿÀ…ýÿŒýÿ`ð’ýÿ°à™ýÿ€œýÿ8PŸýÿp£ýÿÀ0§ýÿ`¬ýÿ@ ±ýÿ€à¶ýÿÀ0¼ýÿ`ÄýÿPÌýÿ ÕýÿðpÝýÿ@ áýÿˆ çýÿØ0îýÿ(@öýÿxàþýÿÈ þÿÐþÿHPþÿ þÿØàþÿ(à%þÿp@-þÿÀ4þÿ à;þÿ` @Cþÿ° ÀJþÿ!ÐQþÿH! Yþÿˆ! `þÿÐ! gþÿ" nþÿ`"Ðwþÿ°"þÿ#`‹þÿP# “þÿ #€þÿð#à¥þÿ@$ ®þÿ$¶þÿà$оþÿ0%@Çþÿ€%ÀÎþÿÈ%ðÎþÿà% Öþÿ¨&ÀÖþÿØ&ðÖþÿø&`×þÿ'À×þÿ0'Øþÿ`'ðÙþÿ°'äþÿ(ðçþÿP(èþÿh( èþÿ€( ðþÿÐ(0ðþÿè(Pðþÿ)`ðþÿ)pðþÿ0)€ðþÿH)ðþÿ`) ðþÿx)°ðþÿ)Àðþÿ¨)ÐðþÿÀ)àðþÿØ)ððþÿð)ñþÿ*ñþÿ * ñþÿ8*0ñþÿP*@ñþÿh*`ñþÿ€*€ñþÿ˜* ñþÿ°*°ñþÿÈ*Àñþÿà*àñþÿø*òþÿ+ òþÿ(+@òþÿ@+`òþÿX+€òþÿp+òþÿˆ+ òþÿ +°òþÿ¸+ÀòþÿÐ+Ðòþÿè+ðòþÿ,óþÿ, óþÿ0,@óþÿH,`óþÿ`,€óþÿx, óþÿ,°óþÿ¨,ÀóþÿÀ,ÐóþÿØ,àóþÿð, ôþÿ-`ôþÿ0-°ôþÿP-ðôþÿp-@õþÿ-€õþÿ°- õþÿÐ-Àõþÿð-àõþÿ.öþÿ0. öþÿP.@öþÿp.`öþÿ.zRx$È#üÿðFJw€?;*3$"zRx4h+üÿ(XƒA
ÃGa
ÃGS
ÃAIÄT`,üÿ”BŽBB ŒA(†D0ƒG`
0A(A BBBAi
0A(A BBBG\
0D(A BBBAz
0A(A BBBF4Üx/üÿYBŒA†D ƒ\
ABJg
AGAL 0üÿþBOŽB B(ŒK0†A8ƒGÀ	
8A0A(B BBBELdP6üÿnBOŽB B(ŒK0†A8ƒGÀž
8A0A(B BBBHL´p<üÿnBOŽB B(ŒK0†A8ƒGÀž
8A0A(B BBBHDBüÿ4BŽOB ŒK(†A0ƒGðÍ
0A(A BBBEDLˆGüÿ4BŽOB ŒK(†A0ƒGðÍ
0A(A BBBEL”€LüÿfBOŽB B(ŒK0†A8ƒGÀž
8A0A(B BBBHLä RüÿfBOŽB B(ŒK0†A8ƒGÀž
8A0A(B BBBHL4ÀXüÿ¶BOŽB L(ŒA0†A8ƒGÐû
8A0A(B BBBCL„0_üÿ/BOŽB B(ŒK0†A8ƒG€Î
8A0A(B BBBHLÔeüÿ'BOŽB B(ŒK0†A8ƒG€Î
8A0A(B BBBHL$ðjüÿ'BOŽB B(ŒK0†A8ƒG€Î
8A0A(B BBBHLtÐpüÿ'BOŽB B(ŒK0†A8ƒG€Î
8A0A(B BBBHLİvüÿBOŽB B(ŒK0†A8ƒG€
8A0A(B BBBGL€~üÿWBOŽB B(ŒA0†A8ƒQ a
8A0A(B BBBE<d†üÿ^BOŒK †A(ƒGÐS
(A ABBC<¤°‰üÿ^BOŒK †A(ƒGÐS
(A ABBC<äЌüÿ^BOŒK †A(ƒGÐS
(A ABBC<$ðüÿ^BOŒK †A(ƒGÐS
(A ABBC<d“üÿ~BOŒK †A(ƒGàs
(A ABBC<¤P–üÿ~BOŒK †A(ƒGàk
(A ABBK<䐙üÿ~BOŒK †A(ƒGàk
(A ABBK<$Мüÿ~BOŒK †A(ƒGàk
(A ABBK<d üÿ~BOŒK †A(ƒGàs
(A ABBC<¤P£üÿ~BOŒK †A(ƒGàk
(A ABBK<䐦üÿ~BOŒK †A(ƒGàk
(A ABBK<$Щüÿ~BOŒK †A(ƒGàk
(A ABBKLd­üÿCBOŽB B(ŒA0†K8ƒG€ö
8A0A(B BBBHL´³üÿ™BOŽB B(ŒK0†A8ƒGàÚ
8A0A(B BBBDL	`¸üÿ‰BOŽB B(ŒK0†A8ƒGàÒ
8A0A(B BBBDLT	 ½üÿ‰BOŽB B(ŒK0†A8ƒGàÒ
8A0A(B BBBDL¤	àÂüÿ‰BOŽB B(ŒK0†A8ƒGàÒ
8A0A(B BBBDLô	 ÈüÿyBOŽB B(ŒK0†A8ƒGàÉ
8A0A(B BBBELD
PÍüÿyBOŽB B(ŒK0†A8ƒGàÁ
8A0A(B BBBEL”
€ÒüÿyBOŽB B(ŒK0†A8ƒGàÁ
8A0A(B BBBELä
°×üÿyBOŽB B(ŒK0†A8ƒGàÁ
8A0A(B BBBEL4àÜüÿBOŽB B(ŒA0†K8ƒGÀÁ
8A0A(B BBBEL„°ãüÿBOŽB B(ŒA0†K8ƒGÀÁ
8A0A(B BBBELÔ€êüÿ’BBŒD †D(ƒD0r
(C ABBFk
(H ABBHL$ÐëüÿBOŽB B(ŒK0†A8ƒGÀ
8A0A(B BBBILtñüÿ.BOŽB B(ŒK0†A8ƒGÀ
8A0A(B BBBELÄp÷üÿÁBOŽB L(ŒA0†A8ƒGÀ²
8A0A(B BBBD<
ðýüÿžBOŒK †A(ƒG€æ
(A ABBHLT
Pýÿ¹BOŽB L(ŒA0†A8ƒGÀ²
8A0A(B BBBDL¤
À	ýÿ!BOŽB L(ŒA0†A8ƒGà'
8A0A(B BBBGLô
 ýÿmBOŽB B(ŒK0†A8ƒG8
8A0A(B BBBFLDÀýÿŸBOŽB B(ŒA0†K8ƒG Á
8A0A(B BBBEL”!ýÿŒBOŽB B(ŒA0†K8ƒGF
8A0A(B BBBHLäP'ýÿrBOŽB B(ŒK0†A8ƒGÀ¶
8A0A(B BBBHD4€-ýÿHBŽOB ŒK(†A0ƒGðå
0A(A BBBEL|ˆ2ýÿjBOŽB B(ŒK0†A8ƒGÀ¶
8A0A(B BBBHL̨8ýÿºBOŽB L(ŒA0†A8ƒGÐ
8A0A(B BBBCL?ýÿ"BOŽB B(ŒK0†A8ƒG€7
8A0A(B BBBGLløFýÿRBOŽB B(ŒA0†A8ƒQ y
8A0A(B BBBEL¼Oýÿ&BOŽB B(ŒA0†K8ƒG€þ
8A0A(B BBBHLèTýÿvBOŽB B(ŒA0†K8ƒG>
8A0A(B BBBH<\[ýÿ×BOŒK †A(ƒG€Í
(A ABBI<œ¸`ýÿ×BOŒK †A(ƒG€Í
