Repository URL to install this package:
Version:
0.15.1 ▾
|
"""
Functions which are common and require SciPy Base and Level 1 SciPy
(special, linalg)
"""
from __future__ import division, print_function, absolute_import
import numpy
import numpy as np
from numpy import (exp, log, asarray, arange, newaxis, hstack, product, array,
zeros, eye, poly1d, r_, rollaxis, sum, fromstring, isfinite,
squeeze, amax, reshape)
from scipy.lib._version import NumpyVersion
__all__ = ['logsumexp', 'central_diff_weights', 'derivative', 'pade', 'lena',
'ascent', 'face']
_NUMPY_170 = (NumpyVersion(numpy.__version__) >= NumpyVersion('1.7.0'))
def logsumexp(a, axis=None, b=None, keepdims=False):
"""Compute the log of the sum of exponentials of input elements.
Parameters
----------
a : array_like
Input array.
axis : None or int or tuple of ints, optional
Axis or axes over which the sum is taken. By default `axis` is None,
and all elements are summed. Tuple of ints is not accepted if NumPy
version is lower than 1.7.0.
.. versionadded:: 0.11.0
keepdims: bool, optional
If this is set to True, the axes which are reduced are left in the
result as dimensions with size one. With this option, the result
will broadcast correctly against the original array.
.. versionadded:: 0.15.0
b : array-like, optional
Scaling factor for exp(`a`) must be of the same shape as `a` or
broadcastable to `a`.
.. versionadded:: 0.12.0
Returns
-------
res : ndarray
The result, ``np.log(np.sum(np.exp(a)))`` calculated in a numerically
more stable way. If `b` is given then ``np.log(np.sum(b*np.exp(a)))``
is returned.
See Also
--------
numpy.logaddexp, numpy.logaddexp2
Notes
-----
Numpy has a logaddexp function which is very similar to `logsumexp`, but
only handles two arguments. `logaddexp.reduce` is similar to this
function, but may be less stable.
Examples
--------
>>> from scipy.misc import logsumexp
>>> a = np.arange(10)
>>> np.log(np.sum(np.exp(a)))
9.4586297444267107
>>> logsumexp(a)
9.4586297444267107
With weights
>>> a = np.arange(10)
>>> b = np.arange(10, 0, -1)
>>> logsumexp(a, b=b)
9.9170178533034665
>>> np.log(np.sum(b*np.exp(a)))
9.9170178533034647
"""
a = asarray(a)
# keepdims is available in numpy.sum and numpy.amax since NumPy 1.7.0
#
# Because SciPy supports versions earlier than 1.7.0, we have to handle
# those old versions differently
if not _NUMPY_170:
# When support for Numpy < 1.7.0 is dropped, this implementation can be
# removed. This implementation is a bit hacky. Similarly to old NumPy's
# sum and amax functions, 'axis' must be an integer or None, tuples and
# lists are not supported. Although 'keepdims' is not supported by these
# old NumPy's functions, this function supports it.
# Solve the shape of the reduced array
if axis is None:
sh_keepdims = (1,) * a.ndim
else:
sh_keepdims = list(a.shape)
sh_keepdims[axis] = 1
a_max = amax(a, axis=axis)
if a_max.ndim > 0:
a_max[~isfinite(a_max)] = 0
elif not isfinite(a_max):
a_max = 0
if b is not None:
b = asarray(b)
tmp = b * exp(a - reshape(a_max, sh_keepdims))
else:
tmp = exp(a - reshape(a_max, sh_keepdims))
# suppress warnings about log of zero
with np.errstate(divide='ignore'):
out = log(sum(tmp, axis=axis))
out += a_max
if keepdims:
# Put back the reduced axes with size one
out = reshape(out, sh_keepdims)
else:
# This is a more elegant implementation, requiring NumPy >= 1.7.0
a_max = amax(a, axis=axis, keepdims=True)
if a_max.ndim > 0:
a_max[~isfinite(a_max)] = 0
elif not isfinite(a_max):
a_max = 0
if b is not None:
b = asarray(b)
tmp = b * exp(a - a_max)
else:
tmp = exp(a - a_max)
# suppress warnings about log of zero
with np.errstate(divide='ignore'):
out = log(sum(tmp, axis=axis, keepdims=keepdims))
if not keepdims:
a_max = squeeze(a_max, axis=axis)
out += a_max
return out
def central_diff_weights(Np, ndiv=1):
"""
Return weights for an Np-point central derivative.
Assumes equally-spaced function points.
If weights are in the vector w, then
derivative is w[0] * f(x-ho*dx) + ... + w[-1] * f(x+h0*dx)
Parameters
----------
Np : int
Number of points for the central derivative.
ndiv : int, optional
Number of divisions. Default is 1.
Notes
-----
Can be inaccurate for large number of points.
"""
if Np < ndiv + 1:
raise ValueError("Number of points must be at least the derivative order + 1.")
if Np % 2 == 0:
raise ValueError("The number of points must be odd.")
from scipy import linalg
ho = Np >> 1
x = arange(-ho,ho+1.0)
x = x[:,newaxis]
X = x**0.0
for k in range(1,Np):
X = hstack([X,x**k])
w = product(arange(1,ndiv+1),axis=0)*linalg.inv(X)[ndiv]
return w
def derivative(func, x0, dx=1.0, n=1, args=(), order=3):
"""
Find the n-th derivative of a function at a point.
Given a function, use a central difference formula with spacing `dx` to
compute the `n`-th derivative at `x0`.
Parameters
----------
func : function
Input function.
x0 : float
The point at which `n`-th derivative is found.
dx : int, optional
Spacing.
n : int, optional
Order of the derivative. Default is 1.
args : tuple, optional
Arguments
order : int, optional
Number of points to use, must be odd.
