Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
scipy / sparse / construct.py
Size: Mime:
"""Functions to construct sparse matrices
"""
from __future__ import division, print_function, absolute_import

__docformat__ = "restructuredtext en"

__all__ = ['spdiags', 'eye', 'identity', 'kron', 'kronsum',
            'hstack', 'vstack', 'bmat', 'rand', 'diags', 'block_diag']


import numpy as np

from scipy.lib.six import xrange

from .sputils import upcast, get_index_dtype

from .csr import csr_matrix
from .csc import csc_matrix
from .bsr import bsr_matrix
from .coo import coo_matrix
from .dia import dia_matrix

from .base import issparse


def spdiags(data, diags, m, n, format=None):
    """
    Return a sparse matrix from diagonals.

    Parameters
    ----------
    data   : array_like
        matrix diagonals stored row-wise
    diags  : diagonals to set
        - k = 0  the main diagonal
        - k > 0  the k-th upper diagonal
        - k < 0  the k-th lower diagonal
    m, n : int
        shape of the result
    format : format of the result (e.g. "csr")
        By default (format=None) an appropriate sparse matrix
        format is returned.  This choice is subject to change.

    See Also
    --------
    diags : more convenient form of this function
    dia_matrix : the sparse DIAgonal format.

    Examples
    --------
    >>> data = array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]])
    >>> diags = array([0, -1, 2])
    >>> spdiags(data, diags, 4, 4).toarray()
    array([[1, 0, 3, 0],
           [1, 2, 0, 4],
           [0, 2, 3, 0],
           [0, 0, 3, 4]])

    """
    return dia_matrix((data, diags), shape=(m,n)).asformat(format)


def diags(diagonals, offsets, shape=None, format=None, dtype=None):
    """
    Construct a sparse matrix from diagonals.

    Parameters
    ----------
    diagonals : sequence of array_like
        Sequence of arrays containing the matrix diagonals,
        corresponding to `offsets`.
    offsets  : sequence of int
        Diagonals to set:
          - k = 0  the main diagonal
          - k > 0  the k-th upper diagonal
          - k < 0  the k-th lower diagonal
    shape : tuple of int, optional
        Shape of the result. If omitted, a square matrix large enough
        to contain the diagonals is returned.
    format : {"dia", "csr", "csc", "lil", ...}, optional
        Matrix format of the result.  By default (format=None) an
        appropriate sparse matrix format is returned.  This choice is
        subject to change.
    dtype : dtype, optional
        Data type of the matrix.

    See Also
    --------
    spdiags : construct matrix from diagonals

    Notes
    -----
    This function differs from `spdiags` in the way it handles
    off-diagonals.

    The result from `diags` is the sparse equivalent of::

        np.diag(diagonals[0], offsets[0])
        + ...
        + np.diag(diagonals[k], offsets[k])

    Repeated diagonal offsets are disallowed.

    .. versionadded:: 0.11

    Examples
    --------
    >>> diagonals = [[1, 2, 3, 4], [1, 2, 3], [1, 2]]
    >>> diags(diagonals, [0, -1, 2]).toarray()
    array([[1, 0, 1, 0],
           [1, 2, 0, 2],
           [0, 2, 3, 0],
           [0, 0, 3, 4]])

    Broadcasting of scalars is supported (but shape needs to be
    specified):

    >>> diags([1, -2, 1], [-1, 0, 1], shape=(4, 4)).toarray()
    array([[-2.,  1.,  0.,  0.],
           [ 1., -2.,  1.,  0.],
           [ 0.,  1., -2.,  1.],
           [ 0.,  0.,  1., -2.]])


    If only one diagonal is wanted (as in `numpy.diag`), the following
    works as well:

    >>> diags([1, 2, 3], 1).toarray()
    array([[ 0.,  1.,  0.,  0.],
           [ 0.,  0.,  2.,  0.],
           [ 0.,  0.,  0.,  3.],
           [ 0.,  0.,  0.,  0.]])
    """
    # if offsets is not a sequence, assume that there's only one diagonal
    try:
        iter(offsets)
    except TypeError:
        # now check that there's actually only one diagonal
        try:
            iter(diagonals[0])
        except TypeError:
            diagonals = [np.atleast_1d(diagonals)]
        else:
            raise ValueError("Different number of diagonals and offsets.")
    else:
        diagonals = list(map(np.atleast_1d, diagonals))
    offsets = np.atleast_1d(offsets)

    # Basic check
    if len(diagonals) != len(offsets):
        raise ValueError("Different number of diagonals and offsets.")

