Repository URL to install this package:
|
Version:
2.5.0 ▾
|
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.
Lightning disentangles PyTorch code to decouple the science from the engineering.

Lightning structures PyTorch code with these principles:
Lightning forces the following structure to your code which makes it reusable and shareable:
Once you do this, you can train on multiple-GPUs, TPUs, CPUs, HPUs and even in 16-bit precision without changing your code!
Get started in just 15 minutes
Lightning is rigorously tested across multiple CPUs, GPUs and TPUs and against major Python and PyTorch versions.
| System / PyTorch ver. | 1.12 | 1.13 | 2.0 | 2.1 |
|---|---|---|---|---|
| Linux py3.9 [GPUs] | ||||
| Linux (multiple Python versions) | ||||
| OSX (multiple Python versions) | ||||
| Windows (multiple Python versions) |
Simple installation from PyPI
pip install pytorch-lightning
pip install pytorch-lightning['extra']
conda install pytorch-lightning -c conda-forge
Install future release from the source
pip install https://github.com/Lightning-AI/lightning/archive/refs/heads/release/stable.zip -U
Install nightly from the source (no guarantees)
pip install https://github.com/Lightning-AI/lightning/archive/refs/heads/master.zip -U
or from testing PyPI
pip install -iU https://test.pypi.org/simple/ pytorch-lightning
import os import torch from torch import nn import torch.nn.functional as F from torchvision.datasets import MNIST from torch.utils.data import DataLoader, random_split from torchvision import transforms import pytorch_lightning as pl
A LightningModule defines a full system (ie: a GAN, autoencoder, BERT or a simple Image Classifier).
class LitAutoEncoder(pl.LightningModule): def __init__(self): super().__init__() self.encoder = nn.Sequential(nn.Linear(28 * 28, 128), nn.ReLU(), nn.Linear(128, 3)) self.decoder = nn.Sequential(nn.Linear(3, 128), nn.ReLU(), nn.Linear(128, 28 * 28)) def forward(self, x): # in lightning, forward defines the prediction/inference actions embedding = self.encoder(x) return embedding def training_step(self, batch, batch_idx): # training_step defines the train loop. It is independent of forward x, _ = batch x = x.view(x.size(0), -1) z = self.encoder(x) x_hat = self.decoder(z) loss = F.mse_loss(x_hat, x) self.log("train_loss", loss) return loss def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=1e-3) return optimizer
Note: Training_step defines the training loop. Forward defines how the LightningModule behaves during inference/prediction.
dataset = MNIST(os.getcwd(), download=True, transform=transforms.ToTensor()) train, val = random_split(dataset, [55000, 5000]) autoencoder = LitAutoEncoder() trainer = pl.Trainer() trainer.fit(autoencoder, DataLoader(train), DataLoader(val))
Lightning has over 40+ advanced features designed for professional AI research at scale.
Here are some examples:
# 8 GPUs # no code changes needed trainer = Trainer(max_epochs=1, accelerator="gpu", devices=8) # 256 GPUs trainer = Trainer(max_epochs=1, accelerator="gpu", devices=8, num_nodes=32)
# no code changes needed trainer = Trainer(accelerator="tpu", devices=8)
# no code changes needed trainer = Trainer(precision=16)
from pytorch_lightning import loggers # tensorboard trainer = Trainer(logger=TensorBoardLogger("logs/")) # weights and biases trainer = Trainer(logger=loggers.WandbLogger()) # comet trainer = Trainer(logger=loggers.CometLogger()) # mlflow trainer = Trainer(logger=loggers.MLFlowLogger()) # neptune trainer = Trainer(logger=loggers.NeptuneLogger()) # ... and dozens more
es = EarlyStopping(monitor="val_loss") trainer = Trainer(callbacks=[es])
checkpointing = ModelCheckpoint(monitor="val_loss") trainer = Trainer(callbacks=[checkpointing])
# torchscript autoencoder = LitAutoEncoder() torch.jit.save(autoencoder.to_torchscript(), "model.pt")
autoencoder = LitAutoEncoder() input_sample = torch.randn((1, 64)) with tempfile.NamedTemporaryFile(suffix=".onnx", delete=False) as tmpfile: autoencoder.to_onnx(tmpfile.name, input_sample, export_params=True)
For complex/professional level work, you have optional full control of the optimizers.
class LitAutoEncoder(pl.LightningModule): def __init__(self): super().__init__() self.automatic_optimization = False def training_step(self, batch, batch_idx): # access your optimizers with use_pl_optimizer=False. Default is True opt_a, opt_b = self.optimizers(use_pl_optimizer=True) loss_a = ... self.manual_backward(loss_a, opt_a) opt_a.step() opt_a.zero_grad() loss_b = ... self.manual_backward(loss_b, opt_b, retain_graph=True) self.manual_backward(loss_b, opt_b) opt_b.step() opt_b.zero_grad()
The PyTorch Lightning community is maintained by
Want to help us build Lightning and reduce boilerplate for thousands of researchers? Learn how to make your first contribution here
PyTorch Lightning is also part of the PyTorch ecosystem which requires projects to have solid testing, documentation and support.
If you have any questions please: