Repository URL to install this package:
Version:
2.4.1 ▾
|
# mypy: allow-untyped-defs
# Copyright (c) Meta Platforms, Inc. and affiliates
import inspect
import warnings
from typing import Any, Callable, cast, Optional, Sequence, Tuple
import torch
import torch.distributed._tensor._dispatch as op_dispatch
import torch.distributed._tensor.random as random
import torch.nn as nn
from torch.distributed._tensor._collective_utils import mesh_broadcast
from torch.distributed._tensor._redistribute import (
Redistribute,
redistribute_local_tensor,
)
from torch.distributed._tensor._utils import compute_global_tensor_info
from torch.distributed._tensor.placement_types import (
DTensorSpec,
Partial,
Placement,
Replicate,
Shard,
TensorMeta,
)
from torch.distributed._tensor.random import (
is_rng_supported_mesh,
OffsetBasedRNGTracker,
)
from torch.distributed.device_mesh import _mesh_resources, DeviceMesh
__all__ = ["DTensor", "distribute_tensor", "distribute_module"]
aten = torch.ops.aten
# NOTE [Autograd interaction between torch.Tensor]
#
# The autograd functions defined below are being used by the public
# facing APIs (i.e. from_local, to_local) to ensure our DTensor
# works together with torch.Tensor within autograd engine. This
# allows DistributedTensor to exist on part of the module hierarchy
# and still able to calculate gradients across the torch.Tensor and
# DistributedTensor boundary.
# As an example, we have the a module that consists of submodules
# A, B, and C, the execution flow would be like:
# input(torch.Tensor) -> Module A -> Module B -> Module C -> output (torch.Tensor)
#
# Suppose I only want to make Module B be a sharded module with
# DistributedTensor params, we would need to make the following
# flow to work:
#
# input(torch.Tensor) -> Module A
# -> DTensor input -> Sharded Module B -> DTensor output
# -> output (torch.Tensor) -> Module C -> output (torch.Tensor)
#
# We need the conversion from Module A to DTensor input, which is
# `from_local`, and conversion from DTensor output to output, which
# is `to_local`, thus these two functions must be Autograd functions.
#
class _ToTorchTensor(torch.autograd.Function):
@staticmethod
def forward( # type: ignore[override]
ctx,
input: "DTensor",
grad_placements: Optional[Sequence[Placement]],
):
ctx.dtensor_spec = input._spec
ctx.grad_placements = grad_placements
local_tensor = input._local_tensor
# We need to return a fresh Tensor object there as autograd metadata
# will be inplaced into it. So we don't want to pollute the Tensor
# object stored in the _local_tensor of this DTensor.
return local_tensor.view_as(local_tensor)
@staticmethod
def backward(ctx, grad_output: torch.Tensor): # type: ignore[override]
dtensor_spec = ctx.dtensor_spec
mesh = dtensor_spec.mesh
grad_placements = ctx.grad_placements
dtensor_meta = dtensor_spec.tensor_meta
_, tensor_stride = compute_global_tensor_info(
grad_output, mesh, dtensor_spec.placements
)
tensor_stride = tuple(tensor_stride)
grad_placements = grad_placements or dtensor_spec.placements
grad_spec = DTensorSpec(
mesh,
grad_placements,
tensor_meta=TensorMeta(
shape=dtensor_meta.shape,
stride=tensor_stride,
dtype=dtensor_meta.dtype,
),
)
return (
DTensor(
grad_output,
grad_spec,
requires_grad=grad_output.requires_grad,
),
None,
)
class _FromTorchTensor(torch.autograd.Function):
@staticmethod
def forward( # type: ignore[override]
ctx, # pyre-ignore[2]: Parameter must be annotated.
input: torch.Tensor,
device_mesh: DeviceMesh,
placements: Tuple[Placement, ...],
run_check: bool,
shape: Optional[torch.Size] = None,
stride: Optional[Tuple[int, ...]] = None,
) -> "DTensor":
ctx.previous_placement = placements
ctx.previous_device_mesh = device_mesh
if shape and stride:
tensor_shape, tensor_stride = shape, stride
elif not shape and not stride:
# if it's not by default run_check, we assume user is certain that each
# rank has the same tensor shape, and we just use that to calculate the
# global shape
global_shape, global_stride = compute_global_tensor_info(
input, device_mesh, placements
)
tensor_shape, tensor_stride = torch.Size(global_shape), tuple(global_stride)
else:
raise RuntimeError(
f"Found shape:{shape}, stride:{stride}.",
"Please pass both shape and stride at the same time.",
)
if device_mesh.get_coordinate() is None:
# if the global rank is not participating in the device mesh, we
# simply set the local tensor to an empty tensor
input = input.new_empty(0, requires_grad=input.requires_grad)
elif run_check:
# TODO: by default check tensor metas across rank
# TODO: See if we need to make this run_check logic
# have a corresponding backward.
for idx, placement in enumerate(placements):
if placement.is_replicate():
# broadcast rank 0 tensor to all ranks
# only broadcast if run_check is True
input = input.contiguous()
mesh_broadcast(input, device_mesh, mesh_dim=idx)
dist_spec = DTensorSpec(
device_mesh,
placements,
tensor_meta=TensorMeta(
tensor_shape,
tensor_stride,
input.dtype,
),
)
# We want a fresh Tensor object that shares memory with the input tensor
dist_tensor = DTensor(
input.view_as(input),
dist_spec,
# requires_grad of the dist tensor depends on if input
# requires_grad or not
requires_grad=input.requires_grad,
)
return dist_tensor
@staticmethod
def backward(ctx, grad_output: "DTensor"): # type: ignore[override]
previous_placement = ctx.previous_placement
previous_device_mesh = ctx.previous_device_mesh
# reshard to the placement when creating DistributedTensor
# so that the gradient layout matches, and we could return
# local gradients directly
if grad_output.placements != previous_placement:
current_spec = grad_output._spec
target_spec = DTensorSpec(
previous_device_mesh,
previous_placement,
tensor_meta=grad_output._spec.tensor_meta,
)
local_tensor = grad_output._local_tensor
output = redistribute_local_tensor(
local_tensor, current_spec, target_spec, is_backward=True
)
# TODO: return the redistributed local tensor directly without
# differentiable backward. see if this make sense for all cases.
return output, None, None, None, None, None
# TODO: backward is also differentiable now, add a test
# to test higher level gradients.
return grad_output.to_local(), None, None, None, None, None
class DTensor(torch.Tensor): # pyre-ignore[13]: pyre is bad at __new__
_local_tensor: torch.Tensor
_spec: DTensorSpec
__slots__ = ["_local_tensor", "_spec"]
# class attribute that handles operator placements propagation
# rules, keyed by aten op name, value is propagation func
_op_dispatcher: op_dispatch.OpDispatcher = op_dispatch.OpDispatcher()
@staticmethod
@torch._disable_dynamo
def __new__(
cls,
local_tensor: torch.Tensor,
spec: DTensorSpec,
*,
requires_grad: bool,
) -> "DTensor":
"""
Construct a DTensor from a local tensor, device mesh, and placement and
other tensor properties (i.e. shape, requires_grad, strides, etc).
Note: This is not a public API and it's only supposed to be used by the
operator implementations and internals. If you want to construct a
DTensor from a local tensor, consider using `DTensor.from_local`, if
you want to construct a DTensor from a "global" tensor (where you
already have tensor initialized and want to shard this tensor),
consider using `distribute_tensor`.
"""
if local_tensor.requires_grad and not requires_grad:
warnings.warn(
"To construct DTensor from torch.Tensor, it's recommended to "
"use local_tensor.detach() and make requires_grad consistent."
)
# new method instruct wrapper tensor from local_tensor and add
# placement spec, it does not do actual distribution
assert spec.tensor_meta is not None, "TensorMeta should not be None!"
r = torch.Tensor._make_wrapper_subclass( # type: ignore[attr-defined]
cls,
spec.tensor_meta.shape,
strides=spec.tensor_meta.stride,
dtype=local_tensor.dtype,
device=local_tensor.device,
layout=local_tensor.layout,
requires_grad=requires_grad,
)
r._spec = spec
r._local_tensor = local_tensor
return r
# pyre-fixme[14]: `__repr__` overrides method defined in `DTensor` inconsistently.
# pyre-fixme[3]: Return type must be annotated.
def __repr__(self):
# TODO: consider all_gather the local tensors for better debugging
return f"DTensor(local_tensor={self._local_tensor}, device_mesh={self._spec.mesh}, placements={self._spec.placements})"
def __tensor_flatten__(self):
"""
protocol to inform how to flatten a DTensor to local tensor
for PT2 tracing
"""
return ["_local_tensor"], (self._spec, self.requires_grad)
@staticmethod
def __tensor_unflatten__(inner_tensors, flatten_spec, outer_size, outer_stride):
assert (
flatten_spec is not None
), "Expecting spec to be not None from `__tensor_flatten__` return value!"
local_tensor = inner_tensors["_local_tensor"]
spec, requires_grad = flatten_spec
unflatten_tensor_meta = TensorMeta(
shape=outer_size,
stride=outer_stride,
dtype=spec.tensor_meta.dtype,
)
unflatten_spec = DTensorSpec(
spec.mesh,
spec.placements,
tensor_meta=unflatten_tensor_meta,
)
return DTensor(
local_tensor,
unflatten_spec,
requires_grad=requires_grad,
)
def __coerce_tangent_metadata__(self):
if not any(isinstance(p, Partial) for p in self.placements):
return self
placements = [
Replicate() if isinstance(p, Partial) else p for p in self.placements
]
return self.redistribute(device_mesh=self.device_mesh, placements=placements)
def __coerce_same_metadata_as_tangent__(self, metadata_tensor):
return self.redistribute(
device_mesh=self.device_mesh,
placements=metadata_tensor.placements,
)
@classmethod
@torch._disable_dynamo
# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
return DTensor._op_dispatcher.dispatch(
func,
args,
kwargs or {},
)
@staticmethod
def from_local(
local_tensor: torch.Tensor,
device_mesh: Optional[DeviceMesh] = None,
placements: Optional[Sequence[Placement]] = None,
*,
run_check: bool = True,
shape: Optional[torch.Size] = None,
stride: Optional[Tuple[int, ...]] = None,
) -> "DTensor":
"""
Create a :class:`DTensor` from a local torch.Tensor on each rank
according to the `device_mesh` and `placements` specified.
