Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
Size: Mime:
import numpy as np
import scipy.ndimage as ndi
from ..segmentation import relabel_sequential
from .. import measure
from ..filters import rank_order


def _get_high_intensity_peaks(image, mask, num_peaks):
    """
    Return the highest intensity peak coordinates.
    """
    # get coordinates of peaks
    coord = np.nonzero(mask)
    # select num_peaks peaks
    if len(coord[0]) > num_peaks:
        intensities = image[coord]
        idx_maxsort = np.argsort(intensities)
        coord = np.transpose(coord)[idx_maxsort][-num_peaks:]
    else:
        coord = np.column_stack(coord)
    # Higest peak first
    return coord[::-1]


def peak_local_max(image, min_distance=1, threshold_abs=None,
                   threshold_rel=None, exclude_border=True, indices=True,
                   num_peaks=np.inf, footprint=None, labels=None,
                   num_peaks_per_label=np.inf):
    """Find peaks in an image as coordinate list or boolean mask.

    Peaks are the local maxima in a region of `2 * min_distance + 1`
    (i.e. peaks are separated by at least `min_distance`).

    If peaks are flat (i.e. multiple adjacent pixels have identical
    intensities), the coordinates of all such pixels are returned.

    If both `threshold_abs` and `threshold_rel` are provided, the maximum
    of the two is chosen as the minimum intensity threshold of peaks.

    Parameters
    ----------
    image : ndarray
        Input image.
    min_distance : int, optional
        Minimum number of pixels separating peaks in a region of `2 *
        min_distance + 1` (i.e. peaks are separated by at least
        `min_distance`).
        To find the maximum number of peaks, use `min_distance=1`.
    threshold_abs : float, optional
        Minimum intensity of peaks. By default, the absolute threshold is
        the minimum intensity of the image.
    threshold_rel : float, optional
        Minimum intensity of peaks, calculated as `max(image) * threshold_rel`.
    exclude_border : int, optional
        If nonzero, `exclude_border` excludes peaks from
        within `exclude_border`-pixels of the border of the image.
    indices : bool, optional
        If True, the output will be an array representing peak
        coordinates.  If False, the output will be a boolean array shaped as
        `image.shape` with peaks present at True elements.
    num_peaks : int, optional
        Maximum number of peaks. When the number of peaks exceeds `num_peaks`,
        return `num_peaks` peaks based on highest peak intensity.
    footprint : ndarray of bools, optional
        If provided, `footprint == 1` represents the local region within which
        to search for peaks at every point in `image`.  Overrides
        `min_distance` (also for `exclude_border`).
    labels : ndarray of ints, optional
        If provided, each unique region `labels == value` represents a unique
        region to search for peaks. Zero is reserved for background.
    num_peaks_per_label : int, optional
        Maximum number of peaks for each label.

    Returns
    -------
    output : ndarray or ndarray of bools

        * If `indices = True`  : (row, column, ...) coordinates of peaks.
        * If `indices = False` : Boolean array shaped like `image`, with peaks
          represented by True values.

    Notes
    -----
    The peak local maximum function returns the coordinates of local peaks
    (maxima) in an image. A maximum filter is used for finding local maxima.
    This operation dilates the original image. After comparison of the dilated
    and original image, this function returns the coordinates or a mask of the
    peaks where the dilated image equals the original image.

    Examples
    --------
    >>> img1 = np.zeros((7, 7))
    >>> img1[3, 4] = 1
    >>> img1[3, 2] = 1.5
    >>> img1
    array([[ 0. ,  0. ,  0. ,  0. ,  0. ,  0. ,  0. ],
           [ 0. ,  0. ,  0. ,  0. ,  0. ,  0. ,  0. ],
           [ 0. ,  0. ,  0. ,  0. ,  0. ,  0. ,  0. ],
           [ 0. ,  0. ,  1.5,  0. ,  1. ,  0. ,  0. ],
           [ 0. ,  0. ,  0. ,  0. ,  0. ,  0. ,  0. ],
           [ 0. ,  0. ,  0. ,  0. ,  0. ,  0. ,  0. ],
           [ 0. ,  0. ,  0. ,  0. ,  0. ,  0. ,  0. ]])

    >>> peak_local_max(img1, min_distance=1)
    array([[3, 4],
           [3, 2]])

    >>> peak_local_max(img1, min_distance=2)
    array([[3, 2]])

    >>> img2 = np.zeros((20, 20, 20))
    >>> img2[10, 10, 10] = 1
    >>> peak_local_max(img2, exclude_border=0)
    array([[10, 10, 10]])

    """
    if type(exclude_border) == bool:
        exclude_border = min_distance if exclude_border else 0

    out = np.zeros_like(image, dtype=np.bool)

    # In the case of labels, recursively build and return an output
    # operating on each label separately
    if labels is not None:
        label_values = np.unique(labels)
        # Reorder label values to have consecutive integers (no gaps)
        if np.any(np.diff(label_values) != 1):
            mask = labels >= 1
            labels[mask] = 1 + rank_order(labels[mask])[0].astype(labels.dtype)
        labels = labels.astype(np.int32)

        # New values for new ordering
        label_values = np.unique(labels)
        for label in label_values[label_values != 0]:
            maskim = (labels == label)
            out += peak_local_max(image * maskim, min_distance=min_distance,
                                  threshold_abs=threshold_abs,
                                  threshold_rel=threshold_rel,
                                  exclude_border=exclude_border,
                                  indices=False, num_peaks=num_peaks_per_label,
                                  footprint=footprint, labels=None)

