Repository URL to install this package:
|
Version:
4.0.99 ▾
|
contego
/
home
/
tvault
/
.virtenv
/
lib
/
python2.7
/
site-packages
/
oslo_messaging
/
rpc
/
server.pyc
|
|---|
ó
čEYc @ sÞ d Z d d d g Z d d l Z d d l Z d d l m Z d d l m Z d d l m Z
d d l m Z
e j e Z d
e
j f d YZ e d d e
j d
d d d d d d d Z d Z d Z d S( s
An RPC server exposes a number of endpoints, each of which contain a set of
methods which may be invoked remotely by clients over a given transport.
To create an RPC server, you supply a transport, target and a list of
endpoints.
A transport can be obtained simply by calling the get_rpc_transport() method::
transport = messaging.get_rpc_transport(conf)
which will load the appropriate transport driver according to the user's
messaging configuration. See get_rpc_transport() for more details.
The target supplied when creating an RPC server expresses the topic, server
name and - optionally - the exchange to listen on. See Target for more details
on these attributes.
Multiple RPC Servers may listen to the same topic (and exchange)
simultaneously. See RPCClient for details regarding how RPC requests are
distributed to the Servers in this case.
Each endpoint object may have a target attribute which may have namespace and
version fields set. By default, we use the 'null namespace' and version 1.0.
Incoming method calls will be dispatched to the first endpoint with the
requested method, a matching namespace and a compatible version number.
The first parameter to method invocations is always the request context
supplied by the client. The remaining parameters are the arguments supplied to
the method by the client. Endpoint methods may return a value. If so the RPC
Server will send the returned value back to the requesting client via the
transport.
The executor parameter controls how incoming messages will be received and
dispatched. Refer to the Executor documentation for descriptions of the types
of executors.
*Note:* If the "eventlet" executor is used, the threading and time library need
to be monkeypatched.
The RPC reply operation is best-effort: the server will consider the message
containing the reply successfully sent once it is accepted by the messaging
transport. The server does not guarantee that the reply is processed by the
RPC client. If the send fails an error will be logged and the server will
continue to processing incoming RPC requests.
Parameters to the method invocation and values returned from the method are
python primitive types. However the actual encoding of the data in the message
may not be in primitive form (e.g. the message payload may be a dictionary
encoded as an ASCII string using JSON). A serializer object is used to convert
incoming encoded message data to primitive types. The serializer is also used
to convert the return value from primitive types to an encoding suitable for
the message payload.
RPC servers have start(), stop() and wait() methods to begin handling
requests, stop handling requests, and wait for all in-process requests to
complete after the Server has been stopped.
A simple example of an RPC server with multiple endpoints might be::
from oslo_config import cfg
import oslo_messaging
import time
class ServerControlEndpoint(object):
target = oslo_messaging.Target(namespace='control',
version='2.0')
def __init__(self, server):
self.server = server
def stop(self, ctx):
if self.server:
self.server.stop()
class TestEndpoint(object):
def test(self, ctx, arg):
return arg
transport = oslo_messaging.get_rpc_transport(cfg.CONF)
target = oslo_messaging.Target(topic='test', server='server1')
endpoints = [
ServerControlEndpoint(None),
TestEndpoint(),
]
server = oslo_messaging.get_rpc_server(transport, target, endpoints,
executor='eventlet')
try:
server.start()
while True:
time.sleep(1)
except KeyboardInterrupt:
print("Stopping server")
server.stop()
server.wait()
t get_rpc_servert expected_exceptionst exposeiÿÿÿÿN( t updated_kwarg_default_value( t _LE( t
dispatcher( t servert RPCServerc B s&