Notes
-----
Decreasing the step size too small can result in round-off error.
Examples
--------
>>> def f(x):
... return x**3 + x**2
...
>>> derivative(f, 1.0, dx=1e-6)
4.9999999999217337
"""
if order < n + 1:
raise ValueError("'order' (the number of points used to compute the derivative), "
"must be at least the derivative order 'n' + 1.")
if order % 2 == 0:
raise ValueError("'order' (the number of points used to compute the derivative) "
"must be odd.")
# pre-computed for n=1 and 2 and low-order for speed.
if n == 1:
if order == 3:
weights = array([-1,0,1])/2.0
elif order == 5:
weights = array([1,-8,0,8,-1])/12.0
elif order == 7:
weights = array([-1,9,-45,0,45,-9,1])/60.0
elif order == 9:
weights = array([3,-32,168,-672,0,672,-168,32,-3])/840.0
else:
weights = central_diff_weights(order,1)
elif n == 2:
if order == 3:
weights = array([1,-2.0,1])
elif order == 5:
weights = array([-1,16,-30,16,-1])/12.0
elif order == 7:
weights = array([2,-27,270,-490,270,-27,2])/180.0
elif order == 9:
weights = array([-9,128,-1008,8064,-14350,8064,-1008,128,-9])/5040.0
else:
weights = central_diff_weights(order,2)
else:
weights = central_diff_weights(order, n)
val = 0.0
ho = order >> 1
for k in range(order):
val += weights[k]*func(x0+(k-ho)*dx,*args)
return val / product((dx,)*n,axis=0)
def pade(an, m):
"""
Return Pade approximation to a polynomial as the ratio of two polynomials.
Parameters
----------
an : (N,) array_like
Taylor series coefficients.
m : int
The order of the returned approximating polynomials.
Returns
-------
p, q : Polynomial class
The pade approximation of the polynomial defined by `an` is
`p(x)/q(x)`.
Examples
--------
>>> from scipy import misc
>>> e_exp = [1.0, 1.0, 1.0/2.0, 1.0/6.0, 1.0/24.0, 1.0/120.0]
>>> p, q = misc.pade(e_exp, 2)
>>> e_exp.reverse()
>>> e_poly = np.poly1d(e_exp)
Compare ``e_poly(x)`` and the pade approximation ``p(x)/q(x)``
>>> e_poly(1)
2.7166666666666668
>>> p(1)/q(1)
2.7179487179487181
"""
from scipy import linalg
an = asarray(an)
N = len(an) - 1
n = N - m
if n < 0:
raise ValueError("Order of q <m> must be smaller than len(an)-1.")
Akj = eye(N+1, n+1)
Bkj = zeros((N+1, m), 'd')
for row in range(1, m+1):
Bkj[row,:row] = -(an[:row])[::-1]
for row in range(m+1, N+1):
Bkj[row,:] = -(an[row-m:row])[::-1]
C = hstack((Akj, Bkj))
pq = linalg.solve(C, an)
p = pq[:n+1]
q = r_[1.0, pq[n+1:]]
return poly1d(p[::-1]), poly1d(q[::-1])
def lena():
"""
Get classic image processing example image, Lena, at 8-bit grayscale
bit-depth, 512 x 512 size.
Parameters
----------
None
Returns
-------
lena : ndarray
Lena image
Examples
--------
>>> import scipy.misc
>>> lena = scipy.misc.lena()
>>> lena.shape
(512, 512)
>>> lena.max()
245
>>> lena.dtype
dtype('int32')
>>> import matplotlib.pyplot as plt
>>> plt.gray()
>>> plt.imshow(lena)
>>> plt.show()
"""
import pickle
import os
fname = os.path.join(os.path.dirname(__file__),'lena.dat')
f = open(fname,'rb')
lena = array(pickle.load(f))
f.close()
return lena
def ascent():
"""
Get an 8-bit grayscale bit-depth, 512 x 512 derived image for easy use in demos
The image is derived from accent-to-the-top.jpg at
http://www.public-domain-image.com/people-public-domain-images-pictures/
Parameters
----------
None
Returns
-------
ascent : ndarray
convenient image to use for testing and demonstration
Examples
--------
>>> import scipy.misc
>>> ascent = scipy.misc.ascent()
>>> ascent.shape
(512, 512)
>>> ascent.max()
255
>>> import matplotlib.pyplot as plt
>>> plt.gray()
>>> plt.imshow(ascent)
>>> plt.show()
"""
import pickle
import os
fname = os.path.join(os.path.dirname(__file__),'ascent.dat')
with open(fname, 'rb') as f:
ascent = array(pickle.load(f))
return ascent
def face(gray=False):
"""
Get a 1024 x 768, color image of a raccoon face.
raccoon-procyon-lotor.jpg at http://www.public-domain-image.com
Parameters
----------
gray : bool, optional
If True then return color image, otherwise return an 8-bit gray-scale
Returns
-------
face : ndarray
image of a racoon face
Examples
--------
>>> import scipy.misc
>>> face = scipy.misc.face()
>>> face.shape
(768, 1024, 3)
>>> face.max()
230
>>> face.dtype
dtype('uint8')
>>> import matplotlib.pyplot as plt
>>> plt.gray()
>>> plt.imshow(face)
>>> plt.show()
"""
import bz2
import os
with open(os.path.join(os.path.dirname(__file__), 'face.dat'), 'rb') as f:
rawdata = f.read()
data = bz2.decompress(rawdata)
face = fromstring(data, dtype='uint8')
face.shape = (768, 1024, 3)
if gray is True:
face = (0.21 * face[:,:,0] + 0.71 * face[:,:,1] + 0.07 * face[:,:,2]).astype('uint8')
return face