        # Select highest intensities (num_peaks)
        coordinates = _get_high_intensity_peaks(image, out, num_peaks)

        if indices is True:
            return coordinates
        else:
            nd_indices = tuple(coordinates.T)
            out[nd_indices] = True
            return out

    if np.all(image == image.flat[0]):
        if indices is True:
            return np.empty((0, 2), np.int)
        else:
            return out

    # Non maximum filter
    if footprint is not None:
        image_max = ndi.maximum_filter(image, footprint=footprint,
                                       mode='constant')
    else:
        size = 2 * min_distance + 1
        image_max = ndi.maximum_filter(image, size=size, mode='constant')
    mask = image == image_max

    if exclude_border:
        # zero out the image borders
        for i in range(mask.ndim):
            mask = mask.swapaxes(0, i)
            remove = (footprint.shape[i] if footprint is not None
                      else 2 * exclude_border)
            mask[:remove // 2] = mask[-remove // 2:] = False
            mask = mask.swapaxes(0, i)

    # find top peak candidates above a threshold
    thresholds = []
    if threshold_abs is None:
        threshold_abs = image.min()
    thresholds.append(threshold_abs)
    if threshold_rel is not None:
        thresholds.append(threshold_rel * image.max())
    if thresholds:
        mask &= image > max(thresholds)

    # Select highest intensities (num_peaks)
    coordinates = _get_high_intensity_peaks(image, mask, num_peaks)

    if indices is True:
        return coordinates
    else:
        nd_indices = tuple(coordinates.T)
        out[nd_indices] = True
        return out


def _prominent_peaks(image, min_xdistance=1, min_ydistance=1,
                     threshold=None, num_peaks=np.inf):
    """Return peaks with non-maximum suppression.

    Identifies most prominent features separated by certain distances.
    Non-maximum suppression with different sizes is applied separately
    in the first and second dimension of the image to identify peaks.

    Parameters
    ----------
    image : (M, N) ndarray
        Input image.
    min_xdistance : int
        Minimum distance separating features in the x dimension.
    min_ydistance : int
        Minimum distance separating features in the y dimension.
    threshold : float
        Minimum intensity of peaks. Default is `0.5 * max(image)`.
    num_peaks : int
        Maximum number of peaks. When the number of peaks exceeds `num_peaks`,
        return `num_peaks` coordinates based on peak intensity.

    Returns
    -------
    intensity, xcoords, ycoords : tuple of array
        Peak intensity values, x and y indices.
    """

    img = image.copy()
    rows, cols = img.shape

    if threshold is None:
        threshold = 0.5 * np.max(img)

    ycoords_size = 2 * min_ydistance + 1
    xcoords_size = 2 * min_xdistance + 1
    img_max = ndi.maximum_filter1d(img, size=ycoords_size, axis=0,
                                   mode='constant', cval=0)
    img_max = ndi.maximum_filter1d(img_max, size=xcoords_size, axis=1,
                                   mode='constant', cval=0)
    mask = (img == img_max)
    img *= mask
    img_t = img > threshold

    label_img = measure.label(img_t)
    props = measure.regionprops(label_img, img_max)

    # Sort the list of peaks by intensity, not left-right, so larger peaks
    # in Hough space cannot be arbitrarily suppressed by smaller neighbors
    props = sorted(props, key=lambda x: x.max_intensity)[::-1]
    coords = np.array([np.round(p.centroid) for p in props], dtype=int)

    img_peaks = []
    ycoords_peaks = []
    xcoords_peaks = []

    # relative coordinate grid for local neighbourhood suppression
    ycoords_ext, xcoords_ext = np.mgrid[-min_ydistance:min_ydistance + 1,
                                        -min_xdistance:min_xdistance + 1]

    for ycoords_idx, xcoords_idx in coords:
        accum = img_max[ycoords_idx, xcoords_idx]
        if accum > threshold:
            # absolute coordinate grid for local neighbourhood suppression
            ycoords_nh = ycoords_idx + ycoords_ext
            xcoords_nh = xcoords_idx + xcoords_ext

            # no reflection for distance neighbourhood
            ycoords_in = np.logical_and(ycoords_nh > 0, ycoords_nh < rows)
            ycoords_nh = ycoords_nh[ycoords_in]
            xcoords_nh = xcoords_nh[ycoords_in]

            # reflect xcoords and assume xcoords are continuous,
            # e.g. for angles:
            # (..., 88, 89, -90, -89, ..., 89, -90, -89, ...)
            xcoords_low = xcoords_nh < 0
            ycoords_nh[xcoords_low] = rows - ycoords_nh[xcoords_low]
            xcoords_nh[xcoords_low] += cols
            xcoords_high = xcoords_nh >= cols
            ycoords_nh[xcoords_high] = rows - ycoords_nh[xcoords_high]
            xcoords_nh[xcoords_high] -= cols

            # suppress neighbourhood
            img_max[ycoords_nh, xcoords_nh] = 0

            # add current feature to peaks
            img_peaks.append(accum)
            ycoords_peaks.append(ycoords_idx)
            xcoords_peaks.append(xcoords_idx)

    img_peaks = np.array(img_peaks)
    ycoords_peaks = np.array(ycoords_peaks)
    xcoords_peaks = np.array(xcoords_peaks)

    if num_peaks < len(img_peaks):
        idx_maxsort = np.argsort(img_peaks)[::-1][:num_peaks]
        img_peaks = img_peaks[idx_maxsort]
        ycoords_peaks = ycoords_peaks[idx_maxsort]
        xcoords_peaks = xcoords_peaks[idx_maxsort]

    return img_peaks, xcoords_peaks, ycoords_peaks