    # Determine shape, if omitted
    if shape is None:
        m = len(diagonals[0]) + abs(int(offsets[0]))
        shape = (m, m)

    # Determine data type, if omitted
    if dtype is None:
        dtype = np.common_type(*diagonals)

    # Construct data array
    m, n = shape

    M = max([min(m + offset, n - offset) + max(0, offset)
             for offset in offsets])
    M = max(0, M)
    data_arr = np.zeros((len(offsets), M), dtype=dtype)

    for j, diagonal in enumerate(diagonals):
        offset = offsets[j]
        k = max(0, offset)
        length = min(m + offset, n - offset)
        if length <= 0:
            raise ValueError("Offset %d (index %d) out of bounds" % (offset, j))
        try:
            data_arr[j, k:k+length] = diagonal
        except ValueError:
            if len(diagonal) != length and len(diagonal) != 1:
                raise ValueError(
                    "Diagonal length (index %d: %d at offset %d) does not "
                    "agree with matrix size (%d, %d)." % (
                    j, len(diagonal), offset, m, n))
            raise

    return dia_matrix((data_arr, offsets), shape=(m, n)).asformat(format)


def identity(n, dtype='d', format=None):
    """Identity matrix in sparse format

    Returns an identity matrix with shape (n,n) using a given
    sparse format and dtype.

    Parameters
    ----------
    n : integer
        Shape of the identity matrix.
    dtype :
        Data type of the matrix
    format : string
        Sparse format of the result, e.g. format="csr", etc.

    Examples
    --------
    >>> identity(3).toarray()
    array([[ 1.,  0.,  0.],
           [ 0.,  1.,  0.],
           [ 0.,  0.,  1.]])
    >>> identity(3, dtype='int8', format='dia')
    <3x3 sparse matrix of type '<type 'numpy.int8'>'
            with 3 stored elements (1 diagonals) in DIAgonal format>

    """
    return eye(n, n, dtype=dtype, format=format)


def eye(m, n=None, k=0, dtype=float, format=None):
    """Sparse matrix with ones on diagonal

    Returns a sparse (m x n) matrix where the k-th diagonal
    is all ones and everything else is zeros.

    Parameters
    ----------
    n : integer
        Number of rows in the matrix.
    m : integer, optional
        Number of columns. Default: n
    k : integer, optional
        Diagonal to place ones on. Default: 0 (main diagonal)
    dtype :
        Data type of the matrix
    format : string
        Sparse format of the result, e.g. format="csr", etc.

    Examples
    --------
    >>> from scipy import sparse
    >>> sparse.eye(3).toarray()
    array([[ 1.,  0.,  0.],
           [ 0.,  1.,  0.],
           [ 0.,  0.,  1.]])
    >>> sparse.eye(3, dtype=np.int8)
    <3x3 sparse matrix of type '<type 'numpy.int8'>'
        with 3 stored elements (1 diagonals) in DIAgonal format>

    """
    if n is None:
        n = m
    m,n = int(m),int(n)

    if m == n and k == 0:
        # fast branch for special formats
        if format in ['csr', 'csc']:
            idx_dtype = get_index_dtype(maxval=n)
            indptr = np.arange(n+1, dtype=idx_dtype)
            indices = np.arange(n, dtype=idx_dtype)
            data = np.ones(n, dtype=dtype)
            cls = {'csr': csr_matrix, 'csc': csc_matrix}[format]
            return cls((data,indices,indptr),(n,n))
        elif format == 'coo':
            idx_dtype = get_index_dtype(maxval=n)
            row = np.arange(n, dtype=idx_dtype)
            col = np.arange(n, dtype=idx_dtype)
            data = np.ones(n, dtype=dtype)
            return coo_matrix((data,(row,col)),(n,n))

    diags = np.ones((1, max(0, min(m + k, n))), dtype=dtype)
    return spdiags(diags, k, m, n).asformat(format)


def kron(A, B, format=None):
    """kronecker product of sparse matrices A and B

    Parameters
    ----------
    A : sparse or dense matrix
        first matrix of the product
    B : sparse or dense matrix
        second matrix of the product
    format : str, optional
        format of the result (e.g. "csr")

    Returns
    -------
    kronecker product in a sparse matrix format


    Examples
    --------
    >>> from scipy import sparse
    >>> A = sparse.csr_matrix(array([[0, 2], [5, 0]]))
    >>> B = sparse.csr_matrix(array([[1, 2], [3, 4]]))
    >>> kron(A, B).toarray()
    array([[ 0,  0,  2,  4],
           [ 0,  0,  6,  8],
           [ 5, 10,  0,  0],
           [15, 20,  0,  0]])

