Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
contego / home / tvault / .virtenv / lib / python2.7 / site-packages / nova / virt / hardware.py
Size: Mime:
# Copyright 2014 Red Hat, Inc
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.

import collections
import fractions
import itertools

from oslo_log import log as logging
from oslo_serialization import jsonutils
from oslo_utils import strutils
from oslo_utils import units
import six

import nova.conf
from nova import context
from nova import exception
from nova.i18n import _, _LI
from nova import objects
from nova.objects import fields
from nova.objects import instance as obj_instance


CONF = nova.conf.CONF
LOG = logging.getLogger(__name__)

MEMPAGES_SMALL = -1
MEMPAGES_LARGE = -2
MEMPAGES_ANY = -3


def get_vcpu_pin_set():
    """Parsing vcpu_pin_set config.

    Returns a set of pcpu ids can be used by instances.
    """
    if not CONF.vcpu_pin_set:
        return None

    cpuset_ids = parse_cpu_spec(CONF.vcpu_pin_set)
    if not cpuset_ids:
        raise exception.Invalid(_("No CPUs available after parsing %r") %
                                CONF.vcpu_pin_set)
    return cpuset_ids


def parse_cpu_spec(spec):
    """Parse a CPU set specification.

    :param spec: cpu set string eg "1-4,^3,6"

    Each element in the list is either a single
    CPU number, a range of CPU numbers, or a
    caret followed by a CPU number to be excluded
    from a previous range.

    :returns: a set of CPU indexes
    """

    cpuset_ids = set()
    cpuset_reject_ids = set()
    for rule in spec.split(','):
        rule = rule.strip()
        # Handle multi ','
        if len(rule) < 1:
            continue
        # Note the count limit in the .split() call
        range_parts = rule.split('-', 1)
        if len(range_parts) > 1:
            reject = False
            if range_parts[0] and range_parts[0][0] == '^':
                reject = True
                range_parts[0] = str(range_parts[0][1:])

            # So, this was a range; start by converting the parts to ints
            try:
                start, end = [int(p.strip()) for p in range_parts]
            except ValueError:
                raise exception.Invalid(_("Invalid range expression %r")
                                        % rule)
            # Make sure it's a valid range
            if start > end:
                raise exception.Invalid(_("Invalid range expression %r")
                                        % rule)
            # Add available CPU ids to set
            if not reject:
                cpuset_ids |= set(range(start, end + 1))
            else:
                cpuset_reject_ids |= set(range(start, end + 1))
        elif rule[0] == '^':
            # Not a range, the rule is an exclusion rule; convert to int
            try:
                cpuset_reject_ids.add(int(rule[1:].strip()))
            except ValueError:
                raise exception.Invalid(_("Invalid exclusion "
                                          "expression %r") % rule)
        else:
            # OK, a single CPU to include; convert to int
            try:
                cpuset_ids.add(int(rule))
            except ValueError:
                raise exception.Invalid(_("Invalid inclusion "
                                          "expression %r") % rule)

    # Use sets to handle the exclusion rules for us
    cpuset_ids -= cpuset_reject_ids

    return cpuset_ids


def format_cpu_spec(cpuset, allow_ranges=True):
    """Format a libvirt CPU range specification.

    :param cpuset: set (or list) of CPU indexes

    Format a set/list of CPU indexes as a libvirt CPU
    range specification. It allow_ranges is true, it
    will try to detect continuous ranges of CPUs,
    otherwise it will just list each CPU index explicitly.

    :returns: a formatted CPU range string
    """

    # We attempt to detect ranges, but don't bother with
    # trying to do range negations to minimize the overall
    # spec string length
    if allow_ranges:
        ranges = []
        previndex = None
        for cpuindex in sorted(cpuset):
            if previndex is None or previndex != (cpuindex - 1):
                ranges.append([])
            ranges[-1].append(cpuindex)
            previndex = cpuindex

        parts = []
        for entry in ranges:
            if len(entry) == 1:
                parts.append(str(entry[0]))
            else:
                parts.append("%d-%d" % (entry[0], entry[len(entry) - 1]))
        return ",".join(parts)
    else:
        return ",".join(str(id) for id in sorted(cpuset))


def get_number_of_serial_ports(flavor, image_meta):
    """Get the number of serial consoles from the flavor or image

    :param flavor: Flavor object to read extra specs from
    :param image_meta: nova.objects.ImageMeta object instance

    If flavor extra specs is not set, then any image meta value is permitted.
    If flavor extra specs *is* set, then this provides the default serial
    port count. The image meta is permitted to override the extra specs, but
    *only* with a lower value. ie

    - flavor hw:serial_port_count=4
      VM gets 4 serial ports
    - flavor hw:serial_port_count=4 and image hw_serial_port_count=2
      VM gets 2 serial ports
    - image hw_serial_port_count=6
      VM gets 6 serial ports
    - flavor hw:serial_port_count=4 and image hw_serial_port_count=6
      Abort guest boot - forbidden to exceed flavor value

    :returns: number of serial ports
    """

    def get_number(obj, property):
        num_ports = obj.get(property)
        if num_ports is not None:
            try:
                num_ports = int(num_ports)
            except ValueError:
                raise exception.ImageSerialPortNumberInvalid(
                    num_ports=num_ports, property=property)
        return num_ports

    flavor_num_ports = get_number(flavor.extra_specs, "hw:serial_port_count")
    image_num_ports = image_meta.properties.get("hw_serial_port_count", None)

    if (flavor_num_ports and image_num_ports) is not None:
        if image_num_ports > flavor_num_ports:
            raise exception.ImageSerialPortNumberExceedFlavorValue()
        return image_num_ports

    return flavor_num_ports or image_num_ports or 1


class InstanceInfo(object):

    def __init__(self, state=None, max_mem_kb=0, mem_kb=0, num_cpu=0,
                 cpu_time_ns=0, id=None):
        """Create a new Instance Info object

        :param state: the running state, one of the power_state codes
        :param max_mem_kb: (int) the maximum memory in KBytes allowed
        :param mem_kb: (int) the memory in KBytes used by the instance
        :param num_cpu: (int) the number of virtual CPUs for the instance
        :param cpu_time_ns: (int) the CPU time used in nanoseconds
        :param id: a unique ID for the instance
        """
        self.state = state
        self.max_mem_kb = max_mem_kb
        self.mem_kb = mem_kb
        self.num_cpu = num_cpu
        self.cpu_time_ns = cpu_time_ns
        self.id = id

    def __eq__(self, other):
        return (self.__class__ == other.__class__ and
                self.__dict__ == other.__dict__)


def _score_cpu_topology(topology, wanttopology):
    """Calculate score for the topology against a desired configuration

    :param wanttopology: nova.objects.VirtCPUTopology instance for
                         preferred topology

