Repository URL to install this package:
|
Version:
0.15.1 ▾
|
"""LInked List sparse matrix class
"""
from __future__ import division, print_function, absolute_import
__docformat__ = "restructuredtext en"
__all__ = ['lil_matrix','isspmatrix_lil']
from bisect import bisect_left
import numpy as np
from scipy.lib.six import xrange
from .base import spmatrix, isspmatrix
from .sputils import getdtype, isshape, issequence, isscalarlike, ismatrix, \
IndexMixin, upcast_scalar, get_index_dtype
from warnings import warn
from .base import SparseEfficiencyWarning
from . import _csparsetools
class lil_matrix(spmatrix, IndexMixin):
"""Row-based linked list sparse matrix
This is a structure for constructing sparse matrices incrementally.
Note that inserting a single item can take linear time in the worst case;
to construct a matrix efficiently, make sure the items are pre-sorted by
index, per row.
This can be instantiated in several ways:
lil_matrix(D)
with a dense matrix or rank-2 ndarray D
lil_matrix(S)
with another sparse matrix S (equivalent to S.tolil())
lil_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N)
dtype is optional, defaulting to dtype='d'.
Attributes
----------
dtype : dtype
Data type of the matrix
shape : 2-tuple
Shape of the matrix
ndim : int
Number of dimensions (this is always 2)
nnz
Number of nonzero elements
data
LIL format data array of the matrix
rows
LIL format row index array of the matrix
Notes
-----
Sparse matrices can be used in arithmetic operations: they support
addition, subtraction, multiplication, division, and matrix power.
Advantages of the LIL format
- supports flexible slicing
- changes to the matrix sparsity structure are efficient
Disadvantages of the LIL format
- arithmetic operations LIL + LIL are slow (consider CSR or CSC)
- slow column slicing (consider CSC)
- slow matrix vector products (consider CSR or CSC)
Intended Usage
- LIL is a convenient format for constructing sparse matrices
- once a matrix has been constructed, convert to CSR or
CSC format for fast arithmetic and matrix vector operations
- consider using the COO format when constructing large matrices
Data Structure
- An array (``self.rows``) of rows, each of which is a sorted
list of column indices of non-zero elements.
- The corresponding nonzero values are stored in similar
fashion in ``self.data``.
"""
def __init__(self, arg1, shape=None, dtype=None, copy=False):
spmatrix.__init__(self)
self.dtype = getdtype(dtype, arg1, default=float)
# First get the shape
if isspmatrix(arg1):
if isspmatrix_lil(arg1) and copy:
A = arg1.copy()
else:
A = arg1.tolil()
if dtype is not None:
A = A.astype(dtype)
self.shape = A.shape
self.dtype = A.dtype
self.rows = A.rows
self.data = A.data
elif isinstance(arg1,tuple):
if isshape(arg1):
if shape is not None:
raise ValueError('invalid use of shape parameter')
M, N = arg1
self.shape = (M,N)
self.rows = np.empty((M,), dtype=object)
self.data = np.empty((M,), dtype=object)
for i in range(M):
self.rows[i] = []
self.data[i] = []
else:
raise TypeError('unrecognized lil_matrix constructor usage')
else:
# assume A is dense
try:
A = np.asmatrix(arg1)
except TypeError:
raise TypeError('unsupported matrix type')
else:
from .csr import csr_matrix
A = csr_matrix(A, dtype=dtype).tolil()
self.shape = A.shape
self.dtype = A.dtype
self.rows = A.rows
self.data = A.data
def set_shape(self,shape):
shape = tuple(shape)
if len(shape) != 2:
raise ValueError("Only two-dimensional sparse arrays "
"are supported.")
try:
shape = int(shape[0]),int(shape[1]) # floats, other weirdness
except:
raise TypeError('invalid shape')
if not (shape[0] >= 0 and shape[1] >= 0):
raise ValueError('invalid shape')
if (self._shape != shape) and (self._shape is not None):
try:
self = self.reshape(shape)
except NotImplementedError:
raise NotImplementedError("Reshaping not implemented for %s." %
self.__class__.__name__)
self._shape = shape
shape = property(fget=spmatrix.get_shape, fset=set_shape)
def __iadd__(self,other):
self[:,:] = self + other
return self
def __isub__(self,other):
self[:,:] = self - other
return self
def __imul__(self,other):
if isscalarlike(other):
self[:,:] = self * other
return self
else:
return NotImplemented
def __itruediv__(self,other):
if isscalarlike(other):
self[:,:] = self / other
return self
else:
return NotImplemented
# Whenever the dimensions change, empty lists should be created for each
# row
def getnnz(self, axis=None):
"""Get the count of explicitly-stored values (nonzeros)
Parameters
----------
axis : None, 0, or 1
Select between the number of values across the whole matrix, in
each column, or in each row.
"""
if axis is None:
return sum([len(rowvals) for rowvals in self.data])
if axis < 0:
axis += 2
if axis == 0:
out = np.zeros(self.shape[1])
for row in self.rows:
out[row] += 1
return out
elif axis == 1:
return np.array([len(rowvals) for rowvals in self.data])
else:
raise ValueError('axis out of bounds')
nnz = property(fget=getnnz)
def __str__(self):
val = ''
for i, row in enumerate(self.rows):
for pos, j in enumerate(row):
val += " %s\t%s\n" % (str((i, j)), str(self.data[i][pos]))
return val[:-1]
def getrowview(self, i):
"""Returns a view of the 'i'th row (without copying).
"""
new = lil_matrix((1, self.shape[1]), dtype=self.dtype)
new.rows[0] = self.rows[i]
new.data[0] = self.data[i]
return new
def getrow(self, i):
"""Returns a copy of the 'i'th row.