(A ABBILÜXfýÿäBOŽB L(ŒA0†A8ƒGÀ–
8A0A(B BBBHL,ølýÿìBOŽB L(ŒA0†A8ƒGÀ–
8A0A(B BBBHL|˜sýÿìBOŽB L(ŒA0†A8ƒGÀ–
8A0A(B BBBHLÌ8zýÿäBOŽB L(ŒA0†A8ƒGÀ–
8A0A(B BBBH4؀ýÿšBŒX†A ƒD§
 DABC4T@ƒýÿÏBŒX†A ƒD´
 AABILŒ؅ýÿ¹BOŽB L(ŒA0†A8ƒGðî
8D0A(B BBBE<ÜH‰ýÿBYŒA †A(ƒGàú
(A ABBD<(ýÿ-BYŒA †A(ƒG€*
(A ABBD<\’ýÿ4BYŒA †A(ƒGA
(A ABBE<œ—ýÿ9BYŒA †A(ƒGí
(A ABBI<ÜœýÿEBYŒA †A(ƒG ý
(A ABBIL(¡ýÿ0BOŽB L(ŒA0†A8ƒGà9
8A0A(B BBBELl©ýÿ0BOŽB L(ŒA0†A8ƒGà9
8A0A(B BBBEL¼è°ýÿpBOŽB L(ŒA0†A8ƒGðq
8A0A(B BBBEL¹ýÿpBOŽB L(ŒA0†A8ƒGðq
8A0A(B BBBED\(Áýÿ­BŽBB ŒD(†A0ƒGp¬
0C(A BBBHL¤ÄýÿþBOŽB B(ŒK0†A8ƒGÀ	
8A0A(B BBBELô@ÊýÿBOŽB L(ŒA0†A8ƒGÐK
8A0A(B BBBCLDÑýÿBOŽB B(ŒK0†A8ƒG€
8A0A(B BBBGL”ÀØýÿœBOŽB B(ŒA0†A8ƒQ ±
8A0A(B BBBE<äáýÿ½BOŒA †K(ƒGÀx
(D ABBK<$åýÿ"BOŒA †K(ƒGÀ˜
(A ABBFDd€êýÿsBŽOB ŒK(†A0ƒG ,
0A(A BBBFD¬¸ñýÿPBŽOB ŒK(†A0ƒG 
0A(A BBBFLôÀøýÿ@BOŽB B(ŒK0†A8ƒGð
8A0A(B BBBFDD°ÿýÿòBŽOB ŒK(†A0ƒGàÌ
0A(A BBBFLŒhþÿXBOŽB B(ŒK0†A8ƒGðô
8A0A(B BBBJLÜx
þÿNBOŽB B(ŒK0†A8ƒGðô
8A0A(B BBBJL,xþÿNBOŽB B(ŒK0†A8ƒGðô
8A0A(B BBBJL|xþÿXBOŽB B(ŒK0†A8ƒGðô
8A0A(B BBBJL̈"þÿ}BOŽB B(ŒK0†A8ƒGð
8A0A(B BBBJD¸)þÿBŽOB ŒK(†A0ƒGàØ
0A(A BBBJ<d€0þÿBBOŒK †A(ƒGðã
(A ABBCD¤7þÿòBŽOB ŒK(†A0ƒGàÌ
0A(A BBBFDìH>þÿòBŽOB ŒK(†A0ƒGàÌ
0A(A BBBFD4EþÿòBŽOB ŒK(†A0ƒGàÌ
0A(A BBBFL|¸Kþÿ¤	BOŽB B(ŒA0†A8ƒQð?
8A0A(B BBBGLÌUþÿ»	BOŽB B(ŒA0†A8ƒQ€B
8A0A(B BBBDLˆ^þÿË	BOŽB B(ŒA0†A8ƒQ€N
8A0A(B BBBHLlhþÿ<BOŽB B(ŒA0†K8ƒGÐ&
8A0A(B BBBHL¼øoþÿà	BOŽB B(ŒK0†A8ƒG€J
8A0A(B BBBDLˆyþÿ\BOŽB B(ŒA0†A8ƒQà&
8A0A(B BBBHL\˜þÿ<BOŽB B(ŒA0†K8ƒGÐ.
8A0A(B BBBHL¬ˆ‰þÿlBOŽB B(ŒA0†A8ƒQà
8A0A(B BBBHLü¨‘þÿ<BOŽB B(ŒA0†K8ƒGÐ&
8A0A(B BBBHLL˜™þÿlBOŽB B(ŒA0†A8ƒQà
8A0A(B BBBHDœ¸¡þÿqBŒY†A ƒ¥
ABL“
OBH
ABEäð¨þÿ(Äü©þÿ-BBŽE E(ŒD0†A8ƒD`²
8F0A(B BBBAŠ
8F0A(B BBBF
8F0A(B BBBJÀ
8A0A(B BBBA|
8C0A(B BBBAa
8F0A(B BBBA,Ä p¯þÿ‘AƒK R
AAdHô à¯þÿ0Aƒj!ð¯þÿiDa
K^
A4!@°þÿTT,L!ˆ°þÿDA†DƒD t
AAAL|!¨°þÿÝBBŒA †D(ƒDPq
(A ABBDI
(A ABBALÌ!8²þÿœ
BEŽB B(ŒD0†D8ƒIÀ%
8A0A(B BBBEL"ˆ¼þÿ[BBŽE B(ŒD0†A8ƒG Â
8A0A(B BBBEl"˜¿þÿ„" ¿þÿLœ"˜¿þÿöBBŽB E(ŒA0†A8ƒG 
c
8A0A(B BBBGì"HÇþÿ#@Çþÿ#HÇþÿ4#@ÇþÿL#8Çþÿd#0Çþÿ|#(Çþÿ”# Çþÿ¬#ÇþÿÄ#ÇþÿÜ#Çþÿô#Çþÿ$øÆþÿ$$ðÆþÿ<$èÆþÿT$àÆþÿl$ØÆþÿ
„$ÐÆþÿœ$ØÆþÿ´$àÆþÿÌ$èÆþÿ
ä$àÆþÿ
ü$ØÆþÿ%àÆþÿ,%èÆþÿD%ðÆþÿ\%øÆþÿt%ÇþÿŒ%Çþÿ¤%Çþÿ¼%øÆþÿÔ%ðÆþÿ
ì%èÆþÿ
&àÆþÿ&èÆþÿ4&ðÆþÿ
L&èÆþÿd&ðÆþÿ|&øÆþÿ”&Çþÿ¬&ÇþÿÄ&ÇþÿÜ&øÆþÿô&ðÆþÿ'èÆþÿ6AƒS `A,'Çþÿ6AƒS `AL'(ÇþÿMAƒS wAl'XÇþÿ;AƒS eAŒ'xÇþÿMAƒS wA¬'¨Çþÿ;AƒS eAÌ'ÈÇþÿAƒ[ì'ÈÇþÿAƒ[(ÈÇþÿAƒ[,(ÈÇþÿAƒ[L(ÈÇþÿAƒ[l(ÈÇþÿAƒ[Œ(ÈÇþÿAƒ[¬(ÈÇþÿAƒ[°­p­	Ž	ž	ð¥
s­$­$õþÿoð`
í	°$P
 ›x*(q	þÿÿo(*ÿÿÿoðÿÿoþ'ùÿÿo1 ­$&¦6¦F¦V¦f¦v¦†¦–¦¦¦¶¦Ʀ֦æ¦ö¦§§&§6§F§V§f§v§†§–§¦§¶§Ƨ֧æ§ö§¨¨&¨6¨F¨V¨f¨v¨†¨–¨¦¨¶¨ƨ֨æ¨ö¨©©&©6©F©V©f©v©†©–©¦©¶©Ʃ֩æ©ö©ªª&ª6ªFªVªfªvª†ª–ª¦ª¶ªƪ֪æªöª««&«6«F«V«f«v«†«–«¦«¶«ƫ֫æ«ö«¬¬&¬6¬F¬V¬f¬v¬†¬–¬¦¬¶¬Ƭ֬æ¬ö¬ ³$b = ztrmm(alpha,a,b,[side,lower,trans_a,diag,overwrite_b])