    Calculate a score indicating how well this topology
    matches against a preferred topology. A score of 3
    indicates an exact match for sockets, cores and threads.
    A score of 2 indicates a match of sockets & cores or
    sockets & threads or cores and threads. A score of 1
    indicates a match of sockets or cores or threads. A
    score of 0 indicates no match

    :returns: score in range 0 (worst) to 3 (best)
    """

    score = 0
    if (wanttopology.sockets != -1 and
        topology.sockets == wanttopology.sockets):
        score = score + 1
    if (wanttopology.cores != -1 and
        topology.cores == wanttopology.cores):
        score = score + 1
    if (wanttopology.threads != -1 and
        topology.threads == wanttopology.threads):
        score = score + 1
    return score


def _get_cpu_topology_constraints(flavor, image_meta):
    """Get the topology constraints declared in flavor or image

    :param flavor: Flavor object to read extra specs from
    :param image_meta: nova.objects.ImageMeta object instance

    Gets the topology constraints from the configuration defined
    in the flavor extra specs or the image metadata. In the flavor
    this will look for

     hw:cpu_sockets - preferred socket count
     hw:cpu_cores - preferred core count
     hw:cpu_threads - preferred thread count
     hw:cpu_max_sockets - maximum socket count
     hw:cpu_max_cores - maximum core count
     hw:cpu_max_threads - maximum thread count

    In the image metadata this will look at

     hw_cpu_sockets - preferred socket count
     hw_cpu_cores - preferred core count
     hw_cpu_threads - preferred thread count
     hw_cpu_max_sockets - maximum socket count
     hw_cpu_max_cores - maximum core count
     hw_cpu_max_threads - maximum thread count

    The image metadata must be strictly lower than any values
    set in the flavor. All values are, however, optional.

    This will return a pair of nova.objects.VirtCPUTopology instances,
    the first giving the preferred socket/core/thread counts,
    and the second giving the upper limits on socket/core/
    thread counts.

    exception.ImageVCPULimitsRangeExceeded will be raised
    if the maximum counts set against the image exceed
    the maximum counts set against the flavor

    exception.ImageVCPUTopologyRangeExceeded will be raised
    if the preferred counts set against the image exceed
    the maximum counts set against the image or flavor

    :returns: (preferred topology, maximum topology)
    """

    # Obtain the absolute limits from the flavor
    flvmaxsockets = int(flavor.extra_specs.get(
        "hw:cpu_max_sockets", 65536))
    flvmaxcores = int(flavor.extra_specs.get(
        "hw:cpu_max_cores", 65536))
    flvmaxthreads = int(flavor.extra_specs.get(
        "hw:cpu_max_threads", 65536))

    LOG.debug("Flavor limits %(sockets)d:%(cores)d:%(threads)d",
              {"sockets": flvmaxsockets,
               "cores": flvmaxcores,
               "threads": flvmaxthreads})

    # Get any customized limits from the image
    props = image_meta.properties
    maxsockets = props.get("hw_cpu_max_sockets", flvmaxsockets)
    maxcores = props.get("hw_cpu_max_cores", flvmaxcores)
    maxthreads = props.get("hw_cpu_max_threads", flvmaxthreads)

    LOG.debug("Image limits %(sockets)d:%(cores)d:%(threads)d",
              {"sockets": maxsockets,
               "cores": maxcores,
               "threads": maxthreads})

    # Image limits are not permitted to exceed the flavor
    # limits. ie they can only lower what the flavor defines
    if ((maxsockets > flvmaxsockets) or
        (maxcores > flvmaxcores) or
        (maxthreads > flvmaxthreads)):
        raise exception.ImageVCPULimitsRangeExceeded(
            sockets=maxsockets,
            cores=maxcores,
            threads=maxthreads,
            maxsockets=flvmaxsockets,
            maxcores=flvmaxcores,
            maxthreads=flvmaxthreads)

    # Get any default preferred topology from the flavor
    flvsockets = int(flavor.extra_specs.get("hw:cpu_sockets", -1))
    flvcores = int(flavor.extra_specs.get("hw:cpu_cores", -1))
    flvthreads = int(flavor.extra_specs.get("hw:cpu_threads", -1))

    LOG.debug("Flavor pref %(sockets)d:%(cores)d:%(threads)d",
              {"sockets": flvsockets,
               "cores": flvcores,
               "threads": flvthreads})

    # If the image limits have reduced the flavor limits
    # we might need to discard the preferred topology
    # from the flavor
    if ((flvsockets > maxsockets) or
        (flvcores > maxcores) or
        (flvthreads > maxthreads)):
        flvsockets = flvcores = flvthreads = -1

    # Finally see if the image has provided a preferred
    # topology to use
    sockets = props.get("hw_cpu_sockets", -1)
    cores = props.get("hw_cpu_cores", -1)
    threads = props.get("hw_cpu_threads", -1)

    LOG.debug("Image pref %(sockets)d:%(cores)d:%(threads)d",
              {"sockets": sockets,
               "cores": cores,
               "threads": threads})

    # Image topology is not permitted to exceed image/flavor
    # limits
    if ((sockets > maxsockets) or
        (cores > maxcores) or
        (threads > maxthreads)):
        raise exception.ImageVCPUTopologyRangeExceeded(
            sockets=sockets,
            cores=cores,
            threads=threads,
            maxsockets=maxsockets,
            maxcores=maxcores,
            maxthreads=maxthreads)

    # If no preferred topology was set against the image
    # then use the preferred topology from the flavor
    # We use 'and' not 'or', since if any value is set
    # against the image this invalidates the entire set
    # of values from the flavor
    if sockets == -1 and cores == -1 and threads == -1:
        sockets = flvsockets
        cores = flvcores
        threads = flvthreads

    LOG.debug("Chosen %(sockets)d:%(cores)d:%(threads)d limits "
              "%(maxsockets)d:%(maxcores)d:%(maxthreads)d",
              {"sockets": sockets, "cores": cores,
               "threads": threads, "maxsockets": maxsockets,
               "maxcores": maxcores, "maxthreads": maxthreads})

    return (objects.VirtCPUTopology(sockets=sockets, cores=cores,
                                    threads=threads),
            objects.VirtCPUTopology(sockets=maxsockets, cores=maxcores,
                                    threads=maxthreads))


def _get_possible_cpu_topologies(vcpus, maxtopology,
                                 allow_threads):
    """Get a list of possible topologies for a vCPU count
    :param vcpus: total number of CPUs for guest instance
    :param maxtopology: nova.objects.VirtCPUTopology for upper limits
    :param allow_threads: if the hypervisor supports CPU threads

    Given a total desired vCPU count and constraints on the
    maximum number of sockets, cores and threads, return a
    list of nova.objects.VirtCPUTopology instances that represent every
    possible topology that satisfies the constraints.

    exception.ImageVCPULimitsRangeImpossible is raised if
    it is impossible to achieve the total vcpu count given
    the maximum limits on sockets, cores & threads.

