Repository URL to install this package:
|
Version:
2.4.0 ▾
|
# Copyright 2023 MathInf GmbH
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this files from this repository except in compliance
# with the License reproduced below (also at
# http://www.apache.org/licenses/LICENSE-2.0).
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import pickle
import warnings
from functools import partial
from io import BytesIO
from pathlib import Path
from typing import IO, TYPE_CHECKING, Any, Callable, Dict, Optional, OrderedDict, Sequence, Set, Union
import torch
from lightning_utilities.core.apply_func import apply_to_collection
from torch import Tensor
from torch._C import _TensorMeta
from torch.nn import Parameter
from typing_extensions import override
from lightning_fabric.utilities.imports import _TORCH_GREATER_EQUAL_2_3
from lightning_fabric.utilities.types import _PATH, _Stateful
_METADATA_FILENAME = "meta.pt"
if TYPE_CHECKING:
from torch.storage import TypedStorage
# Modified from https://github.com/lernapparat/torchhacks by Thomas Viehmann
class _NotYetLoadedTensor:
def __init__(
self,
metatensor: Tensor,
archiveinfo: "_LazyLoadingUnpickler",
storageinfo: tuple,
rebuild_args: tuple,
) -> None:
self.metatensor = metatensor
self.archiveinfo = archiveinfo
self.storageinfo = storageinfo
self.rebuild_args = rebuild_args
@classmethod
def rebuild_from_type_v2(
cls,
func: Callable,
new_type: _TensorMeta,
args: tuple,
state: dict,
*,
archiveinfo: Optional["_LazyLoadingUnpickler"] = None,
) -> Any:
ret = func(*args)
if isinstance(ret, _NotYetLoadedTensor):
old_lt = ret._load_tensor
def _load_tensor() -> Any:
t = old_lt()
return torch._tensor._rebuild_from_type_v2(lambda: t, new_type, (), state)
ret._load_tensor = _load_tensor # type: ignore[method-assign]
return ret
return torch._tensor._rebuild_from_type_v2(func, new_type, args, state)
@classmethod
def rebuild_parameter(
cls,
data: Any,
requires_grad: bool,
backward_hooks: OrderedDict,
*,
archiveinfo: Optional["_LazyLoadingUnpickler"] = None,
) -> Union[Tensor, "_NotYetLoadedTensor"]:
if isinstance(data, _NotYetLoadedTensor):
old_lt = data._load_tensor
def _load_tensor() -> Parameter:
t = old_lt()
return torch._utils._rebuild_parameter(t, requires_grad, backward_hooks)
data._load_tensor = _load_tensor # type: ignore[method-assign]
return data
return torch._utils._rebuild_parameter(data, requires_grad, backward_hooks)
@classmethod
def rebuild_tensor_v2(
cls,
storage: "TypedStorage",
storage_offset: int,
size: tuple,
stride: tuple,
requires_grad: bool,
backward_hooks: OrderedDict,
metadata: Optional[Any] = None,
*,
archiveinfo: "_LazyLoadingUnpickler",
) -> "_NotYetLoadedTensor":
rebuild_args = (storage_offset, size, stride, requires_grad, backward_hooks, metadata)
metatensor = torch._utils._rebuild_tensor_v2(
storage, storage_offset, size, stride, requires_grad, backward_hooks, metadata
)
storageinfo = storage.archiveinfo
return _NotYetLoadedTensor(metatensor, archiveinfo, storageinfo, rebuild_args)
def _load_tensor(self) -> Tensor:
from torch.storage import TypedStorage, UntypedStorage
_, _, fn, _, size = self.storageinfo
dtype = self.metatensor.dtype
storage = self.archiveinfo.file_reader.get_storage_from_record(
f"data/{fn}", size * torch._utils._element_size(dtype), UntypedStorage
)
uts = storage._typed_storage()._untyped_storage
with warnings.catch_warnings():
# The TypedStorage APIs have heavy deprecations in torch, suppress all these warnings for now
warnings.simplefilter("ignore")
storage = TypedStorage(wrap_storage=uts, dtype=dtype, _internal=True)
return torch._utils._rebuild_tensor_v2(storage, *self.rebuild_args)
@classmethod
def __torch_function__(
cls,
func: Callable,
types: Sequence,
args: Sequence[Any] = (),
kwargs: Optional[Dict] = None,
) -> Any:
kwargs = kwargs or {}
loaded_args = [(arg._load_tensor() if isinstance(arg, _NotYetLoadedTensor) else arg) for arg in args]
return func(*loaded_args, **kwargs)
def __getattr__(self, name: str) -> Any:
# These properties don't require materialization and can be accessed through the meta tensor directly
if name in {
"dtype",
"grad",
"grad_fn",
"is_meta",
"layout",
"names",
"ndim",
"output_nr",
"requires_grad",
"retains_grad",
"size",
"shape",
"volatile",
}:
return getattr(self.metatensor, name)
# materializing these is needed for quantization (see lit-gpt)
if name in {"contiguous", "cuda", "half", "data"}:
return getattr(self._load_tensor(), name)
raise AttributeError(f"'{type(self).__name__}' object has no attribute '{name}'")
def __repr__(self) -> str:
return f"{self.__class__.__name__}({repr(self.metatensor)})"
# Modified from https://github.com/lernapparat/torchhacks by Thomas Viehmann
class _LazyLoadingUnpickler(pickle.Unpickler):
def __init__(self, file: IO, file_reader: torch.PyTorchFileReader) -> None:
super().__init__(file)
self.file_reader = file_reader
@override
def find_class(self, module: str, name: str) -> Any:
if module == "torch._utils" and name == "_rebuild_tensor_v2":
return partial(_NotYetLoadedTensor.rebuild_tensor_v2, archiveinfo=self)
if module == "torch._tensor" and name == "_rebuild_from_type_v2":
return partial(_NotYetLoadedTensor.rebuild_from_type_v2, archiveinfo=self)
if module == "torch._utils" and name == "_rebuild_parameter":
return partial(_NotYetLoadedTensor.rebuild_parameter, archiveinfo=self)
return super().find_class(module, name)
@override
def persistent_load(self, pid: tuple) -> "TypedStorage":
from torch.storage import TypedStorage
_, cls, _, _, _ = pid
with warnings.catch_warnings():
# The TypedStorage APIs have heavy deprecations in torch, suppress all these warnings for now
warnings.simplefilter("ignore")
storage = TypedStorage(dtype=cls().dtype, device="meta")
storage.archiveinfo = pid
return storage
def _lazy_load(filename: _PATH) -> Any:
if not os.path.isfile(filename):
raise FileNotFoundError(f"Path {str(filename)!r} does not exist or is not a file.")
file_reader = torch.PyTorchFileReader(str(filename))
with BytesIO(file_reader.get_record("data.pkl")) as pkl:
mup = _LazyLoadingUnpickler(pkl, file_reader)
return mup.load()
def _materialize_tensors(collection: Any) -> Any:
def _load_tensor(t: _NotYetLoadedTensor) -> Tensor:
return t._load_tensor()
return apply_to_collection(collection, dtype=_NotYetLoadedTensor, function=_load_tensor)
def _move_state_into(
source: Dict[str, Any], destination: Dict[str, Union[Any, _Stateful]], keys: Optional[Set[str]] = None
) -> None:
"""Takes the state from the source destination and moves it into the destination dictionary.
If an object in the destination follows the stateful protocol, it loads the source state via ``load_state_dict``.
"""
keys = set(source) if keys is None else keys & set(source)
for key in keys:
state = source.pop(key)
if key in destination and isinstance(destination[key], _Stateful):
destination[key].load_state_dict(state)
else:
destination[key] = state
def _load_distributed_checkpoint(checkpoint_folder: Path) -> Dict[str, Any]:
"""Loads a sharded checkpoint saved with the `torch.distributed.checkpoint` into a full state dict.
The current implementation assumes that the entire checkpoint fits in CPU memory.
"""
if not _TORCH_GREATER_EQUAL_2_3:
raise ImportError("Processing distributed checkpoints requires PyTorch >= 2.3.")
from torch.distributed.checkpoint import FileSystemReader
from torch.distributed.checkpoint.format_utils import _EmptyStateDictLoadPlanner
from torch.distributed.checkpoint.state_dict_loader import _load_state_dict
checkpoint: Dict[str, Any] = {}
_load_state_dict(
checkpoint,
storage_reader=FileSystemReader(checkpoint_folder),
planner=_EmptyStateDictLoadPlanner(),
no_dist=True,
)
# This is the extra file saved by Fabric, with user data separate from weights and optimizer states
extra_file = checkpoint_folder / _METADATA_FILENAME
extra = torch.load(extra_file, map_location="cpu") if extra_file.is_file() else {}
checkpoint.update(extra)
return checkpoint