    >>> kron(A, [[1, 2], [3, 4]]).toarray()
    array([[ 0,  0,  2,  4],
           [ 0,  0,  6,  8],
           [ 5, 10,  0,  0],
           [15, 20,  0,  0]])

    """
    B = coo_matrix(B)

    if (format is None or format == "bsr") and 2*B.nnz >= B.shape[0] * B.shape[1]:
        # B is fairly dense, use BSR
        A = csr_matrix(A,copy=True)

        output_shape = (A.shape[0]*B.shape[0], A.shape[1]*B.shape[1])

        if A.nnz == 0 or B.nnz == 0:
            # kronecker product is the zero matrix
            return coo_matrix(output_shape)

        B = B.toarray()
        data = A.data.repeat(B.size).reshape(-1,B.shape[0],B.shape[1])
        data = data * B

        return bsr_matrix((data,A.indices,A.indptr), shape=output_shape)
    else:
        # use COO
        A = coo_matrix(A)
        output_shape = (A.shape[0]*B.shape[0], A.shape[1]*B.shape[1])

        if A.nnz == 0 or B.nnz == 0:
            # kronecker product is the zero matrix
            return coo_matrix(output_shape)

        # expand entries of a into blocks
        row = A.row.repeat(B.nnz)
        col = A.col.repeat(B.nnz)
        data = A.data.repeat(B.nnz)

        row *= B.shape[0]
        col *= B.shape[1]

        # increment block indices
        row,col = row.reshape(-1,B.nnz),col.reshape(-1,B.nnz)
        row += B.row
        col += B.col
        row,col = row.reshape(-1),col.reshape(-1)

        # compute block entries
        data = data.reshape(-1,B.nnz) * B.data
        data = data.reshape(-1)

        return coo_matrix((data,(row,col)), shape=output_shape).asformat(format)


def kronsum(A, B, format=None):
    """kronecker sum of sparse matrices A and B

    Kronecker sum of two sparse matrices is a sum of two Kronecker
    products kron(I_n,A) + kron(B,I_m) where A has shape (m,m)
    and B has shape (n,n) and I_m and I_n are identity matrices
    of shape (m,m) and (n,n) respectively.

    Parameters
    ----------
    A
        square matrix
    B
        square matrix
    format : string
        format of the result (e.g. "csr")

    Returns
    -------
    kronecker sum in a sparse matrix format

    Examples
    --------


    """
    A = coo_matrix(A)
    B = coo_matrix(B)

    if A.shape[0] != A.shape[1]:
        raise ValueError('A is not square')

    if B.shape[0] != B.shape[1]:
        raise ValueError('B is not square')

    dtype = upcast(A.dtype, B.dtype)

    L = kron(eye(B.shape[0],dtype=dtype), A, format=format)
    R = kron(B, eye(A.shape[0],dtype=dtype), format=format)

    return (L+R).asformat(format)  # since L + R is not always same format


def _compressed_sparse_stack(blocks, axis):
    """
    Stacking fast path for CSR/CSC matrices
    (i) vstack for CSR, (ii) hstack for CSC.
    """
    other_axis = 1 if axis == 0 else 0
    data = np.concatenate([b.data for b in blocks])
    indices = np.concatenate([b.indices for b in blocks])
    indptr = []
    last_indptr = 0
    constant_dim = blocks[0].shape[other_axis]
    sum_dim = 0
    for b in blocks:
        if b.shape[other_axis] != constant_dim:
            raise ValueError('incompatible dimensions for axis %d' % other_axis)
        sum_dim += b.shape[axis]
        indptr.append(b.indptr[:-1] + last_indptr)
        last_indptr += b.indptr[-1]
    indptr.append([last_indptr])
    indptr = np.concatenate(indptr)
    if axis == 0:
        return csr_matrix((data, indices, indptr),
                          shape=(sum_dim, constant_dim))
    else:
        return csc_matrix((data, indices, indptr),
                          shape=(constant_dim, sum_dim))


def hstack(blocks, format=None, dtype=None):
    """
    Stack sparse matrices horizontally (column wise)

    Parameters
    ----------
    blocks
        sequence of sparse matrices with compatible shapes
    format : string
        sparse format of the result (e.g. "csr")
        by default an appropriate sparse matrix format is returned.
        This choice is subject to change.

    See Also
    --------
    vstack : stack sparse matrices vertically (row wise)

    Examples
    --------
    >>> from scipy.sparse import coo_matrix, hstack
    >>> A = coo_matrix([[1, 2], [3, 4]])
    >>> B = coo_matrix([[5], [6]])
    >>> hstack([A,B]).toarray()
    array([[1, 2, 5],
           [3, 4, 6]])

    """
    return bmat([blocks], format=format, dtype=dtype)


def vstack(blocks, format=None, dtype=None):
    """
    Stack sparse matrices vertically (row wise)

    Parameters
    ----------
    blocks
        sequence of sparse matrices with compatible shapes
    format : string
        sparse format of the result (e.g. "csr")
        by default an appropriate sparse matrix format is returned.
        This choice is subject to change.

    See Also
    --------
    hstack : stack sparse matrices horizontally (column wise)

    Examples
    --------
    >>> from scipy.sparse import coo_matrix, vstack
    >>> A = coo_matrix([[1, 2], [3, 4]])
    >>> B = coo_matrix([[5, 6]])
    >>> vstack([A, B]).toarray()
    array([[1, 2],
           [3, 4],
           [5, 6]])

    """
    return bmat([[b] for b in blocks], format=format, dtype=dtype)


def bmat(blocks, format=None, dtype=None):
    """
    Build a sparse matrix from sparse sub-blocks

    Parameters
    ----------
    blocks : array_like
        Grid of sparse matrices with compatible shapes.
        An entry of None implies an all-zero matrix.
    format : {'bsr', 'coo', 'csc', 'csr', 'dia', 'dok', 'lil'}, optional
        The sparse format of the result (e.g. "csr").  By default an
        appropriate sparse matrix format is returned.
        This choice is subject to change.
    dtype : dtype specifier, optional
        The data-type of the output matrix.  If not given, the dtype is
        determined from that of `blocks`.

    Returns
    -------
    bmat : sparse matrix

    See Also
    --------
    block_diag, diags

    Examples
    --------
    >>> from scipy.sparse import coo_matrix, bmat
    >>> A = coo_matrix([[1, 2], [3, 4]])
    >>> B = coo_matrix([[5], [6]])
    >>> C = coo_matrix([[7]])
    >>> bmat([[A, B], [None, C]]).toarray()
    array([[1, 2, 5],
           [3, 4, 6],
           [0, 0, 7]])

    >>> bmat([[A, None], [None, C]]).toarray()
    array([[1, 2, 0],
           [3, 4, 0],
           [0, 0, 7]])

    """

    blocks = np.asarray(blocks, dtype='object')

    if blocks.ndim != 2:
        raise ValueError('blocks must be 2-D')

    M,N = blocks.shape

    # check for fast path cases
    if (N == 1 and format in (None, 'csr') and all(isinstance(b, csr_matrix)
                                                   for b in blocks.flat)):
        A = _compressed_sparse_stack(blocks[:,0], 0)
        if dtype is not None:
            A = A.astype(dtype)
        return A
    elif (M == 1 and format in (None, 'csc')
          and all(isinstance(b, csc_matrix) for b in blocks.flat)):
        A = _compressed_sparse_stack(blocks[0,:], 1)
        if dtype is not None:
            A = A.astype(dtype)
        return A

    block_mask = np.zeros(blocks.shape, dtype=np.bool)
    brow_lengths = np.zeros(M, dtype=np.int64)
    bcol_lengths = np.zeros(N, dtype=np.int64)

    # convert everything to COO format
    for i in range(M):
        for j in range(N):
            if blocks[i,j] is not None:
                A = coo_matrix(blocks[i,j])
                blocks[i,j] = A
                block_mask[i,j] = True

                if brow_lengths[i] == 0:
                    brow_lengths[i] = A.shape[0]
                else:
                    if brow_lengths[i] != A.shape[0]:
                        raise ValueError('blocks[%d,:] has incompatible row dimensions' % i)

                if bcol_lengths[j] == 0:
                    bcol_lengths[j] = A.shape[1]
                else:
                    if bcol_lengths[j] != A.shape[1]:
                        raise ValueError('blocks[:,%d] has incompatible column dimensions' % j)