    :returns: list of nova.objects.VirtCPUTopology instances
    """

    # Clamp limits to number of vcpus to prevent
    # iterating over insanely large list
    maxsockets = min(vcpus, maxtopology.sockets)
    maxcores = min(vcpus, maxtopology.cores)
    maxthreads = min(vcpus, maxtopology.threads)

    if not allow_threads:
        maxthreads = 1

    LOG.debug("Build topologies for %(vcpus)d vcpu(s) "
              "%(maxsockets)d:%(maxcores)d:%(maxthreads)d",
              {"vcpus": vcpus, "maxsockets": maxsockets,
               "maxcores": maxcores, "maxthreads": maxthreads})

    # Figure out all possible topologies that match
    # the required vcpus count and satisfy the declared
    # limits. If the total vCPU count were very high
    # it might be more efficient to factorize the vcpu
    # count and then only iterate over its factors, but
    # that's overkill right now
    possible = []
    for s in range(1, maxsockets + 1):
        for c in range(1, maxcores + 1):
            for t in range(1, maxthreads + 1):
                if (t * c * s) != vcpus:
                    continue
                possible.append(
                    objects.VirtCPUTopology(sockets=s,
                                            cores=c,
                                            threads=t))

    # We want to
    #  - Minimize threads (ie larger sockets * cores is best)
    #  - Prefer sockets over cores
    possible = sorted(possible, reverse=True,
                      key=lambda x: (x.sockets * x.cores,
                                     x.sockets,
                                     x.threads))

    LOG.debug("Got %d possible topologies", len(possible))
    if len(possible) == 0:
        raise exception.ImageVCPULimitsRangeImpossible(vcpus=vcpus,
                                                       sockets=maxsockets,
                                                       cores=maxcores,
                                                       threads=maxthreads)

    return possible


def _filter_for_numa_threads(possible, wantthreads):
    """Filter to topologies which closest match to NUMA threads
    :param possible: list of nova.objects.VirtCPUTopology
    :param wantthreads: ideal number of threads

    Determine which topologies provide the closest match to
    the number of threads desired by the NUMA topology of
    the instance.

    The possible topologies may not have any entries
    which match the desired thread count. So this method
    will find the topologies which have the closest
    matching count.

    ie if wantthreads is 4 and the possible topologies
    has entries with 6, 3, 2 or 1 threads, it will
    return the topologies which have 3 threads, as
    this is the closest match not greater than 4.

    :returns: list of nova.objects.VirtCPUTopology
    """

    # First figure out the largest available thread
    # count which is not greater than wantthreads
    mostthreads = 0
    for topology in possible:
        if topology.threads > wantthreads:
            continue
        if topology.threads > mostthreads:
            mostthreads = topology.threads

    # Now restrict to just those topologies which
    # match the largest thread count
    bestthreads = []
    for topology in possible:
        if topology.threads != mostthreads:
            continue
        bestthreads.append(topology)

    return bestthreads


def _sort_possible_cpu_topologies(possible, wanttopology):
    """Sort the topologies in order of preference
    :param possible: list of nova.objects.VirtCPUTopology instances
    :param wanttopology: nova.objects.VirtCPUTopology for preferred
                         topology

    This takes the list of possible topologies and resorts
    it such that those configurations which most closely
    match the preferred topology are first.

    :returns: sorted list of nova.objects.VirtCPUTopology instances
    """

    # Look at possible topologies and score them according
    # to how well they match the preferred topologies
    # We don't use python's sort(), since we want to
    # preserve the sorting done when populating the
    # 'possible' list originally
    scores = collections.defaultdict(list)
    for topology in possible:
        score = _score_cpu_topology(topology, wanttopology)
        scores[score].append(topology)

    # Build list of all possible topologies sorted
    # by the match score, best match first
    desired = []
    desired.extend(scores[3])
    desired.extend(scores[2])
    desired.extend(scores[1])
    desired.extend(scores[0])

    return desired


def _get_desirable_cpu_topologies(flavor, image_meta, allow_threads=True,
                                  numa_topology=None):
    """Get desired CPU topologies according to settings

    :param flavor: Flavor object to query extra specs from
    :param image_meta: nova.objects.ImageMeta object instance
    :param allow_threads: if the hypervisor supports CPU threads
    :param numa_topology: InstanceNUMATopology object that may contain
                          additional topology constraints (such as threading
                          information) that we should consider

    Look at the properties set in the flavor extra specs and
    the image metadata and build up a list of all possible
    valid CPU topologies that can be used in the guest. Then
    return this list sorted in order of preference.

    :returns: sorted list of nova.objects.VirtCPUTopology instances
    """

    LOG.debug("Getting desirable topologies for flavor %(flavor)s "
              "and image_meta %(image_meta)s, allow threads: %(threads)s",
              {"flavor": flavor, "image_meta": image_meta,
               "threads": allow_threads})

    preferred, maximum = _get_cpu_topology_constraints(flavor, image_meta)
    LOG.debug("Topology preferred %(preferred)s, maximum %(maximum)s",
              {"preferred": preferred, "maximum": maximum})

    possible = _get_possible_cpu_topologies(flavor.vcpus,
                                            maximum,
                                            allow_threads)
    LOG.debug("Possible topologies %s", possible)

    if numa_topology:
        min_requested_threads = None
        cell_topologies = [cell.cpu_topology for cell in numa_topology.cells
                           if cell.cpu_topology]
        if cell_topologies:
            min_requested_threads = min(
                    topo.threads for topo in cell_topologies)

        if min_requested_threads:
            if preferred.threads != -1:
                min_requested_threads = min(preferred.threads,
                                            min_requested_threads)

            specified_threads = max(1, min_requested_threads)
            LOG.debug("Filtering topologies best for %d threads",
                      specified_threads)

            possible = _filter_for_numa_threads(possible,
                                                specified_threads)
            LOG.debug("Remaining possible topologies %s",
                      possible)

    desired = _sort_possible_cpu_topologies(possible, preferred)
    LOG.debug("Sorted desired topologies %s", desired)
    return desired


def get_best_cpu_topology(flavor, image_meta, allow_threads=True,
                          numa_topology=None):
    """Get best CPU topology according to settings

    :param flavor: Flavor object to query extra specs from
    :param image_meta: nova.objects.ImageMeta object instance
    :param allow_threads: if the hypervisor supports CPU threads
    :param numa_topology: InstanceNUMATopology object that may contain
                          additional topology constraints (such as threading
                          information) that we should consider

    Look at the properties set in the flavor extra specs and
    the image metadata and build up a list of all possible
    valid CPU topologies that can be used in the guest. Then
    return the best topology to use

    :returns: a nova.objects.VirtCPUTopology instance for best topology
    """

    return _get_desirable_cpu_topologies(flavor, image_meta,
                                         allow_threads, numa_topology)[0]


def _numa_cell_supports_pagesize_request(host_cell, inst_cell):
    """Determines whether the cell can accept the request.

