Repository URL to install this package:
|
Version:
2.1.0 ▾
|
# Copyright 2019 Yan Yan
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any
import torch
from torch.autograd import Function
from . import sparse_ops as ops
class SparseConvFunction(Function):
"""Sparse Convolution.
Please refer to `SECOND <https://www.mdpi.com/1424-8220/18/10/3337>`_ for
more details.
"""
@staticmethod
def forward(ctx: Any, features: torch.Tensor, filters: torch.nn.Parameter,
indice_pairs: torch.Tensor, indice_pair_num: torch.Tensor,
num_activate_out: torch.Tensor) -> torch.Tensor:
"""
Args:
features (torch.Tensor): Features that needs to convolute.
filters (torch.nn.parameter.Parameter): Convolution filters.
indice_pairs (torch.Tensor): Indice pairs between inputs locations
and outputs locations.
indice_pair_num (torch.Tensor): Indice pairs num.
num_activate_out (torch.Tensor): Output channels num.
Returns:
torch.Tensor: Output features from gather-gemm-scatter.
"""
ctx.save_for_backward(indice_pairs, indice_pair_num, features, filters)
return ops.indice_conv(features, filters, indice_pairs,
indice_pair_num, num_activate_out, False)
@staticmethod
def backward(ctx: Any, grad_output: torch.Tensor) -> tuple:
indice_pairs, indice_pair_num, features, filters = ctx.saved_tensors
input_bp, filters_bp = ops.indice_conv_backward(
features, filters, grad_output, indice_pairs, indice_pair_num,
False)
return input_bp, filters_bp, None, None, None
class SparseInverseConvFunction(Function):
@staticmethod
def forward(ctx: Any, features: torch.Tensor, filters: torch.nn.Parameter,
indice_pairs: torch.Tensor, indice_pair_num: torch.Tensor,
num_activate_out: torch.Tensor) -> torch.Tensor:
"""
Args:
features (torch.Tensor): Features that needs to convolute.
filters (torch.nn.parameter.Parameter): Convolution filters.
indice_pairs (torch.Tensor): Indice pairs between inputs locations
and outputs locations.
indice_pair_num (torch.Tensor): Indice pairs num.
num_activate_out (torch.Tensor): Output channels num.
Returns:
torch.Tensor: Output features from gather-gemm-scatter.
"""
ctx.save_for_backward(indice_pairs, indice_pair_num, features, filters)
return ops.indice_conv(features, filters, indice_pairs,
indice_pair_num, num_activate_out, True, False)
@staticmethod
def backward(ctx: Any, grad_output: torch.Tensor) -> tuple:
indice_pairs, indice_pair_num, features, filters = ctx.saved_tensors
input_bp, filters_bp = ops.indice_conv_backward(
features, filters, grad_output, indice_pairs, indice_pair_num,
True, False)
return input_bp, filters_bp, None, None, None
class SubMConvFunction(Function):
@staticmethod
def forward(ctx: Any, features: torch.Tensor, filters: torch.nn.Parameter,
indice_pairs: torch.Tensor, indice_pair_num: torch.Tensor,
num_activate_out: torch.Tensor) -> torch.Tensor:
"""
Args:
features (torch.Tensor): Features that needs to convolute.
filters (torch.nn.parameter.Parameter): Convolution filters.
indice_pairs (torch.Tensor): Indice pairs between inputs locations
and outputs locations.
indice_pair_num (torch.Tensor): Indice pairs num.
num_activate_out (torch.Tensor): Output channels num.
Returns:
torch.Tensor: Output features from gather-gemm-scatter.
"""
ctx.save_for_backward(indice_pairs, indice_pair_num, features, filters)
return ops.indice_conv(features, filters, indice_pairs,
indice_pair_num, num_activate_out, False, True)
@staticmethod
def backward(ctx: Any, grad_output: torch.Tensor) -> tuple:
indice_pairs, indice_pair_num, features, filters = ctx.saved_tensors
input_bp, filters_bp = ops.indice_conv_backward(
features, filters, grad_output, indice_pairs, indice_pair_num,
False, True)
return input_bp, filters_bp, None, None, None
class SparseMaxPoolFunction(Function):
@staticmethod
def forward(ctx, features: torch.Tensor, indice_pairs: torch.Tensor,
indice_pair_num: torch.Tensor,
num_activate_out: torch.Tensor) -> torch.Tensor:
"""
Args:
features (torch.Tensor): Features that needs to convolute.
indice_pairs (torch.Tensor): Indice pairs between inputs locations
and outputs locations.
indice_pair_num (torch.Tensor): Indice pairs num.
num_activate_out (torch.Tensor): Output channels num.
Returns:
torch.Tensor: Output features from sparse maxpooling.
"""
out = ops.indice_maxpool(features, indice_pairs, indice_pair_num,
num_activate_out)
ctx.save_for_backward(indice_pairs, indice_pair_num, features, out)
return out
@staticmethod
def backward(ctx: Any, grad_output: torch.Tensor) -> tuple:
indice_pairs, indice_pair_num, features, out = ctx.saved_tensors
input_bp = ops.indice_maxpool_backward(features, out, grad_output,
indice_pairs, indice_pair_num)
return input_bp, None, None, None
indice_conv = SparseConvFunction.apply
indice_inverse_conv = SparseInverseConvFunction.apply
indice_subm_conv = SubMConvFunction.apply
indice_maxpool = SparseMaxPoolFunction.apply