Wrapper for ``ztrmm``.

Parameters
----------
alpha : input complex
a : input rank-2 array('D') with bounds (lda,k)
b : input rank-2 array('D') with bounds (ldb,n)

Other Parameters
----------------
overwrite_b : input int, optional
    Default: 0
side : input int, optional
    Default: 0
lower : input int, optional
    Default: 0
trans_a : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
b : rank-2 array('D') with bounds (ldb,n)b = ctrmm(alpha,a,b,[side,lower,trans_a,diag,overwrite_b])

Wrapper for ``ctrmm``.

Parameters
----------
alpha : input complex
a : input rank-2 array('F') with bounds (lda,k)
b : input rank-2 array('F') with bounds (ldb,n)

Other Parameters
----------------
overwrite_b : input int, optional
    Default: 0
side : input int, optional
    Default: 0
lower : input int, optional
    Default: 0
trans_a : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
b : rank-2 array('F') with bounds (ldb,n)b = dtrmm(alpha,a,b,[side,lower,trans_a,diag,overwrite_b])

Wrapper for ``dtrmm``.

Parameters
----------
alpha : input float
a : input rank-2 array('d') with bounds (lda,k)
b : input rank-2 array('d') with bounds (ldb,n)

Other Parameters
----------------
overwrite_b : input int, optional
    Default: 0
side : input int, optional
    Default: 0
lower : input int, optional
    Default: 0
trans_a : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
b : rank-2 array('d') with bounds (ldb,n)b = strmm(alpha,a,b,[side,lower,trans_a,diag,overwrite_b])

Wrapper for ``strmm``.

Parameters
----------
alpha : input float
a : input rank-2 array('f') with bounds (lda,k)
b : input rank-2 array('f') with bounds (ldb,n)

Other Parameters
----------------
overwrite_b : input int, optional
    Default: 0
side : input int, optional
    Default: 0
lower : input int, optional
    Default: 0
trans_a : input int, optional
    Default: 0
diag : input int, optional
    Default: 0

Returns
-------
b : rank-2 array('f') with bounds (ldb,n)c = zher2k(alpha,a,b,[beta,c,trans,lower,overwrite_c])

Wrapper for ``zher2k``.

Parameters
----------
alpha : input complex
a : input rank-2 array('D') with bounds (lda,ka)
b : input rank-2 array('D') with bounds (ldb,kb)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
c : input rank-2 array('D') with bounds (n,n)
overwrite_c : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('D') with bounds (n,n)c = cher2k(alpha,a,b,[beta,c,trans,lower,overwrite_c])

Wrapper for ``cher2k``.

Parameters
----------
alpha : input complex
a : input rank-2 array('F') with bounds (lda,ka)
b : input rank-2 array('F') with bounds (ldb,kb)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
c : input rank-2 array('F') with bounds (n,n)
overwrite_c : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('F') with bounds (n,n)c = zsyr2k(alpha,a,b,[beta,c,trans,lower,overwrite_c])

Wrapper for ``zsyr2k``.

Parameters
----------
alpha : input complex
a : input rank-2 array('D') with bounds (lda,ka)
b : input rank-2 array('D') with bounds (ldb,kb)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
c : input rank-2 array('D') with bounds (n,n)
overwrite_c : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('D') with bounds (n,n)c = csyr2k(alpha,a,b,[beta,c,trans,lower,overwrite_c])

Wrapper for ``csyr2k``.

Parameters
----------
alpha : input complex
a : input rank-2 array('F') with bounds (lda,ka)
b : input rank-2 array('F') with bounds (ldb,kb)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
c : input rank-2 array('F') with bounds (n,n)
overwrite_c : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('F') with bounds (n,n)c = dsyr2k(alpha,a,b,[beta,c,trans,lower,overwrite_c])

Wrapper for ``dsyr2k``.

Parameters
----------
alpha : input float
a : input rank-2 array('d') with bounds (lda,ka)
b : input rank-2 array('d') with bounds (ldb,kb)

Other Parameters
----------------
beta : input float, optional
    Default: 0.0
c : input rank-2 array('d') with bounds (n,n)
overwrite_c : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('d') with bounds (n,n)c = ssyr2k(alpha,a,b,[beta,c,trans,lower,overwrite_c])

Wrapper for ``ssyr2k``.

Parameters
----------
alpha : input float
a : input rank-2 array('f') with bounds (lda,ka)
b : input rank-2 array('f') with bounds (ldb,kb)

Other Parameters
----------------
beta : input float, optional
    Default: 0.0
c : input rank-2 array('f') with bounds (n,n)
overwrite_c : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('f') with bounds (n,n)c = zherk(alpha,a,[beta,c,trans,lower,overwrite_c])

Wrapper for ``zherk``.

Parameters
----------
alpha : input complex
a : input rank-2 array('D') with bounds (lda,ka)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
c : input rank-2 array('D') with bounds (n,n)
overwrite_c : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('D') with bounds (n,n)c = cherk(alpha,a,[beta,c,trans,lower,overwrite_c])

Wrapper for ``cherk``.

Parameters
----------
alpha : input complex
a : input rank-2 array('F') with bounds (lda,ka)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
c : input rank-2 array('F') with bounds (n,n)
overwrite_c : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('F') with bounds (n,n)c = zsyrk(alpha,a,[beta,c,trans,lower,overwrite_c])

Wrapper for ``zsyrk``.

Parameters
----------
alpha : input complex
a : input rank-2 array('D') with bounds (lda,ka)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
c : input rank-2 array('D') with bounds (n,n)
overwrite_c : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('D') with bounds (n,n)c = csyrk(alpha,a,[beta,c,trans,lower,overwrite_c])

Wrapper for ``csyrk``.

Parameters
----------
alpha : input complex
a : input rank-2 array('F') with bounds (lda,ka)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
c : input rank-2 array('F') with bounds (n,n)
overwrite_c : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('F') with bounds (n,n)c = dsyrk(alpha,a,[beta,c,trans,lower,overwrite_c])

Wrapper for ``dsyrk``.

Parameters
----------
alpha : input float
a : input rank-2 array('d') with bounds (lda,ka)

Other Parameters
----------------
beta : input float, optional
    Default: 0.0
c : input rank-2 array('d') with bounds (n,n)
overwrite_c : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('d') with bounds (n,n)c = ssyrk(alpha,a,[beta,c,trans,lower,overwrite_c])

Wrapper for ``ssyrk``.

Parameters
----------
alpha : input float
a : input rank-2 array('f') with bounds (lda,ka)

Other Parameters
----------------
beta : input float, optional
    Default: 0.0
c : input rank-2 array('f') with bounds (n,n)
overwrite_c : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('f') with bounds (n,n)c = zhemm(alpha,a,b,[beta,c,side,lower,overwrite_c])

Wrapper for ``zhemm``.

Parameters
----------
alpha : input complex
a : input rank-2 array('D') with bounds (lda,ka)
b : input rank-2 array('D') with bounds (ldb,kb)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
c : input rank-2 array('D') with bounds (m,n)
overwrite_c : input int, optional
    Default: 0
side : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('D') with bounds (m,n)c = chemm(alpha,a,b,[beta,c,side,lower,overwrite_c])

Wrapper for ``chemm``.

Parameters
----------
alpha : input complex
a : input rank-2 array('F') with bounds (lda,ka)
b : input rank-2 array('F') with bounds (ldb,kb)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
c : input rank-2 array('F') with bounds (m,n)
overwrite_c : input int, optional
    Default: 0
side : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('F') with bounds (m,n)c = zsymm(alpha,a,b,[beta,c,side,lower,overwrite_c])

Wrapper for ``zsymm``.

Parameters
----------
alpha : input complex
a : input rank-2 array('D') with bounds (lda,ka)
b : input rank-2 array('D') with bounds (ldb,kb)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
c : input rank-2 array('D') with bounds (m,n)
overwrite_c : input int, optional
    Default: 0
side : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('D') with bounds (m,n)c = csymm(alpha,a,b,[beta,c,side,lower,overwrite_c])

Wrapper for ``csymm``.

Parameters
----------
alpha : input complex
a : input rank-2 array('F') with bounds (lda,ka)
b : input rank-2 array('F') with bounds (ldb,kb)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
c : input rank-2 array('F') with bounds (m,n)
overwrite_c : input int, optional
    Default: 0
side : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('F') with bounds (m,n)c = dsymm(alpha,a,b,[beta,c,side,lower,overwrite_c])

Wrapper for ``dsymm``.