    :param host_cell: host cell to fit the instance cell onto
    :param inst_cell: instance cell we want to fit

    :raises: exception.MemoryPageSizeNotSupported if custom page
             size not supported in host cell.

    :returns: The page size able to be handled by host_cell
    """
    avail_pagesize = [page.size_kb for page in host_cell.mempages]
    avail_pagesize.sort(reverse=True)

    def verify_pagesizes(host_cell, inst_cell, avail_pagesize):
        inst_cell_mem = inst_cell.memory * units.Ki
        for pagesize in avail_pagesize:
            if host_cell.can_fit_hugepages(pagesize, inst_cell_mem):
                return pagesize

    if inst_cell.pagesize == MEMPAGES_SMALL:
        return verify_pagesizes(host_cell, inst_cell, avail_pagesize[-1:])
    elif inst_cell.pagesize == MEMPAGES_LARGE:
        return verify_pagesizes(host_cell, inst_cell, avail_pagesize[:-1])
    elif inst_cell.pagesize == MEMPAGES_ANY:
        return verify_pagesizes(host_cell, inst_cell, avail_pagesize)
    else:
        return verify_pagesizes(host_cell, inst_cell, [inst_cell.pagesize])


def _pack_instance_onto_cores(available_siblings,
                              instance_cell,
                              host_cell_id,
                              threads_per_core=1):
    """Pack an instance onto a set of siblings

    :param available_siblings: list of sets of CPU id's - available
                               siblings per core
    :param instance_cell: An instance of objects.InstanceNUMACell describing
                          the pinning requirements of the instance
    :param threads_per_core: number of threads per core in host's cell

    :returns: An instance of objects.InstanceNUMACell containing the pinning
              information, and potentially a new topology to be exposed to the
              instance. None if there is no valid way to satisfy the sibling
              requirements for the instance.

    This method will calculate the pinning for the given instance and it's
    topology, making sure that hyperthreads of the instance match up with
    those of the host when the pinning takes effect.

    Currently the strategy for packing is to prefer siblings and try use cores
    evenly, by using emptier cores first. This is achieved by the way we order
    cores in the sibling_sets structure, and the order in which we iterate
    through it.

    The main packing loop that iterates over the sibling_sets dictionary will
    not currently try to look for a fit that maximizes number of siblings, but
    will simply rely on the iteration ordering and picking the first viable
    placement.
    """

    # We build up a data structure that answers the question: 'Given the
    # number of threads I want to pack, give me a list of all the available
    # sibling sets (or groups thereof) that can accommodate it'
    sibling_sets = collections.defaultdict(list)
    for sib in available_siblings:
        for threads_no in range(1, len(sib) + 1):
            sibling_sets[threads_no].append(sib)

    pinning = None
    threads_no = 1

    def _orphans(instance_cell, threads_per_core):
        """Number of instance CPUs which will not fill up a host core.

        Best explained by an example: consider set of free host cores as such:
            [(0, 1), (3, 5), (6, 7, 8)]
        This would be a case of 2 threads_per_core AKA an entry for 2 in the
        sibling_sets structure.

        If we attempt to pack a 5 core instance on it - due to the fact that we
        iterate the list in order, we will end up with a single core of the
        instance pinned to a thread "alone" (with id 6), and we would have one
        'orphan' vcpu.
        """
        return len(instance_cell) % threads_per_core

    def _threads(instance_cell, threads_per_core):
        """Threads to expose to the instance via the VirtCPUTopology.

        This is calculated by taking the GCD of the number of threads we are
        considering at the moment, and the number of orphans. An example for
            instance_cell = 6
            threads_per_core = 4

        So we can fit the instance as such:
            [(0, 1, 2, 3), (4, 5, 6, 7), (8, 9, 10, 11)]
              x  x  x  x    x  x

        We can't expose 4 threads, as that will not be a valid topology (all
        cores exposed to the guest have to have an equal number of threads),
        and 1 would be too restrictive, but we want all threads that guest sees
        to be on the same physical core, so we take GCD of 4 (max number of
        threads) and 2 (number of 'orphan' CPUs) and get 2 as the number of
        threads.
        """
        return fractions.gcd(threads_per_core, _orphans(instance_cell,
                                                        threads_per_core))

    def _get_pinning(threads_no, sibling_set, instance_cores):
        """Generate a CPU-vCPU pin mapping."""
        if threads_no * len(sibling_set) < len(instance_cores):
            return

        usable_cores = map(lambda s: list(s)[:threads_no], sibling_set)

        return zip(sorted(instance_cores),
                   itertools.chain(*usable_cores))

    if (instance_cell.cpu_thread_policy ==
            fields.CPUThreadAllocationPolicy.REQUIRE):
        LOG.debug("Requested 'require' thread policy for %d cores",
                  len(instance_cell))
    elif (instance_cell.cpu_thread_policy ==
            fields.CPUThreadAllocationPolicy.PREFER):
        LOG.debug("Requested 'prefer' thread policy for %d cores",
                  len(instance_cell))
    elif (instance_cell.cpu_thread_policy ==
            fields.CPUThreadAllocationPolicy.ISOLATE):
        LOG.debug("Requested 'isolate' thread policy for %d cores",
                  len(instance_cell))
    else:
        LOG.debug("User did not specify a thread policy. Using default "
                  "for %d cores", len(instance_cell))

    if (instance_cell.cpu_thread_policy ==
            fields.CPUThreadAllocationPolicy.ISOLATE):
        # make sure we have at least one fully free core
        if threads_per_core not in sibling_sets:
            LOG.debug('Host does not have any fully free thread sibling sets.'
                      'It is not possible to emulate a non-SMT behavior '
                      'for the isolate policy without this.')
            return

        pinning = _get_pinning(1,  # we only want to "use" one thread per core
                               sibling_sets[threads_per_core],
                               instance_cell.cpuset)
    else:  # REQUIRE, PREFER (explicit, implicit)
        # NOTE(ndipanov): We iterate over the sibling sets in descending order
        # of cores that can be packed. This is an attempt to evenly distribute
        # instances among physical cores
        for threads_no, sibling_set in sorted(
                (t for t in sibling_sets.items()), reverse=True):

            # NOTE(sfinucan): The key difference between the require and
            # prefer policies is that require will not settle for non-siblings
            # if this is all that is available. Enforce this by ensuring we're
            # using sibling sets that contain at least one sibling
            if (instance_cell.cpu_thread_policy ==
                    fields.CPUThreadAllocationPolicy.REQUIRE):
                if threads_no <= 1:
                    continue

            pinning = _get_pinning(threads_no, sibling_set,
                                   instance_cell.cpuset)
            if pinning:
                break

