Repository URL to install this package:
|
Version:
2.1.0 ▾
|
from typing import Any, Tuple
import torch
from torch.autograd import Function
from ..utils import ext_loader
ext_module = ext_loader.load_ext(
'_ext', ['three_interpolate_forward', 'three_interpolate_backward'])
class ThreeInterpolate(Function):
"""Performs weighted linear interpolation on 3 features.
Please refer to `Paper of PointNet++ <https://arxiv.org/abs/1706.02413>`_
for more details.
"""
@staticmethod
def forward(ctx: Any, features: torch.Tensor, indices: torch.Tensor,
weight: torch.Tensor) -> torch.Tensor:
"""
Args:
features (torch.Tensor): (B, C, M) Features descriptors to be
interpolated.
indices (torch.Tensor): (B, n, 3) indices of three nearest
neighbor features for the target features.
weight (torch.Tensor): (B, n, 3) weights of three nearest
neighbor features for the target features.
Returns:
torch.Tensor: (B, C, N) tensor of the interpolated features
"""
assert features.is_contiguous()
assert indices.is_contiguous()
assert weight.is_contiguous()
B, c, m = features.size()
n = indices.size(1)
ctx.three_interpolate_for_backward = (indices, weight, m)
output = features.new_empty(B, c, n)
ext_module.three_interpolate_forward(
features, indices, weight, output, b=B, c=c, m=m, n=n)
return output
@staticmethod
def backward(
ctx, grad_out: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Args:
grad_out (torch.Tensor): (B, C, N) tensor with gradients of outputs
Returns:
torch.Tensor: (B, C, M) tensor with gradients of features
"""
idx, weight, m = ctx.three_interpolate_for_backward
B, c, n = grad_out.size()
grad_features = grad_out.new_zeros(B, c, m)
grad_out_data = grad_out.data.contiguous()
ext_module.three_interpolate_backward(
grad_out_data, idx, weight, grad_features.data, b=B, c=c, n=n, m=m)
return grad_features, None, None
three_interpolate = ThreeInterpolate.apply