Parameters
----------
alpha : input float
a : input rank-2 array('d') with bounds (lda,ka)
b : input rank-2 array('d') with bounds (ldb,kb)

Other Parameters
----------------
beta : input float, optional
    Default: 0.0
c : input rank-2 array('d') with bounds (m,n)
overwrite_c : input int, optional
    Default: 0
side : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('d') with bounds (m,n)c = ssymm(alpha,a,b,[beta,c,side,lower,overwrite_c])

Wrapper for ``ssymm``.

Parameters
----------
alpha : input float
a : input rank-2 array('f') with bounds (lda,ka)
b : input rank-2 array('f') with bounds (ldb,kb)

Other Parameters
----------------
beta : input float, optional
    Default: 0.0
c : input rank-2 array('f') with bounds (m,n)
overwrite_c : input int, optional
    Default: 0
side : input int, optional
    Default: 0
lower : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('f') with bounds (m,n)c = zgemm(alpha,a,b,[beta,c,trans_a,trans_b,overwrite_c])

Wrapper for ``zgemm``.

Parameters
----------
alpha : input complex
a : input rank-2 array('D') with bounds (lda,ka)
b : input rank-2 array('D') with bounds (ldb,kb)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
c : input rank-2 array('D') with bounds (m,n)
overwrite_c : input int, optional
    Default: 0
trans_a : input int, optional
    Default: 0
trans_b : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('D') with bounds (m,n)c = cgemm(alpha,a,b,[beta,c,trans_a,trans_b,overwrite_c])

Wrapper for ``cgemm``.

Parameters
----------
alpha : input complex
a : input rank-2 array('F') with bounds (lda,ka)
b : input rank-2 array('F') with bounds (ldb,kb)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
c : input rank-2 array('F') with bounds (m,n)
overwrite_c : input int, optional
    Default: 0
trans_a : input int, optional
    Default: 0
trans_b : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('F') with bounds (m,n)c = dgemm(alpha,a,b,[beta,c,trans_a,trans_b,overwrite_c])

Wrapper for ``dgemm``.

Parameters
----------
alpha : input float
a : input rank-2 array('d') with bounds (lda,ka)
b : input rank-2 array('d') with bounds (ldb,kb)

Other Parameters
----------------
beta : input float, optional
    Default: 0.0
c : input rank-2 array('d') with bounds (m,n)
overwrite_c : input int, optional
    Default: 0
trans_a : input int, optional
    Default: 0
trans_b : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('d') with bounds (m,n)c = sgemm(alpha,a,b,[beta,c,trans_a,trans_b,overwrite_c])

Wrapper for ``sgemm``.

Parameters
----------
alpha : input float
a : input rank-2 array('f') with bounds (lda,ka)
b : input rank-2 array('f') with bounds (ldb,kb)

Other Parameters
----------------
beta : input float, optional
    Default: 0.0
c : input rank-2 array('f') with bounds (m,n)
overwrite_c : input int, optional
    Default: 0
trans_a : input int, optional
    Default: 0
trans_b : input int, optional
    Default: 0

Returns
-------
c : rank-2 array('f') with bounds (m,n)a = zher2(alpha,x,y,[lower,incx,offx,incy,offy,n,a,overwrite_a])

Wrapper for ``zher2``.

Parameters
----------
alpha : input complex
x : input rank-1 array('D') with bounds (*)
y : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
lower : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
n : input int, optional
    Default: ((len(x)-1-offx)/abs(incx)+1 <=(len(y)-1-offy)/abs(incy)+1 ?(len(x)-1-offx)/abs(incx)+1 :(len(y)-1-offy)/abs(incy)+1)
a : input rank-2 array('D') with bounds (n,n)
overwrite_a : input int, optional
    Default: 0

Returns
-------
a : rank-2 array('D') with bounds (n,n)a = cher2(alpha,x,y,[lower,incx,offx,incy,offy,n,a,overwrite_a])

Wrapper for ``cher2``.

Parameters
----------
alpha : input complex
x : input rank-1 array('F') with bounds (*)
y : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
lower : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
n : input int, optional
    Default: ((len(x)-1-offx)/abs(incx)+1 <=(len(y)-1-offy)/abs(incy)+1 ?(len(x)-1-offx)/abs(incx)+1 :(len(y)-1-offy)/abs(incy)+1)
a : input rank-2 array('F') with bounds (n,n)
overwrite_a : input int, optional
    Default: 0

Returns
-------
a : rank-2 array('F') with bounds (n,n)a = dsyr2(alpha,x,y,[lower,incx,offx,incy,offy,n,a,overwrite_a])

Wrapper for ``dsyr2``.

Parameters
----------
alpha : input float
x : input rank-1 array('d') with bounds (*)
y : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
lower : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
n : input int, optional
    Default: ((len(x)-1-offx)/abs(incx)+1 <=(len(y)-1-offy)/abs(incy)+1 ?(len(x)-1-offx)/abs(incx)+1 :(len(y)-1-offy)/abs(incy)+1)
a : input rank-2 array('d') with bounds (n,n)
overwrite_a : input int, optional
    Default: 0

Returns
-------
a : rank-2 array('d') with bounds (n,n)a = ssyr2(alpha,x,y,[lower,incx,offx,incy,offy,n,a,overwrite_a])

Wrapper for ``ssyr2``.

Parameters
----------
alpha : input float
x : input rank-1 array('f') with bounds (*)
y : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
lower : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
n : input int, optional
    Default: ((len(x)-1-offx)/abs(incx)+1 <=(len(y)-1-offy)/abs(incy)+1 ?(len(x)-1-offx)/abs(incx)+1 :(len(y)-1-offy)/abs(incy)+1)
a : input rank-2 array('f') with bounds (n,n)
overwrite_a : input int, optional
    Default: 0

Returns
-------
a : rank-2 array('f') with bounds (n,n)a = zher(alpha,x,[lower,incx,offx,n,a,overwrite_a])

Wrapper for ``zher``.

Parameters
----------
alpha : input complex
x : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
lower : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
n : input int, optional
    Default: (len(x)-1-offx)/abs(incx)+1
a : input rank-2 array('D') with bounds (n,n)
overwrite_a : input int, optional
    Default: 0

Returns
-------
a : rank-2 array('D') with bounds (n,n)a = cher(alpha,x,[lower,incx,offx,n,a,overwrite_a])

Wrapper for ``cher``.

Parameters
----------
alpha : input complex
x : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
lower : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
n : input int, optional
    Default: (len(x)-1-offx)/abs(incx)+1
a : input rank-2 array('F') with bounds (n,n)
overwrite_a : input int, optional
    Default: 0

Returns
-------
a : rank-2 array('F') with bounds (n,n)a = zsyr(alpha,x,[lower,incx,offx,n,a,overwrite_a])

Wrapper for ``zsyr``.

Parameters
----------
alpha : input complex
x : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
lower : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
n : input int, optional
    Default: (len(x)-1-offx)/abs(incx)+1
a : input rank-2 array('D') with bounds (n,n)
overwrite_a : input int, optional
    Default: 0

Returns
-------
a : rank-2 array('D') with bounds (n,n)a = csyr(alpha,x,[lower,incx,offx,n,a,overwrite_a])

Wrapper for ``csyr``.

Parameters
----------
alpha : input complex
x : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
lower : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
n : input int, optional
    Default: (len(x)-1-offx)/abs(incx)+1
a : input rank-2 array('F') with bounds (n,n)
overwrite_a : input int, optional
    Default: 0

Returns
-------
a : rank-2 array('F') with bounds (n,n)a = dsyr(alpha,x,[lower,incx,offx,n,a,overwrite_a])

Wrapper for ``dsyr``.

Parameters
----------
alpha : input float
x : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
lower : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
n : input int, optional
    Default: (len(x)-1-offx)/abs(incx)+1
a : input rank-2 array('d') with bounds (n,n)
overwrite_a : input int, optional
    Default: 0

Returns
-------
a : rank-2 array('d') with bounds (n,n)a = ssyr(alpha,x,[lower,incx,offx,n,a,overwrite_a])

Wrapper for ``ssyr``.

Parameters
----------
alpha : input float
x : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
lower : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offx : input int, optional
    Default: 0
n : input int, optional
    Default: (len(x)-1-offx)/abs(incx)+1
a : input rank-2 array('f') with bounds (n,n)
overwrite_a : input int, optional
    Default: 0

Returns
-------
a : rank-2 array('f') with bounds (n,n)a = zgerc(alpha,x,y,[incx,incy,a,overwrite_x,overwrite_y,overwrite_a])

Wrapper for ``zgerc``.