        # NOTE(sfinucan): If siblings weren't available and we're using PREFER
        # (implicitly or explicitly), fall back to linear assignment across
        # cores
        if (instance_cell.cpu_thread_policy !=
                fields.CPUThreadAllocationPolicy.REQUIRE and
                not pinning):
            pinning = zip(sorted(instance_cell.cpuset),
                          itertools.chain(*sibling_set))

        threads_no = _threads(instance_cell, threads_no)

    if not pinning:
        return

    topology = objects.VirtCPUTopology(sockets=1,
                                       cores=len(pinning) / threads_no,
                                       threads=threads_no)
    instance_cell.pin_vcpus(*pinning)
    instance_cell.cpu_topology = topology
    instance_cell.id = host_cell_id
    return instance_cell


def _numa_fit_instance_cell_with_pinning(host_cell, instance_cell):
    """Figure out if cells can be pinned to a host cell and return details

    :param host_cell: objects.NUMACell instance - the host cell that
                      the isntance should be pinned to
    :param instance_cell: objects.InstanceNUMACell instance without any
                          pinning information

    :returns: objects.InstanceNUMACell instance with pinning information,
              or None if instance cannot be pinned to the given host
    """
    if host_cell.avail_cpus < len(instance_cell.cpuset):
        LOG.debug('Not enough available CPUs to schedule instance. '
                  'Oversubscription is not possible with pinned instances. '
                  'Required: %(required)s, actual: %(actual)s',
                  {'required': len(instance_cell.cpuset),
                   'actual': host_cell.avail_cpus})
        return

    if host_cell.avail_memory < instance_cell.memory:
        LOG.debug('Not enough available memory to schedule instance. '
                  'Oversubscription is not possible with pinned instances. '
                  'Required: %(required)s, actual: %(actual)s',
                  {'required': instance_cell.memory,
                   'actual': host_cell.memory})
        return

    if host_cell.siblings:
        # Try to pack the instance cell onto cores
        numa_cell = _pack_instance_onto_cores(
            host_cell.free_siblings, instance_cell, host_cell.id,
            max(map(len, host_cell.siblings)))
    else:
        if (instance_cell.cpu_thread_policy ==
                fields.CPUThreadAllocationPolicy.REQUIRE):
            LOG.info(_LI("Host does not support hyperthreading or "
                         "hyperthreading is disabled, but 'require' "
                         "threads policy was requested."))
            return

        # Straightforward to pin to available cpus when there is no
        # hyperthreading on the host
        free_cpus = [set([cpu]) for cpu in host_cell.free_cpus]
        numa_cell = _pack_instance_onto_cores(
            free_cpus, instance_cell, host_cell.id)

    if not numa_cell:
        LOG.debug('Failed to map instance cell CPUs to host cell CPUs')

    return numa_cell


def _numa_fit_instance_cell(host_cell, instance_cell, limit_cell=None):
    """Check if an instance cell can fit and set it's cell id

    :param host_cell: host cell to fit the instance cell onto
    :param instance_cell: instance cell we want to fit
    :param limit_cell: an objects.NUMATopologyLimit or None

    Make sure we can fit the instance cell onto a host cell and if so,
    return a new objects.InstanceNUMACell with the id set to that of
    the host, or None if the cell exceeds the limits of the host

    :returns: a new instance cell or None
    """
    # NOTE (ndipanov): do not allow an instance to overcommit against
    # itself on any NUMA cell
    if instance_cell.memory > host_cell.memory:
        LOG.debug('Not enough host cell memory to fit instance cell. '
                  'Required: %(required)d, actual: %(actual)d',
                  {'required': instance_cell.memory,
                   'actual': host_cell.memory})
        return

    if len(instance_cell.cpuset) > len(host_cell.cpuset):
        LOG.debug('Not enough host cell CPUs to fit instance cell. Required: '
                  '%(required)d, actual: %(actual)d',
                  {'required': len(instance_cell.cpuset),
                   'actual': len(host_cell.cpuset)})
        return

    if instance_cell.cpu_pinning_requested:
        new_instance_cell = _numa_fit_instance_cell_with_pinning(
            host_cell, instance_cell)
        if not new_instance_cell:
            return
        new_instance_cell.pagesize = instance_cell.pagesize
        instance_cell = new_instance_cell

    elif limit_cell:
        memory_usage = host_cell.memory_usage + instance_cell.memory
        cpu_usage = host_cell.cpu_usage + len(instance_cell.cpuset)
        cpu_limit = len(host_cell.cpuset) * limit_cell.cpu_allocation_ratio
        ram_limit = host_cell.memory * limit_cell.ram_allocation_ratio
        if memory_usage > ram_limit:
            LOG.debug('Host cell has limitations on usable memory. There is '
                      'not enough free memory to schedule this instance. '
                      'Usage: %(usage)d, limit: %(limit)d',
                      {'usage': memory_usage, 'limit': ram_limit})
            return
        if cpu_usage > cpu_limit:
            LOG.debug('Host cell has limitations on usable CPUs. There are '
                      'not enough free CPUs to schedule this instance. '
                      'Usage: %(usage)d, limit: %(limit)d',
                      {'usage': memory_usage, 'limit': cpu_limit})
            return

    pagesize = None
    if instance_cell.pagesize:
        pagesize = _numa_cell_supports_pagesize_request(
            host_cell, instance_cell)
        if not pagesize:
            LOG.debug('Host does not support requested memory pagesize. '
                      'Requested: %d kB', instance_cell.pagesize)
            return

    instance_cell.id = host_cell.id
    instance_cell.pagesize = pagesize
    return instance_cell


def _numa_get_pagesize_constraints(flavor, image_meta):
    """Return the requested memory page size

    :param flavor: a Flavor object to read extra specs from
    :param image_meta: nova.objects.ImageMeta object instance

    :raises: MemoryPagesSizeInvalid or MemoryPageSizeForbidden
    :returns: a page size requested or MEMPAGES_*
    """

    def check_and_return_pages_size(request):
        if request == "any":
            return MEMPAGES_ANY
        elif request == "large":
            return MEMPAGES_LARGE
        elif request == "small":
            return MEMPAGES_SMALL
        else:
            try:
                request = int(request)
            except ValueError:
                try:
                    request = strutils.string_to_bytes(
                        request, return_int=True) / units.Ki
                except ValueError:
                    request = 0

        if request <= 0:
            raise exception.MemoryPageSizeInvalid(pagesize=request)

        return request

    flavor_request = flavor.get('extra_specs', {}).get("hw:mem_page_size", "")
    image_request = image_meta.properties.get("hw_mem_page_size", "")

    if not flavor_request and image_request:
        raise exception.MemoryPageSizeForbidden(
            pagesize=image_request,
            against="<empty>")

    if not flavor_request:
        # Nothing was specified for hugepages,
        # let's the default process running.
        return None

    pagesize = check_and_return_pages_size(flavor_request)
    if image_request and (pagesize in (MEMPAGES_ANY, MEMPAGES_LARGE)):
        return check_and_return_pages_size(image_request)
    elif image_request:
        raise exception.MemoryPageSizeForbidden(
            pagesize=image_request,
            against=flavor_request)