    # ensure that at least one value in each row and col is not None
    if brow_lengths.min() == 0:
        raise ValueError('blocks[%d,:] is all None' % brow_lengths.argmin())
    if bcol_lengths.min() == 0:
        raise ValueError('blocks[:,%d] is all None' % bcol_lengths.argmin())

    nnz = sum([block.nnz for block in blocks[block_mask]])
    if dtype is None:
        dtype = upcast(*tuple([blk.dtype for blk in blocks[block_mask]]))

    row_offsets = np.concatenate(([0], np.cumsum(brow_lengths)))
    col_offsets = np.concatenate(([0], np.cumsum(bcol_lengths)))

    shape = (np.sum(brow_lengths), np.sum(bcol_lengths))

    data = np.empty(nnz, dtype=dtype)
    idx_dtype = get_index_dtype(maxval=max(shape))
    row = np.empty(nnz, dtype=idx_dtype)
    col = np.empty(nnz, dtype=idx_dtype)

    nnz = 0
    for i in range(M):
        for j in range(N):
            if blocks[i,j] is not None:
                B = blocks[i,j]
                data[nnz:nnz + B.nnz] = B.data
                row[nnz:nnz + B.nnz] = B.row
                col[nnz:nnz + B.nnz] = B.col

                row[nnz:nnz + B.nnz] += row_offsets[i]
                col[nnz:nnz + B.nnz] += col_offsets[j]

                nnz += B.nnz

    return coo_matrix((data, (row, col)), shape=shape).asformat(format)


def block_diag(mats, format=None, dtype=None):
    """
    Build a block diagonal sparse matrix from provided matrices.

    Parameters
    ----------
    A, B, ... : sequence of matrices
        Input matrices.
    format : str, optional
        The sparse format of the result (e.g. "csr").  If not given, the matrix
        is returned in "coo" format.
    dtype : dtype specifier, optional
        The data-type of the output matrix.  If not given, the dtype is
        determined from that of `blocks`.

    Returns
    -------
    res : sparse matrix

    Notes
    -----

    .. versionadded:: 0.11.0

    See Also
    --------
    bmat, diags

    Examples
    --------
    >>> A = coo_matrix([[1, 2], [3, 4]])
    >>> B = coo_matrix([[5], [6]])
    >>> C = coo_matrix([[7]])
    >>> block_diag((A, B, C)).toarray()
    array([[1, 2, 0, 0],
           [3, 4, 0, 0],
           [0, 0, 5, 0],
           [0, 0, 6, 0],
           [0, 0, 0, 7]])

    """
    nmat = len(mats)
    rows = []
    for ia, a in enumerate(mats):
        row = [None]*nmat
        if issparse(a):
            row[ia] = a
        else:
            row[ia] = coo_matrix(a)
        rows.append(row)
    return bmat(rows, format=format, dtype=dtype)


def rand(m, n, density=0.01, format="coo", dtype=None, random_state=None):
    """Generate a sparse matrix of the given shape and density with uniformly
    distributed values.

    Parameters
    ----------
    m, n : int
        shape of the matrix
    density : real
        density of the generated matrix: density equal to one means a full
        matrix, density of 0 means a matrix with no non-zero items.
    format : str
        sparse matrix format.
    dtype : dtype
        type of the returned matrix values.
    random_state : {numpy.random.RandomState, int}, optional
        Random number generator or random seed. If not given, the singleton
        numpy.random will be used.

    Notes
    -----
    Only float types are supported for now.
    """
    if density < 0 or density > 1:
        raise ValueError("density expected to be 0 <= density <= 1")
    if dtype and (dtype not in [np.float32, np.float64, np.longdouble]):
        raise NotImplementedError("type %s not supported" % dtype)

    mn = m * n

    tp = np.intc
    if mn > np.iinfo(tp).max:
        tp = np.int64

    if mn > np.iinfo(tp).max:
        msg = """\
Trying to generate a random sparse matrix such as the product of dimensions is
greater than %d - this is not supported on this machine
"""
        raise ValueError(msg % np.iinfo(tp).max)

    # Number of non zero values
    k = int(density * m * n)

    if random_state is None:
        random_state = np.random
    elif isinstance(random_state, (int, np.integer)):
        random_state = np.random.RandomState(random_state)

    # Use the algorithm from python's random.sample for k < mn/3.
    if mn < 3*k:
        # We should use this line, but choice is only available in numpy >= 1.7
        # ind = random_state.choice(mn, size=k, replace=False)
        ind = random_state.permutation(mn)[:k]
    else:
        ind = np.empty(k, dtype=tp)
        selected = set()
        for i in xrange(k):
            j = random_state.randint(mn)
            while j in selected:
                j = random_state.randint(mn)
            selected.add(j)
            ind[i] = j

    j = np.floor(ind * 1. / m).astype(tp)
    i = (ind - j * m).astype(tp)
    vals = random_state.rand(k).astype(dtype)
    return coo_matrix((vals, (i, j)), shape=(m, n)).asformat(format)