Parameters
----------
alpha : input complex
x : input rank-1 array('D') with bounds (m)
y : input rank-1 array('D') with bounds (n)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 1
incx : input int, optional
    Default: 1
overwrite_y : input int, optional
    Default: 1
incy : input int, optional
    Default: 1
a : input rank-2 array('D') with bounds (m,n), optional
    Default: (0.0,0.0)
overwrite_a : input int, optional
    Default: 0

Returns
-------
a : rank-2 array('D') with bounds (m,n)a = cgerc(alpha,x,y,[incx,incy,a,overwrite_x,overwrite_y,overwrite_a])

Wrapper for ``cgerc``.

Parameters
----------
alpha : input complex
x : input rank-1 array('F') with bounds (m)
y : input rank-1 array('F') with bounds (n)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 1
incx : input int, optional
    Default: 1
overwrite_y : input int, optional
    Default: 1
incy : input int, optional
    Default: 1
a : input rank-2 array('F') with bounds (m,n), optional
    Default: (0.0,0.0)
overwrite_a : input int, optional
    Default: 0

Returns
-------
a : rank-2 array('F') with bounds (m,n)a = zgeru(alpha,x,y,[incx,incy,a,overwrite_x,overwrite_y,overwrite_a])

Wrapper for ``zgeru``.

Parameters
----------
alpha : input complex
x : input rank-1 array('D') with bounds (m)
y : input rank-1 array('D') with bounds (n)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 1
incx : input int, optional
    Default: 1
overwrite_y : input int, optional
    Default: 1
incy : input int, optional
    Default: 1
a : input rank-2 array('D') with bounds (m,n), optional
    Default: (0.0,0.0)
overwrite_a : input int, optional
    Default: 0

Returns
-------
a : rank-2 array('D') with bounds (m,n)a = cgeru(alpha,x,y,[incx,incy,a,overwrite_x,overwrite_y,overwrite_a])

Wrapper for ``cgeru``.

Parameters
----------
alpha : input complex
x : input rank-1 array('F') with bounds (m)
y : input rank-1 array('F') with bounds (n)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 1
incx : input int, optional
    Default: 1
overwrite_y : input int, optional
    Default: 1
incy : input int, optional
    Default: 1
a : input rank-2 array('F') with bounds (m,n), optional
    Default: (0.0,0.0)
overwrite_a : input int, optional
    Default: 0

Returns
-------
a : rank-2 array('F') with bounds (m,n)a = dger(alpha,x,y,[incx,incy,a,overwrite_x,overwrite_y,overwrite_a])

Wrapper for ``dger``.

Parameters
----------
alpha : input float
x : input rank-1 array('d') with bounds (m)
y : input rank-1 array('d') with bounds (n)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 1
incx : input int, optional
    Default: 1
overwrite_y : input int, optional
    Default: 1
incy : input int, optional
    Default: 1
a : input rank-2 array('d') with bounds (m,n), optional
    Default: 0.0
overwrite_a : input int, optional
    Default: 0

Returns
-------
a : rank-2 array('d') with bounds (m,n)a = sger(alpha,x,y,[incx,incy,a,overwrite_x,overwrite_y,overwrite_a])

Wrapper for ``sger``.

Parameters
----------
alpha : input float
x : input rank-1 array('f') with bounds (m)
y : input rank-1 array('f') with bounds (n)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 1
incx : input int, optional
    Default: 1
overwrite_y : input int, optional
    Default: 1
incy : input int, optional
    Default: 1
a : input rank-2 array('f') with bounds (m,n), optional
    Default: 0.0
overwrite_a : input int, optional
    Default: 0

Returns
-------
a : rank-2 array('f') with bounds (m,n)x = ztrmv(a,x,[offx,incx,lower,trans,unitdiag,overwrite_x])

Wrapper for ``ztrmv``.

Parameters
----------
a : input rank-2 array('D') with bounds (n,n)
x : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
lower : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
unitdiag : input int, optional
    Default: 0

Returns
-------
x : rank-1 array('D') with bounds (*)x = ctrmv(a,x,[offx,incx,lower,trans,unitdiag,overwrite_x])

Wrapper for ``ctrmv``.

Parameters
----------
a : input rank-2 array('F') with bounds (n,n)
x : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
lower : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
unitdiag : input int, optional
    Default: 0

Returns
-------
x : rank-1 array('F') with bounds (*)x = dtrmv(a,x,[offx,incx,lower,trans,unitdiag,overwrite_x])

Wrapper for ``dtrmv``.

Parameters
----------
a : input rank-2 array('d') with bounds (n,n)
x : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
lower : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
unitdiag : input int, optional
    Default: 0

Returns
-------
x : rank-1 array('d') with bounds (*)x = strmv(a,x,[offx,incx,lower,trans,unitdiag,overwrite_x])

Wrapper for ``strmv``.

Parameters
----------
a : input rank-2 array('f') with bounds (n,n)
x : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
overwrite_x : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
lower : input int, optional
    Default: 0
trans : input int, optional
    Default: 0
unitdiag : input int, optional
    Default: 0

Returns
-------
x : rank-1 array('f') with bounds (*)y = zhemv(alpha,a,x,[beta,y,offx,incx,offy,incy,lower,overwrite_y])

Wrapper for ``zhemv``.

Parameters
----------
alpha : input complex
a : input rank-2 array('D') with bounds (n,n)
x : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
y : input rank-1 array('D') with bounds (ly)
overwrite_y : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
lower : input int, optional
    Default: 0

Returns
-------
y : rank-1 array('D') with bounds (ly)y = chemv(alpha,a,x,[beta,y,offx,incx,offy,incy,lower,overwrite_y])

Wrapper for ``chemv``.

Parameters
----------
alpha : input complex
a : input rank-2 array('F') with bounds (n,n)
x : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
y : input rank-1 array('F') with bounds (ly)
overwrite_y : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
lower : input int, optional
    Default: 0

Returns
-------
y : rank-1 array('F') with bounds (ly)y = dsymv(alpha,a,x,[beta,y,offx,incx,offy,incy,lower,overwrite_y])

Wrapper for ``dsymv``.

Parameters
----------
alpha : input float
a : input rank-2 array('d') with bounds (n,n)
x : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
beta : input float, optional
    Default: 0.0
y : input rank-1 array('d') with bounds (ly)
overwrite_y : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
lower : input int, optional
    Default: 0

Returns
-------
y : rank-1 array('d') with bounds (ly)y = ssymv(alpha,a,x,[beta,y,offx,incx,offy,incy,lower,overwrite_y])

Wrapper for ``ssymv``.

Parameters
----------
alpha : input float
a : input rank-2 array('f') with bounds (n,n)
x : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
beta : input float, optional
    Default: 0.0
y : input rank-1 array('f') with bounds (ly)
overwrite_y : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
lower : input int, optional
    Default: 0

Returns
-------
y : rank-1 array('f') with bounds (ly)y = zgemv(alpha,a,x,[beta,y,offx,incx,offy,incy,trans,overwrite_y])

Wrapper for ``zgemv``.

Parameters
----------
alpha : input complex
a : input rank-2 array('D') with bounds (m,n)
x : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
y : input rank-1 array('D') with bounds (ly)
overwrite_y : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
trans : input int, optional
    Default: 0

Returns
-------
y : rank-1 array('D') with bounds (ly)y = cgemv(alpha,a,x,[beta,y,offx,incx,offy,incy,trans,overwrite_y])

Wrapper for ``cgemv``.

Parameters
----------
alpha : input complex
a : input rank-2 array('F') with bounds (m,n)
x : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
beta : input complex, optional
    Default: (0.0, 0.0)
y : input rank-1 array('F') with bounds (ly)
overwrite_y : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
trans : input int, optional
    Default: 0

Returns
-------
y : rank-1 array('F') with bounds (ly)y = dgemv(alpha,a,x,[beta,y,offx,incx,offy,incy,trans,overwrite_y])

Wrapper for ``dgemv``.