    return pagesize


def _numa_get_flavor_cpu_map_list(flavor):
    hw_numa_cpus = []
    extra_specs = flavor.get("extra_specs", {})
    for cellid in range(objects.ImageMetaProps.NUMA_NODES_MAX):
        cpuprop = "hw:numa_cpus.%d" % cellid
        if cpuprop not in extra_specs:
            break
        hw_numa_cpus.append(
            parse_cpu_spec(extra_specs[cpuprop]))

    if hw_numa_cpus:
        return hw_numa_cpus


def _numa_get_cpu_map_list(flavor, image_meta):
    flavor_cpu_list = _numa_get_flavor_cpu_map_list(flavor)
    image_cpu_list = image_meta.properties.get("hw_numa_cpus", None)

    if flavor_cpu_list is None:
        return image_cpu_list
    else:
        if image_cpu_list is not None:
            raise exception.ImageNUMATopologyForbidden(
                name='hw_numa_cpus')
        return flavor_cpu_list


def _numa_get_flavor_mem_map_list(flavor):
    hw_numa_mem = []
    extra_specs = flavor.get("extra_specs", {})
    for cellid in range(objects.ImageMetaProps.NUMA_NODES_MAX):
        memprop = "hw:numa_mem.%d" % cellid
        if memprop not in extra_specs:
            break
        hw_numa_mem.append(int(extra_specs[memprop]))

    if hw_numa_mem:
        return hw_numa_mem


def _numa_get_mem_map_list(flavor, image_meta):
    flavor_mem_list = _numa_get_flavor_mem_map_list(flavor)
    image_mem_list = image_meta.properties.get("hw_numa_mem", None)

    if flavor_mem_list is None:
        return image_mem_list
    else:
        if image_mem_list is not None:
            raise exception.ImageNUMATopologyForbidden(
                name='hw_numa_mem')
        return flavor_mem_list


def _numa_get_constraints_manual(nodes, flavor, cpu_list, mem_list):
    cells = []
    totalmem = 0

    availcpus = set(range(flavor.vcpus))

    for node in range(nodes):
        mem = mem_list[node]
        cpuset = cpu_list[node]

        for cpu in cpuset:
            if cpu > (flavor.vcpus - 1):
                raise exception.ImageNUMATopologyCPUOutOfRange(
                    cpunum=cpu, cpumax=(flavor.vcpus - 1))

            if cpu not in availcpus:
                raise exception.ImageNUMATopologyCPUDuplicates(
                    cpunum=cpu)

            availcpus.remove(cpu)

        cells.append(objects.InstanceNUMACell(
            id=node, cpuset=cpuset, memory=mem))
        totalmem = totalmem + mem

    if availcpus:
        raise exception.ImageNUMATopologyCPUsUnassigned(
            cpuset=str(availcpus))

    if totalmem != flavor.memory_mb:
        raise exception.ImageNUMATopologyMemoryOutOfRange(
            memsize=totalmem,
            memtotal=flavor.memory_mb)

    return objects.InstanceNUMATopology(cells=cells)


def is_realtime_enabled(flavor):
    flavor_rt = flavor.get('extra_specs', {}).get("hw:cpu_realtime")
    return strutils.bool_from_string(flavor_rt)


def _get_realtime_mask(flavor, image):
    """Returns realtime mask based on flavor/image meta"""
    flavor_mask = flavor.get('extra_specs', {}).get("hw:cpu_realtime_mask")
    image_mask = image.properties.get("hw_cpu_realtime_mask")
    return image_mask or flavor_mask


def vcpus_realtime_topology(vcpus_set, flavor, image):
    """Partitions vcpus used for realtime and 'normal' vcpus.

    According to a mask specified from flavor or image, returns set of
    vcpus configured for realtime scheduler and set running as a
    'normal' vcpus.
    """
    mask = _get_realtime_mask(flavor, image)
    if not mask:
        raise exception.RealtimeMaskNotFoundOrInvalid()

    vcpus_spec = format_cpu_spec(vcpus_set)
    vcpus_rt = parse_cpu_spec(vcpus_spec + ", " + mask)
    vcpus_em = vcpus_set - vcpus_rt
    if len(vcpus_rt) < 1 or len(vcpus_em) < 1:
        raise exception.RealtimeMaskNotFoundOrInvalid()

    return vcpus_rt, vcpus_em


def _numa_get_constraints_auto(nodes, flavor):
    if ((flavor.vcpus % nodes) > 0 or
        (flavor.memory_mb % nodes) > 0):
        raise exception.ImageNUMATopologyAsymmetric()

    cells = []
    for node in range(nodes):
        ncpus = int(flavor.vcpus / nodes)
        mem = int(flavor.memory_mb / nodes)
        start = node * ncpus
        cpuset = set(range(start, start + ncpus))

        cells.append(objects.InstanceNUMACell(
            id=node, cpuset=cpuset, memory=mem))

    return objects.InstanceNUMATopology(cells=cells)


def _add_cpu_pinning_constraint(flavor, image_meta, numa_topology):
    flavor_policy = flavor.get('extra_specs', {}).get('hw:cpu_policy')
    image_policy = image_meta.properties.get('hw_cpu_policy')
    if flavor_policy == fields.CPUAllocationPolicy.DEDICATED:
        cpu_policy = flavor_policy
    elif flavor_policy == fields.CPUAllocationPolicy.SHARED:
        if image_policy == fields.CPUAllocationPolicy.DEDICATED:
            raise exception.ImageCPUPinningForbidden()
        cpu_policy = flavor_policy
    elif image_policy == fields.CPUAllocationPolicy.DEDICATED:
        cpu_policy = image_policy
    else:
        cpu_policy = fields.CPUAllocationPolicy.SHARED

    rt = is_realtime_enabled(flavor)
    if (rt and cpu_policy != fields.CPUAllocationPolicy.DEDICATED):
        raise exception.RealtimeConfigurationInvalid()
    elif rt and not _get_realtime_mask(flavor, image_meta):
        raise exception.RealtimeMaskNotFoundOrInvalid()

    flavor_thread_policy = flavor.get('extra_specs', {}).get(
        'hw:cpu_thread_policy')
    image_thread_policy = image_meta.properties.get('hw_cpu_thread_policy')

    if cpu_policy == fields.CPUAllocationPolicy.SHARED:
        if flavor_thread_policy or image_thread_policy:
            raise exception.CPUThreadPolicyConfigurationInvalid()
        return numa_topology

    if flavor_thread_policy in [None, fields.CPUThreadAllocationPolicy.PREFER]:
        cpu_thread_policy = flavor_thread_policy or image_thread_policy
    elif image_thread_policy and image_thread_policy != flavor_thread_policy:
        raise exception.ImageCPUThreadPolicyForbidden()
    else:
        cpu_thread_policy = flavor_thread_policy

    if numa_topology:
        for cell in numa_topology.cells:
            cell.cpu_policy = cpu_policy
            cell.cpu_thread_policy = cpu_thread_policy
    else:
        single_cell = objects.InstanceNUMACell(
                id=0,
                cpuset=set(range(flavor.vcpus)),
                memory=flavor.memory_mb,
                cpu_policy=cpu_policy,
                cpu_thread_policy=cpu_thread_policy)
        numa_topology = objects.InstanceNUMATopology(cells=[single_cell])

    return numa_topology


def _validate_numa_nodes(nodes):
    """Validate NUMA nodes number

    :param nodes: The number of NUMA nodes
    :raises: exception.InvalidNUMANodesNumber if the given
             parameter is not a number or less than 1
    """
    if nodes is not None and (not strutils.is_int_like(nodes) or
       int(nodes) < 1):
        raise exception.InvalidNUMANodesNumber(nodes=nodes)