"""
new = lil_matrix((1, self.shape[1]), dtype=self.dtype)
new.rows[0] = self.rows[i][:]
new.data[0] = self.data[i][:]
return new
def __getitem__(self, index):
"""Return the element(s) index=(i, j), where j may be a slice.
This always returns a copy for consistency, since slices into
Python lists return copies.
"""
# Scalar fast path first
if isinstance(index, tuple) and len(index) == 2:
i, j = index
# Use isinstance checks for common index types; this is
# ~25-50% faster than isscalarlike. Other types are
# handled below.
if ((isinstance(i, int) or isinstance(i, np.integer)) and
(isinstance(j, int) or isinstance(j, np.integer))):
v = _csparsetools.lil_get1(self.shape[0], self.shape[1],
self.rows, self.data,
i, j)
return self.dtype.type(v)
# Utilities found in IndexMixin
i, j = self._unpack_index(index)
# Proper check for other scalar index types
if isscalarlike(i) and isscalarlike(j):
v = _csparsetools.lil_get1(self.shape[0], self.shape[1],
self.rows, self.data,
i, j)
return self.dtype.type(v)
i, j = self._index_to_arrays(i, j)
if i.size == 0:
return lil_matrix(i.shape, dtype=self.dtype)
new = lil_matrix(i.shape, dtype=self.dtype)
i, j = _csparsetools.prepare_index_for_memoryview(i, j)
_csparsetools.lil_fancy_get(self.shape[0], self.shape[1],
self.rows, self.data,
new.rows, new.data,
i, j)
return new
def __setitem__(self, index, x):
# Scalar fast path first
if isinstance(index, tuple) and len(index) == 2:
i, j = index
# Use isinstance checks for common index types; this is
# ~25-50% faster than isscalarlike. Scalar index
# assignment for other types is handled below together
# with fancy indexing.
if ((isinstance(i, int) or isinstance(i, np.integer)) and
(isinstance(j, int) or isinstance(j, np.integer))):
x = self.dtype.type(x)
if x.size > 1:
# Triggered if input was an ndarray
raise ValueError("Trying to assign a sequence to an item")
_csparsetools.lil_insert(self.shape[0], self.shape[1],
self.rows, self.data,
i, j, x, self.dtype)
return
# General indexing
i, j = self._unpack_index(index)
# shortcut for common case of full matrix assign:
if (isspmatrix(x) and isinstance(i, slice) and i == slice(None) and
isinstance(j, slice) and j == slice(None)
and x.shape == self.shape):
x = lil_matrix(x, dtype=self.dtype)
self.rows = x.rows
self.data = x.data
return
i, j = self._index_to_arrays(i, j)
if isspmatrix(x):
x = x.toarray()
# Make x and i into the same shape
x = np.asarray(x, dtype=self.dtype)
x, _ = np.broadcast_arrays(x, i)
if x.shape != i.shape:
raise ValueError("shape mismatch in assignment")
# Set values
i, j, x = _csparsetools.prepare_index_for_memoryview(i, j, x)
_csparsetools.lil_fancy_set(self.shape[0], self.shape[1],
self.rows, self.data,
i, j, x)
def _mul_scalar(self, other):
if other == 0:
# Multiply by zero: return the zero matrix
new = lil_matrix(self.shape, dtype=self.dtype)
else:
res_dtype = upcast_scalar(self.dtype, other)
new = self.copy()
new = new.astype(res_dtype)
# Multiply this scalar by every element.
for j, rowvals in enumerate(new.data):
new.data[j] = [val*other for val in rowvals]
return new
def __truediv__(self, other): # self / other
if isscalarlike(other):
new = self.copy()
# Divide every element by this scalar
for j, rowvals in enumerate(new.data):
new.data[j] = [val/other for val in rowvals]
return new
else:
return self.tocsr() / other
def copy(self):
from copy import deepcopy
new = lil_matrix(self.shape, dtype=self.dtype)
new.data = deepcopy(self.data)
new.rows = deepcopy(self.rows)
return new
def reshape(self,shape):
new = lil_matrix(shape, dtype=self.dtype)
j_max = self.shape[1]
for i,row in enumerate(self.rows):
for col,j in enumerate(row):
new_r,new_c = np.unravel_index(i*j_max + j,shape)
new[new_r,new_c] = self[i,j]
return new
def toarray(self, order=None, out=None):
"""See the docstring for `spmatrix.toarray`."""
d = self._process_toarray_args(order, out)
for i, row in enumerate(self.rows):
for pos, j in enumerate(row):
d[i, j] = self.data[i][pos]
return d
def transpose(self):
return self.tocsr().transpose().tolil()
def tolil(self, copy=False):
if copy:
return self.copy()
else:
return self
def tocsr(self):
""" Return Compressed Sparse Row format arrays for this matrix.
"""
lst = [len(x) for x in self.rows]
idx_dtype = get_index_dtype(maxval=max(self.shape[1], sum(lst)))
indptr = np.asarray(lst, dtype=idx_dtype)
indptr = np.concatenate((np.array([0], dtype=idx_dtype),
np.cumsum(indptr, dtype=idx_dtype)))
indices = []
for x in self.rows:
indices.extend(x)
indices = np.asarray(indices, dtype=idx_dtype)
data = []
for x in self.data:
data.extend(x)
data = np.asarray(data, dtype=self.dtype)
from .csr import csr_matrix
return csr_matrix((data, indices, indptr), shape=self.shape)
def tocsc(self):
""" Return Compressed Sparse Column format arrays for this matrix.
"""
return self.tocsr().tocsc()
def isspmatrix_lil(x):
return isinstance(x, lil_matrix)