Parameters
----------
alpha : input float
a : input rank-2 array('d') with bounds (m,n)
x : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
beta : input float, optional
    Default: 0.0
y : input rank-1 array('d') with bounds (ly)
overwrite_y : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
trans : input int, optional
    Default: 0

Returns
-------
y : rank-1 array('d') with bounds (ly)y = sgemv(alpha,a,x,[beta,y,offx,incx,offy,incy,trans,overwrite_y])

Wrapper for ``sgemv``.

Parameters
----------
alpha : input float
a : input rank-2 array('f') with bounds (m,n)
x : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
beta : input float, optional
    Default: 0.0
y : input rank-1 array('f') with bounds (ly)
overwrite_y : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1
trans : input int, optional
    Default: 0

Returns
-------
y : rank-1 array('f') with bounds (ly)k = izamax(x,[n,offx,incx])

Wrapper for ``izamax``.

Parameters
----------
x : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
k : intk = icamax(x,[n,offx,incx])

Wrapper for ``icamax``.

Parameters
----------
x : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
k : intk = idamax(x,[n,offx,incx])

Wrapper for ``idamax``.

Parameters
----------
x : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
k : intk = isamax(x,[n,offx,incx])

Wrapper for ``isamax``.

Parameters
----------
x : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
k : ints = dzasum(x,[n,offx,incx])

Wrapper for ``dzasum``.

Parameters
----------
x : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
s : floats = dasum(x,[n,offx,incx])

Wrapper for ``dasum``.

Parameters
----------
x : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
s : floats = scasum(x,[n,offx,incx])

Wrapper for ``scasum``.

Parameters
----------
x : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
s : floats = sasum(x,[n,offx,incx])

Wrapper for ``sasum``.

Parameters
----------
x : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
s : floatn2 = dznrm2(x,[n,offx,incx])

Wrapper for ``dznrm2``.

Parameters
----------
x : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
n2 : floatn2 = dnrm2(x,[n,offx,incx])

Wrapper for ``dnrm2``.

Parameters
----------
x : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
n2 : floatn2 = scnrm2(x,[n,offx,incx])

Wrapper for ``scnrm2``.

Parameters
----------
x : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
n2 : floatn2 = snrm2(x,[n,offx,incx])

Wrapper for ``snrm2``.

Parameters
----------
x : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
n2 : floatxy = zdotc(x,y,[n,offx,incx,offy,incy])

Wrapper for ``zdotc``.

Parameters
----------
x : input rank-1 array('D') with bounds (*)
y : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
xy : complexxy = cdotc(x,y,[n,offx,incx,offy,incy])

Wrapper for ``cdotc``.

Parameters
----------
x : input rank-1 array('F') with bounds (*)
y : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
xy : complexxy = zdotu(x,y,[n,offx,incx,offy,incy])

Wrapper for ``zdotu``.

Parameters
----------
x : input rank-1 array('D') with bounds (*)
y : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
xy : complexxy = cdotu(x,y,[n,offx,incx,offy,incy])

Wrapper for ``cdotu``.

Parameters
----------
x : input rank-1 array('F') with bounds (*)
y : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
xy : complexxy = ddot(x,y,[n,offx,incx,offy,incy])

Wrapper for ``ddot``.

Parameters
----------
x : input rank-1 array('d') with bounds (*)
y : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
xy : floatxy = sdot(x,y,[n,offx,incx,offy,incy])

Wrapper for ``sdot``.

Parameters
----------
x : input rank-1 array('f') with bounds (*)
y : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
xy : floatz = zaxpy(x,y,[n,a,offx,incx,offy,incy])

Wrapper for ``zaxpy``.

Parameters
----------
x : input rank-1 array('D') with bounds (*)
y : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
a : input complex, optional
    Default: (1.0, 0.0)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
z : rank-1 array('D') with bounds (*) and y storagez = caxpy(x,y,[n,a,offx,incx,offy,incy])

Wrapper for ``caxpy``.

Parameters
----------
x : input rank-1 array('F') with bounds (*)
y : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
a : input complex, optional
    Default: (1.0, 0.0)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
z : rank-1 array('F') with bounds (*) and y storagez = daxpy(x,y,[n,a,offx,incx,offy,incy])

Wrapper for ``daxpy``.

Parameters
----------
x : input rank-1 array('d') with bounds (*)
y : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
a : input float, optional
    Default: 1.0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
z : rank-1 array('d') with bounds (*) and y storagez = saxpy(x,y,[n,a,offx,incx,offy,incy])

Wrapper for ``saxpy``.

Parameters
----------
x : input rank-1 array('f') with bounds (*)
y : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
a : input float, optional
    Default: 1.0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
z : rank-1 array('f') with bounds (*) and y storagey = zcopy(x,y,[n,offx,incx,offy,incy])

Wrapper for ``zcopy``.

Parameters
----------
x : input rank-1 array('D') with bounds (*)
y : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
y : rank-1 array('D') with bounds (*)y = ccopy(x,y,[n,offx,incx,offy,incy])

Wrapper for ``ccopy``.

Parameters
----------
x : input rank-1 array('F') with bounds (*)
y : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
y : rank-1 array('F') with bounds (*)y = dcopy(x,y,[n,offx,incx,offy,incy])

Wrapper for ``dcopy``.

Parameters
----------
x : input rank-1 array('d') with bounds (*)
y : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
y : rank-1 array('d') with bounds (*)y = scopy(x,y,[n,offx,incx,offy,incy])

Wrapper for ``scopy``.

Parameters
----------
x : input rank-1 array('f') with bounds (*)
y : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
y : rank-1 array('f') with bounds (*)x = zdscal(a,x,[n,offx,incx,overwrite_x])

Wrapper for ``zdscal``.

Parameters
----------
a : input float
x : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
overwrite_x : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
x : rank-1 array('D') with bounds (*)x = csscal(a,x,[n,offx,incx,overwrite_x])

Wrapper for ``csscal``.

Parameters
----------
a : input float
x : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
overwrite_x : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
x : rank-1 array('F') with bounds (*)x = zscal(a,x,[n,offx,incx])

Wrapper for ``zscal``.

Parameters
----------
a : input complex
x : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
x : rank-1 array('D') with bounds (*)x = cscal(a,x,[n,offx,incx])

Wrapper for ``cscal``.

Parameters
----------
a : input complex
x : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
x : rank-1 array('F') with bounds (*)x = dscal(a,x,[n,offx,incx])

Wrapper for ``dscal``.

Parameters
----------
a : input float
x : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
x : rank-1 array('d') with bounds (*)x = sscal(a,x,[n,offx,incx])

Wrapper for ``sscal``.

Parameters
----------
a : input float
x : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1

Returns
-------
x : rank-1 array('f') with bounds (*)x,y = zswap(x,y,[n,offx,incx,offy,incy])

Wrapper for ``zswap``.

Parameters
----------
x : input rank-1 array('D') with bounds (*)
y : input rank-1 array('D') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
x : rank-1 array('D') with bounds (*)
y : rank-1 array('D') with bounds (*)x,y = cswap(x,y,[n,offx,incx,offy,incy])

Wrapper for ``cswap``.

Parameters
----------
x : input rank-1 array('F') with bounds (*)
y : input rank-1 array('F') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
x : rank-1 array('F') with bounds (*)
y : rank-1 array('F') with bounds (*)x,y = dswap(x,y,[n,offx,incx,offy,incy])

Wrapper for ``dswap``.

Parameters
----------
x : input rank-1 array('d') with bounds (*)
y : input rank-1 array('d') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
x : rank-1 array('d') with bounds (*)
y : rank-1 array('d') with bounds (*)x,y = sswap(x,y,[n,offx,incx,offy,incy])

Wrapper for ``sswap``.

Parameters
----------
x : input rank-1 array('f') with bounds (*)
y : input rank-1 array('f') with bounds (*)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
x : rank-1 array('f') with bounds (*)
y : rank-1 array('f') with bounds (*)x,y = drotm(x,y,param,[n,offx,incx,offy,incy,overwrite_x,overwrite_y])

Wrapper for ``drotm``.

Parameters
----------
x : input rank-1 array('d') with bounds (*)
y : input rank-1 array('d') with bounds (*)
param : input rank-1 array('d') with bounds (5)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
overwrite_x : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
overwrite_y : input int, optional
    Default: 0
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
x : rank-1 array('d') with bounds (*)
y : rank-1 array('d') with bounds (*)x,y = srotm(x,y,param,[n,offx,incx,offy,incy,overwrite_x,overwrite_y])

Wrapper for ``srotm``.

Parameters
----------
x : input rank-1 array('f') with bounds (*)
y : input rank-1 array('f') with bounds (*)
param : input rank-1 array('f') with bounds (5)

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
overwrite_x : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
overwrite_y : input int, optional
    Default: 0
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
x : rank-1 array('f') with bounds (*)
y : rank-1 array('f') with bounds (*)x,y = zdrot(x,y,c,s,[n,offx,incx,offy,incy,overwrite_x,overwrite_y])

Wrapper for ``zdrot``.

Parameters
----------
x : input rank-1 array('D') with bounds (*)
y : input rank-1 array('D') with bounds (*)
c : input float
s : input float

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
overwrite_x : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
overwrite_y : input int, optional
    Default: 0
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
x : rank-1 array('D') with bounds (*)
y : rank-1 array('D') with bounds (*)x,y = csrot(x,y,c,s,[n,offx,incx,offy,incy,overwrite_x,overwrite_y])

Wrapper for ``csrot``.

Parameters
----------
x : input rank-1 array('F') with bounds (*)
y : input rank-1 array('F') with bounds (*)
c : input float
s : input float

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
overwrite_x : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
overwrite_y : input int, optional
    Default: 0
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
x : rank-1 array('F') with bounds (*)
y : rank-1 array('F') with bounds (*)x,y = drot(x,y,c,s,[n,offx,incx,offy,incy,overwrite_x,overwrite_y])

Wrapper for ``drot``.

Parameters
----------
x : input rank-1 array('d') with bounds (*)
y : input rank-1 array('d') with bounds (*)
c : input float
s : input float

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
overwrite_x : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
overwrite_y : input int, optional
    Default: 0
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
x : rank-1 array('d') with bounds (*)
y : rank-1 array('d') with bounds (*)x,y = srot(x,y,c,s,[n,offx,incx,offy,incy,overwrite_x,overwrite_y])

Wrapper for ``srot``.

Parameters
----------
x : input rank-1 array('f') with bounds (*)
y : input rank-1 array('f') with bounds (*)
c : input float
s : input float

Other Parameters
----------------
n : input int, optional
    Default: (len(x)-offx)/abs(incx)
overwrite_x : input int, optional
    Default: 0
offx : input int, optional
    Default: 0
incx : input int, optional
    Default: 1
overwrite_y : input int, optional
    Default: 0
offy : input int, optional
    Default: 0
incy : input int, optional
    Default: 1

Returns
-------
x : rank-1 array('f') with bounds (*)
y : rank-1 array('f') with bounds (*)param = drotmg(d1,d2,x1,y1)

Wrapper for ``drotmg``.

Parameters
----------
d1 : input float
d2 : input float
x1 : input float
y1 : input float

Returns
-------
param : rank-1 array('d') with bounds (5)param = srotmg(d1,d2,x1,y1)

Wrapper for ``srotmg``.

Parameters
----------
d1 : input float
d2 : input float
x1 : input float
y1 : input float

Returns
-------
param : rank-1 array('f') with bounds (5)c,s = zrotg(a,b)

Wrapper for ``zrotg``.

Parameters
----------
a : input complex
b : input complex

Returns
-------
c : complex
s : complexc,s = crotg(a,b)

Wrapper for ``crotg``.

Parameters
----------
a : input complex
b : input complex

Returns
-------
c : complex
s : complexc,s = drotg(a,b)

Wrapper for ``drotg``.

Parameters
----------
a : input float
b : input float

Returns
-------
c : float
s : floatc,s = srotg(a,b)

Wrapper for ``srotg``.