# TODO(sahid): Move numa related to hardward/numa.py
def numa_get_constraints(flavor, image_meta):
    """Return topology related to input request

    :param flavor: Flavor object to read extra specs from
    :param image_meta: nova.objects.ImageMeta object instance

    May raise exception.ImageNUMATopologyIncomplete() if the
    image properties are not correctly specified, or
    exception.ImageNUMATopologyForbidden if an attempt is
    made to override flavor settings with image properties.
    exception.InvalidNUMANodesNumber if the number of NUMA
    nodes is less than 1 (or not an integer).

    :returns: InstanceNUMATopology or None
    """

    nodes = flavor.get('extra_specs', {}).get("hw:numa_nodes")
    props = image_meta.properties
    if nodes is not None:
        _validate_numa_nodes(nodes)
        if props.obj_attr_is_set("hw_numa_nodes"):
            raise exception.ImageNUMATopologyForbidden(
                name='hw_numa_nodes')
        nodes = int(nodes)
    else:
        nodes = props.get("hw_numa_nodes")
        _validate_numa_nodes(nodes)

    pagesize = _numa_get_pagesize_constraints(
        flavor, image_meta)

    numa_topology = None
    if nodes or pagesize:
        nodes = nodes or 1

        cpu_list = _numa_get_cpu_map_list(flavor, image_meta)
        mem_list = _numa_get_mem_map_list(flavor, image_meta)

        # If one property list is specified both must be
        if ((cpu_list is None and mem_list is not None) or
            (cpu_list is not None and mem_list is None)):
            raise exception.ImageNUMATopologyIncomplete()

        # If any node has data set, all nodes must have data set
        if ((cpu_list is not None and len(cpu_list) != nodes) or
            (mem_list is not None and len(mem_list) != nodes)):
            raise exception.ImageNUMATopologyIncomplete()

        if cpu_list is None:
            numa_topology = _numa_get_constraints_auto(
                nodes, flavor)
        else:
            numa_topology = _numa_get_constraints_manual(
                nodes, flavor, cpu_list, mem_list)

        # We currently support same pagesize for all cells.
        [setattr(c, 'pagesize', pagesize) for c in numa_topology.cells]

    return _add_cpu_pinning_constraint(flavor, image_meta, numa_topology)


def numa_fit_instance_to_host(
        host_topology, instance_topology, limits=None,
        pci_requests=None, pci_stats=None):
    """Fit the instance topology onto the host topology given the limits

    :param host_topology: objects.NUMATopology object to fit an instance on
    :param instance_topology: objects.InstanceNUMATopology to be fitted
    :param limits: objects.NUMATopologyLimits that defines limits
    :param pci_requests: instance pci_requests
    :param pci_stats: pci_stats for the host

    Given a host and instance topology and optionally limits - this method
    will attempt to fit instance cells onto all permutations of host cells
    by calling the _numa_fit_instance_cell method, and return a new
    InstanceNUMATopology with it's cell ids set to host cell id's of
    the first successful permutation, or None.
    """
    if not (host_topology and instance_topology):
        LOG.debug("Require both a host and instance NUMA topology to "
                  "fit instance on host.")
        return
    elif len(host_topology) < len(instance_topology):
        LOG.debug("There are not enough free cores on the system to schedule "
                  "the instance correctly. Required: %(required)s, actual: "
                  "%(actual)s",
                  {'required': len(instance_topology),
                   'actual': len(host_topology)})
        return
    else:
        # TODO(ndipanov): We may want to sort permutations differently
        # depending on whether we want packing/spreading over NUMA nodes
        for host_cell_perm in itertools.permutations(
                host_topology.cells, len(instance_topology)):
            cells = []
            for host_cell, instance_cell in zip(
                    host_cell_perm, instance_topology.cells):
                try:
                    got_cell = _numa_fit_instance_cell(
                        host_cell, instance_cell, limits)
                except exception.MemoryPageSizeNotSupported:
                    # This exception will been raised if instance cell's
                    # custom pagesize is not supported with host cell in
                    # _numa_cell_supports_pagesize_request function.
                    break
                if got_cell is None:
                    break
                cells.append(got_cell)
            if len(cells) == len(host_cell_perm):
                if not pci_requests:
                    return objects.InstanceNUMATopology(cells=cells)
                elif ((pci_stats is not None) and
                    pci_stats.support_requests(pci_requests,
                                                     cells)):
                    return objects.InstanceNUMATopology(cells=cells)


def numa_get_reserved_huge_pages():
    """Returns reserved memory pages from host option

    Based from the compute node option reserved_huge_pages, this
    method will return a well formatted list of dict which can be used
    to build NUMATopology.

    :raises: exception.InvalidReservedMemoryPagesOption when
             reserved_huge_pages option is not correctly set.

    :returns: a list of dict ordered by NUMA node ids; keys of dict
              are pages size and values of the number reserved.
    """
    bucket = {}
    if CONF.reserved_huge_pages:
        try:
            bucket = collections.defaultdict(dict)
            for cfg in CONF.reserved_huge_pages:
                try:
                    pagesize = int(cfg['size'])
                except ValueError:
                    pagesize = strutils.string_to_bytes(
                        cfg['size'], return_int=True) / units.Ki
                bucket[int(cfg['node'])][pagesize] = int(cfg['count'])
        except (ValueError, TypeError, KeyError):
            raise exception.InvalidReservedMemoryPagesOption(
                conf=CONF.reserved_huge_pages)
    return bucket


def _numa_pagesize_usage_from_cell(hostcell, instancecell, sign):
    topo = []
    for pages in hostcell.mempages:
        if pages.size_kb == instancecell.pagesize:
            topo.append(objects.NUMAPagesTopology(
                size_kb=pages.size_kb,
                total=pages.total,
                used=max(0, pages.used +
                         instancecell.memory * units.Ki /
                         pages.size_kb * sign),
                reserved=pages.reserved if 'reserved' in pages else 0))
        else:
            topo.append(pages)
    return topo


def numa_usage_from_instances(host, instances, free=False):
    """Get host topology usage

