Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
Size: Mime:
import numpy as np

from ._extensions._pywt import (DiscreteContinuousWavelet, ContinuousWavelet,
                                Wavelet, _check_dtype)
from ._functions import integrate_wavelet, scale2frequency

__all__ = ["cwt"]


def cwt(data, scales, wavelet, sampling_period=1.):
    """
    cwt(data, scales, wavelet)

    One dimensional Continuous Wavelet Transform.

    Parameters
    ----------
    data : array_like
        Input signal
    scales : array_like
        The wavelet scales to use. One can use
        ``f = scale2frequency(scale, wavelet)/sampling_period`` to determine
        what physical frequency, ``f``. Here, ``f`` is in hertz when the
        ``sampling_period`` is given in seconds.
    wavelet : Wavelet object or name
        Wavelet to use
    sampling_period : float
        Sampling period for the frequencies output (optional).
        The values computed for ``coefs`` are independent of the choice of
        ``sampling_period`` (i.e. ``scales`` is not scaled by the sampling
        period).

    Returns
    -------
    coefs : array_like
        Continuous wavelet transform of the input signal for the given scales
        and wavelet
    frequencies : array_like
        If the unit of sampling period are seconds and given, than frequencies
        are in hertz. Otherwise, a sampling period of 1 is assumed.

    Notes
    -----
    Size of coefficients arrays depends on the length of the input array and
    the length of given scales.

    Examples
    --------
    >>> import pywt
    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> x = np.arange(512)
    >>> y = np.sin(2*np.pi*x/32)
    >>> coef, freqs=pywt.cwt(y,np.arange(1,129),'gaus1')
    >>> plt.matshow(coef) # doctest: +SKIP
    >>> plt.show() # doctest: +SKIP
    ----------
    >>> import pywt
    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> t = np.linspace(-1, 1, 200, endpoint=False)
    >>> sig  = np.cos(2 * np.pi * 7 * t) + np.real(np.exp(-7*(t-0.4)**2)*np.exp(1j*2*np.pi*2*(t-0.4)))
    >>> widths = np.arange(1, 31)
    >>> cwtmatr, freqs = pywt.cwt(sig, widths, 'mexh')
    >>> plt.imshow(cwtmatr, extent=[-1, 1, 1, 31], cmap='PRGn', aspect='auto',
    ...            vmax=abs(cwtmatr).max(), vmin=-abs(cwtmatr).max())  # doctest: +SKIP
    >>> plt.show() # doctest: +SKIP
    """

    # accept array_like input; make a copy to ensure a contiguous array
    dt = _check_dtype(data)
    data = np.array(data, dtype=dt)
    if not isinstance(wavelet, (ContinuousWavelet, Wavelet)):
        wavelet = DiscreteContinuousWavelet(wavelet)
    if np.isscalar(scales):
        scales = np.array([scales])
    if data.ndim == 1:
        if wavelet.complex_cwt:
            out = np.zeros((np.size(scales), data.size), dtype=complex)
        else:
            out = np.zeros((np.size(scales), data.size))
        precision = 10
        int_psi, x = integrate_wavelet(wavelet, precision=precision)
        for i in np.arange(np.size(scales)):
            step = x[1] - x[0]
            j = np.floor(
                np.arange(scales[i] * (x[-1] - x[0]) + 1) / (scales[i] * step))
            if np.max(j) >= np.size(int_psi):
                j = np.delete(j, np.where((j >= np.size(int_psi)))[0])
            coef = - np.sqrt(scales[i]) * np.diff(
                np.convolve(data, int_psi[j.astype(np.int)][::-1]))
            d = (coef.size - data.size) / 2.
            if d > 0:
                out[i, :] = coef[int(np.floor(d)):int(-np.ceil(d))]
            elif d == 0.:
                out[i, :] = coef
            else:
                raise ValueError(
                    "Selected scale of {} too small.".format(scales[i]))
        frequencies = scale2frequency(wavelet, scales, precision)
        if np.isscalar(frequencies):
            frequencies = np.array([frequencies])
        for i in np.arange(len(frequencies)):
            frequencies[i] /= sampling_period
        return out, frequencies
    else:
        raise ValueError("Only dim == 1 supported")