Parameters
----------
a : input float
b : input float

Returns
-------
c : float
s : float锕锕锕锕”„”‡”Š””„”‡”Š”«”·”•í“l|”’”—”œ”¡”­”«”·”•í“l|”’”—”œ”¡”­”«”·”•í“l|”’”—”œ”¡”­”«”·”•í“l|”’”—”œ”¡”­”«”·”¹”l|”’”—”œ”¡”­”«”·”¹”l|”’”—”œ”¡”­”«”·”l|”’”—”œ”«”·”l|”’”—”œ”«”·”l|”’”—”œ”«”·”l|”’”—”œ”锫”l|”’”锫”l|”’”锫”l|”’”锫”l|”’”锫”l|”’”¡”锫”l|”’”¡”«”·”l|”’”—”œ”«”·”l|”’”—”œ”«”·”l|”’”—”œ”«”·”l|”’”—”œ”«”·”l|锍”’”—”œ”«”·”l|锍”’”—”œ”«”·”l|锍”’”—”œ”«”·”l|锍”’”—”œ”«”·”l|”’”—”œ”«”·”l|”’”—”œ”«”·”l|”’”—”œ”«”·”l|”’”—”œ”«”·”l|”’”—”œ”«”·”l|”’”—”œ”«”l|”’”«”l|”’”«”l|”’”«”l|”’”«”l|”’”«”l|”’”«”l|”’”«”l|”’”«”l|”’”«”l|”’”«”l|”’”«”l|”’”¿”锫”Ŕ·””’”—”œ”ʔ­”¿”锫”Ŕ·””’”—”œ”ʔ­”¿”锫”Ŕ·””’”—”œ”ʔ­”¿”锫”Ŕ·””’”—”œ”ʔ­”¿”锫”Ŕ·””’”—”œ”Д­”¿”锫”Ŕ·””’”—”œ”Д­”¿”锫”Ŕ·””’”—”œ”Д­”¿”锫”Ŕ·””’”—”œ”Д­”锫””’”Дʔ֔¡”锫””’”Дʔ֔¡”锫””’”Дʔ֔¡”锫””’”Дʔ֔¡”¿”«”·”’”œ”锡”­”ߔ¿”«”·”’”œ”锡”­”ߔ¿”«”·”’”œ”锡”­”ߔ¿”«”·”’”œ”锡”­”ߔ¿”«”·”’”œ”锡”­”ߔ¿”«”·”’”œ”锡”­”ߔ¿”«”Д’””l|é”ߔ¿”«”Д’””l|é”ߔ¿”«”Д’””l|é”ߔ¿”«”Д’””l|é”ߔ¿”«”Д’””l|é”ߔ¿”«”Д’””l|é”ߔ¿”«”·”Д’””œ”—”l|é”ߔ¿”«”·”Д’””œ”—”l|é”ߔ¿”«”·”Д’””œ”—”l|é”ߔ¿”«”·”Д’””œ”—”l|é”ߔ¿”锕Ŕ•ë”ó”û”¿”锕Ŕ•ë”ó”û”¿”锕Ŕ•ë”ó”û”¿”锕Ŕ•ë”ó”û”¿”锕Ŕ••Дû”¿”锕Ŕ••Дû”¿”锕Ŕ••Дû”¿”锕Ŕ••Дû”¿”锕Ŕ••Дû”¿”锕Ŕ••Дû”¿”é”Ŕ•ʔДû”¿”é”Ŕ•ʔДû”¿”é”Ŕ•ʔДû”¿”é”Ŕ•ʔДû”¿”é”Ŕ•ʔДû”¿”é”Ŕ•ʔДû”¿”锕Ŕ•ʔДû”¿”锕Ŕ•ʔДû”¿”锕Ŕ•ʔДû”¿”锕Ŕ•ʔДû”¿”锕Ŕ•ʔДû”¿”锕Ŕ•ʔДû”¿”锕•Дë”ڔ•¿”锕•Дë”ڔ•¿”锕•Дë”ڔ•¿”锕•Дë”ڔ•ʇÿÿÿÿÿÿÿÿÿÿÿÿ …%·‡ÿÿÿÿÿÿÿÿÿÿÿÿ`…%FŒÿÿÿÿÿÿÿÿÿÿÿÿ €`„%6Œÿÿÿÿÿÿÿÿÿÿÿÿ`{%ò‡ÿÿÿÿÿÿÿÿÿÿÿÿà‚%߇ÿÿÿÿÿÿÿÿÿÿÿÿЂ%€Šÿÿÿÿÿÿÿÿÿÿÿÿ€Q@%3‰ÿÿÿÿÿÿÿÿÿÿÿÿ°8€|%ŠÿÿÿÿÿÿÿÿÿÿÿÿIÀy%ž‰ÿÿÿÿÿÿÿÿÿÿÿÿà@w%€ÿÿÿÿÿÿÿÿÿÿÿÿ q t%ÿÿÿÿÿÿÿÿÿÿÿÿ€j@q% ÿÿÿÿÿÿÿÿÿÿÿÿe o%³~ÿÿÿÿÿÿÿÿÿÿÿÿ€_m%F~ÿÿÿÿÿÿÿÿÿÿÿÿZàj%Ö}ÿÿÿÿÿÿÿÿÿÿÿÿ€TÀh%Nˆÿÿÿÿÿÿÿÿÿÿÿÿà(@g%ˆÿÿÿÿÿÿÿÿÿÿÿÿ°#Àe%ZŒÿÿÿÿÿÿÿÿÿÿÿÿP…@d%¡ŒÿÿÿÿÿÿÿÿÿÿÿÿЌÀb%âˆÿÿÿÿÿÿÿÿÿÿÿÿ`3a%–ˆÿÿÿÿÿÿÿÿÿÿÿÿ .@_%i}ÿÿÿÿÿÿÿÿÿÿÿÿðN@]%ü|ÿÿÿÿÿÿÿÿÿÿÿÿ`I@[%|ÿÿÿÿÿÿÿÿÿÿÿÿÐC@Y%"|ÿÿÿÿÿÿÿÿÿÿÿÿ0>@W%ý‚ÿÿÿÿÿÿÿÿÿÿÿÿ²U%4…ÿÿÿÿÿÿÿÿÿÿÿÿ0âÀR%¢…ÿÿÿÿÿÿÿÿÿÿÿÿ`è€P%µ{ÿÿÿÿÿÿÿÿÿÿÿÿà7@N%Lÿÿÿÿÿÿÿÿÿÿÿÿ?`L%êŒÿÿÿÿÿÿÿÿÿÿÿÿ ”€J%rŽÿÿÿÿÿÿÿÿÿÿÿÿ± H%ߎÿÿÿÿÿÿÿÿÿÿÿÿ`¸ÀF%Žÿÿÿÿÿÿÿÿÿÿÿÿ)àD%˜ÿÿÿÿÿÿÿÿÿÿÿÿ`¢C%k{ÿÿÿÿÿÿÿÿÿÿÿÿ`4 A%!{ÿÿÿÿÿÿÿÿÿÿÿÿà0@@%Ûzÿÿÿÿÿÿÿÿÿÿÿÿ`-à>%‘zÿÿÿÿÿÿÿÿÿÿÿÿà)€=%Kzÿÿÿÿÿÿÿÿÿÿÿÿ`& <%zÿÿÿÿÿÿÿÿÿÿÿÿà"À:%»yÿÿÿÿÿÿÿÿÿÿÿÿ``9%qyÿÿÿÿÿÿÿÿÿÿÿÿà8%'yÿÿÿÿÿÿÿÿÿÿÿÿ€ 6%Ýxÿÿÿÿÿÿÿÿÿÿÿÿ @5%“xÿÿÿÿÿÿÿÿÿÿÿÿÀà3%Gxÿÿÿÿÿÿÿÿÿÿÿÿ`€2%¯‚ÿÿÿÿÿÿÿÿÿÿÿÿp©à/%æ„ÿÿÿÿÿÿÿÿÿÿÿÿÐÙ@-%ï‹ÿÿÿÿÿÿÿÿÿÿÿÿÀr€*%ýwÿÿÿÿÿÿÿÿÿÿÿÿÀ'%^‚ÿÿÿÿÿÿÿÿÿÿÿÿ¡ %%•„ÿÿÿÿÿÿÿÿÿÿÿÿ Ñ€"%ž‹ÿÿÿÿÿÿÿÿÿÿÿÿ°jÀ%¬wÿÿÿÿÿÿÿÿÿÿÿÿàý%#wÿÿÿÿÿÿÿÿÿÿÿÿ°÷À%vÿÿÿÿÿÿÿÿÿÿÿÿ€ñ€%vÿÿÿÿÿÿÿÿÿÿÿÿPë@%‘uÿÿÿÿÿÿÿÿÿÿÿÿ å%Ԓÿÿÿÿÿÿÿÿÿÿÿÿ€%
“ÿÿÿÿÿÿÿÿÿÿÿÿ`"%F“ÿÿÿÿÿÿÿÿÿÿÿÿ *€%‚“ÿÿÿÿÿÿÿÿÿÿÿÿ3
%¾“ÿÿÿÿÿÿÿÿÿÿÿÿP;€%8’ÿÿÿÿÿÿÿÿÿÿÿÿà%ûÿÿÿÿÿÿÿÿÿÿÿÿPÎà%´ÿÿÿÿÿÿÿÿÿÿÿÿ@ÇÀ%Аÿÿÿÿÿÿÿÿÿÿÿÿ ã þ$Rÿÿÿÿÿÿÿÿÿÿÿÿ`›€ü$‰ÿÿÿÿÿÿÿÿÿÿÿÿ Ü`ú$Bÿÿÿÿÿÿÿÿÿÿÿÿ Õ@ø$v’ÿÿÿÿÿÿÿÿÿÿÿÿ  õ$ڑÿÿÿÿÿÿÿÿÿÿÿÿþò$z‘ÿÿÿÿÿÿÿÿÿÿÿÿPôàî$‘ÿÿÿÿÿÿÿÿÿÿÿÿ êÀë$‚ÿÿÿÿÿÿÿÿÿÿÿÿЙ€é$B„ÿÿÿÿÿÿÿÿÿÿÿÿàÊ@ç$K‹ÿÿÿÿÿÿÿÿÿÿÿÿ cå$Auÿÿÿÿÿÿÿÿÿÿÿÿ`ÞÀâ$ÿÿÿÿÿÿÿÿÿÿÿÿ“ à$÷ƒÿÿÿÿÿÿÿÿÿÿÿÿpÄ€Þ$s‡ÿÿÿÿÿÿÿÿÿÿÿÿp@Ü$ötÿÿÿÿÿÿÿÿÿÿÿÿð×Ú$ˆ†ÿÿÿÿÿÿÿÿÿÿÿÿ úÀ×$«tÿÿÿÿÿÿÿÿÿÿÿÿ€Ñ€Õ$ƒÿÿÿÿÿÿÿÿÿÿÿÿp€Ó$ºƒÿÿÿÿÿÿÿÿÿÿÿÿ ¿€Ñ$†ÿÿÿÿÿÿÿÿÿÿÿÿàî€Ï$ntÿÿÿÿÿÿÿÿÿÿÿÿ@̀Í$K†ÿÿÿÿÿÿÿÿÿÿÿÿÀô€Ë$2tÿÿÿÿÿÿÿÿÿÿÿÿǀÉ$4ÿÿÿÿÿÿÿÿÿÿÿÿ †`Ç$kƒÿÿÿÿÿÿÿÿÿÿÿÿ ¸@Å$ӆÿÿÿÿÿÿÿÿÿÿÿÿÃ$ãsÿÿÿÿÿÿÿÿÿÿÿÿÀÀÀ$#‡ÿÿÿÿÿÿÿÿÿÿÿÿ€€¾$“sÿÿÿÿÿÿÿÿÿÿÿÿ º@¼$рÿÿÿÿÿÿÿÿÿÿÿÿp€ º$n€ÿÿÿÿÿÿÿÿÿÿÿÿ`z¸$èŠÿÿÿÿÿÿÿÿÿÿÿÿ ]àµ$0sÿÿÿÿÿÿÿÿÿÿÿÿ ´3$f|(@S da RpSGCC: (Ubuntu 4.8.4-2ubuntu1~14.04.1) 4.8.4.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.jcr.dynamic.got.got.plt.data.bss.commentÈÈ$öÿÿoððp(``°0í	8ÿÿÿoþ'þ'$Eþÿÿo(*(*PTx*x*(q^ › ›P

hð¥ð¥c¦¦ðn­­ýÅtss	zssp	‚€|€|¤(‚(‚)š­$­¦­$­²­$­· ­$ ­àÀ¯$¯Å°$°ˆÎ ³$ ³ˆˆ Ô@<&(<È Ù0(<+S<â