    :param host: objects.NUMATopology with usage information
    :param instances: list of objects.InstanceNUMATopology
    :param free: If True usage of the host will be decreased

    Sum the usage from all @instances to report the overall
    host topology usage

    :returns: objects.NUMATopology including usage information
    """

    if host is None:
        return

    instances = instances or []
    cells = []
    sign = -1 if free else 1
    for hostcell in host.cells:
        memory_usage = hostcell.memory_usage
        cpu_usage = hostcell.cpu_usage

        newcell = objects.NUMACell(
            id=hostcell.id, cpuset=hostcell.cpuset, memory=hostcell.memory,
            cpu_usage=0, memory_usage=0, mempages=hostcell.mempages,
            pinned_cpus=hostcell.pinned_cpus, siblings=hostcell.siblings)

        for instance in instances:
            for instancecell in instance.cells:
                if instancecell.id == hostcell.id:
                    memory_usage = (
                            memory_usage + sign * instancecell.memory)
                    cpu_usage_diff = len(instancecell.cpuset)
                    if (instancecell.cpu_thread_policy ==
                            fields.CPUThreadAllocationPolicy.ISOLATE and
                            hostcell.siblings):
                        cpu_usage_diff *= max(map(len, hostcell.siblings))
                    cpu_usage += sign * cpu_usage_diff

                    if instancecell.pagesize and instancecell.pagesize > 0:
                        newcell.mempages = _numa_pagesize_usage_from_cell(
                            hostcell, instancecell, sign)
                    if instance.cpu_pinning_requested:
                        pinned_cpus = set(instancecell.cpu_pinning.values())
                        if free:
                            if (instancecell.cpu_thread_policy ==
                                    fields.CPUThreadAllocationPolicy.ISOLATE):
                                newcell.unpin_cpus_with_siblings(pinned_cpus)
                            else:
                                newcell.unpin_cpus(pinned_cpus)
                        else:
                            if (instancecell.cpu_thread_policy ==
                                    fields.CPUThreadAllocationPolicy.ISOLATE):
                                newcell.pin_cpus_with_siblings(pinned_cpus)
                            else:
                                newcell.pin_cpus(pinned_cpus)

        newcell.cpu_usage = max(0, cpu_usage)
        newcell.memory_usage = max(0, memory_usage)
        cells.append(newcell)

    return objects.NUMATopology(cells=cells)


# TODO(ndipanov): Remove when all code paths are using objects
def instance_topology_from_instance(instance):
    """Convenience method for getting the numa_topology out of instances

    Since we may get an Instance as either a dict, a db object, or an actual
    Instance object, this makes sure we get beck either None, or an instance
    of objects.InstanceNUMATopology class.
    """
    if isinstance(instance, obj_instance.Instance):
        # NOTE (ndipanov): This may cause a lazy-load of the attribute
        instance_numa_topology = instance.numa_topology
    else:
        if 'numa_topology' in instance:
            instance_numa_topology = instance['numa_topology']
        elif 'uuid' in instance:
            try:
                instance_numa_topology = (
                    objects.InstanceNUMATopology.get_by_instance_uuid(
                            context.get_admin_context(), instance['uuid'])
                    )
            except exception.NumaTopologyNotFound:
                instance_numa_topology = None
        else:
            instance_numa_topology = None

    if instance_numa_topology:
        if isinstance(instance_numa_topology, six.string_types):
            instance_numa_topology = (
                objects.InstanceNUMATopology.obj_from_primitive(
                    jsonutils.loads(instance_numa_topology)))

        elif isinstance(instance_numa_topology, dict):
            # NOTE (ndipanov): A horrible hack so that we can use
            # this in the scheduler, since the
            # InstanceNUMATopology object is serialized raw using
            # the obj_base.obj_to_primitive, (which is buggy and
            # will give us a dict with a list of InstanceNUMACell
            # objects), and then passed to jsonutils.to_primitive,
            # which will make a dict out of those objects. All of
            # this is done by scheduler.utils.build_request_spec
            # called in the conductor.
            #
            # Remove when request_spec is a proper object itself!
            dict_cells = instance_numa_topology.get('cells')
            if dict_cells:
                cells = [objects.InstanceNUMACell(
                    id=cell['id'],
                    cpuset=set(cell['cpuset']),
                    memory=cell['memory'],
                    pagesize=cell.get('pagesize'),
                    cpu_pinning=cell.get('cpu_pinning_raw'),
                    cpu_policy=cell.get('cpu_policy'),
                    cpu_thread_policy=cell.get('cpu_thread_policy'))
                         for cell in dict_cells]
                instance_numa_topology = objects.InstanceNUMATopology(
                    cells=cells)

    return instance_numa_topology


# TODO(ndipanov): Remove when all code paths are using objects
def host_topology_and_format_from_host(host):
    """Convenience method for getting the numa_topology out of hosts

    Since we may get a host as either a dict, a db object, or an actual
    ComputeNode object, or an instance of HostState class, this makes sure we
    get back either None, or an instance of objects.NUMATopology class.

    :returns: A two-tuple, first element is the topology itself or None, second
              is a boolean set to True if topology was in JSON format.
    """
    was_json = False
    try:
        host_numa_topology = host.get('numa_topology')
    except AttributeError:
        host_numa_topology = host.numa_topology

    if host_numa_topology is not None and isinstance(
            host_numa_topology, six.string_types):
        was_json = True

        host_numa_topology = (objects.NUMATopology.obj_from_db_obj(
            host_numa_topology))

    return host_numa_topology, was_json


# TODO(ndipanov): Remove when all code paths are using objects
def get_host_numa_usage_from_instance(host, instance, free=False,
                                     never_serialize_result=False):
    """Calculate new 'numa_usage' of 'host' from 'instance' NUMA usage

    This is a convenience method to help us handle the fact that we use several
    different types throughout the code (ComputeNode and Instance objects,
    dicts, scheduler HostState) which may have both json and deserialized
    versions of objects.numa classes.

    Handles all the complexity without polluting the class method with it.

    :param host: nova.objects.ComputeNode instance, or a db object or dict
    :param instance: nova.objects.Instance instance, or a db object or dict
    :param free: if True the returned topology will have it's usage
                 decreased instead.
    :param never_serialize_result: if True result will always be an instance of
                                   objects.NUMATopology class.

    :returns: numa_usage in the format it was on the host or
              objects.NUMATopology instance if never_serialize_result was True
    """
    instance_numa_topology = instance_topology_from_instance(instance)
    if instance_numa_topology:
        instance_numa_topology = [instance_numa_topology]

    host_numa_topology, jsonify_result = host_topology_and_format_from_host(
            host)

    updated_numa_topology = (
        numa_usage_from_instances(
            host_numa_topology, instance_numa_topology, free=free))

    if updated_numa_topology is not None:
        if jsonify_result and not never_serialize_result:
            updated_numa_topology = updated_numa_topology._to_json()

    return updated_numa_topology