Args:
local_tensor (torch.Tensor): local torch.Tensor on each rank.
device_mesh (:class:`DeviceMesh`, optional): DeviceMesh to place the
tensor, if not specified, must be called under a DeviceMesh
context manager, default: None
placements (List[:class:`Placement`], optional): the placements that
describes how to place the local torch.Tensor on DeviceMesh, must
have the same number of elements as `device_mesh.ndim`. If not
specified, we will by default replicate the tensor across the
`device_mesh` from the first rank of each dimension of the `device_mesh`.
Keyword args:
run_check (bool, optional): indicate whether to run check across ranks
to check meta information and data. if have :class:`Replicate` in
`placements`, the data on first rank of the device mesh dimension
will be broadcasted to other ranks.
shape (torch.Size, optional): A List of int which specifies the size of
DTensor which build on top of `local_tensor`. Note this needs to be
provided if the shape of `local_tensor` are different across the ranks.
If not provided, `shape` will be computed assuming the given distributed
tensor is evenly sharded across ranks.
stride (tuple, optional): A List of int which specifies the stride of DTensor.
If not provided, `stride` will be computed assuming the given distributed
tensor is evenly sharded across ranks.
Returns:
A :class:`DTensor` object
.. note:: `from_local` is differentiable, the `requires_grad` of the created
`DTensor` object will depend on if `local_tensor` requires_grad or not.
"""
# if same shape/dtype, no need to run_check, if not, must allgather
# the metadatas to check the size/dtype across ranks
# There should be no data communication unless there's replication
# strategy, where we broadcast the replication from the first rank
# in the mesh dimension
device_mesh = device_mesh or _mesh_resources.get_current_mesh()
device_type = device_mesh.device_type
# convert the local tensor to desired device base on device mesh's device_type
if device_type != local_tensor.device.type and not local_tensor.is_meta:
local_tensor = local_tensor.to(device_type)
# set default placements to replicated if not specified
if placements is None:
placements = [Replicate() for _ in range(device_mesh.ndim)]
else:
placements = list(placements)
for idx, placement in enumerate(placements):
# normalize shard dim to be positive
if placement.is_shard():
placement = cast(Shard, placement)
if placement.dim < 0:
placements[idx] = Shard(placement.dim + local_tensor.ndim)
# `from_local` is differentiable, and the gradient of the dist tensor this function
# created should flow back the gradients to the local_tensor, so we call an autograd
# function to construct the dist tensor instead.
return _FromTorchTensor.apply( # pyre-ignore[16]: autograd func
local_tensor,
device_mesh,
tuple(placements),
run_check,
shape,
stride,
)
def to_local(
self, *, grad_placements: Optional[Sequence[Placement]] = None
) -> torch.Tensor:
"""
Get the local tensor of this DTensor on its current rank. For sharding it returns
a local shard of the logical tensor view, for replication it returns the replica on
its current rank.
Keyword args:
grad_placements (List[:class:`Placement`], optional): the placements describes
the future layout of any gradient layout of the Tensor returned from this
function.
`to_local` converts DTensor to local tensor and the returned local tensor
might not be used as the original DTensor layout later in the code. This
argument is the hint that user can give to autograd in case the gradient
layout of the returned tensor does not match the original DTensor layout.
If not specified, we will assume the gradient layout remains the same
as the original DTensor and use that for gradient computation.
Returns:
A :class:`torch.Tensor` or `AsyncCollectiveTensor` object. it represents the
local tensor on its current rank.
.. note:: `to_local` is differentiable, the `requires_grad` of the local tensor returned
will depend on if the `DTensor` requires_grad or not.
"""
if not torch.is_grad_enabled():
return self._local_tensor
if grad_placements is not None and not isinstance(grad_placements, tuple):
grad_placements = tuple(grad_placements)
return _ToTorchTensor.apply(
self, grad_placements
) # pyre-ignore[16]: autograd func
def redistribute(
self,
device_mesh: Optional[DeviceMesh] = None,
placements: Optional[Sequence[Placement]] = None,
*,
async_op: bool = False,
) -> "DTensor":
"""
`redistribute` performs necessary collective operations that redistribute the current
DTensor from its current placements to a new placements, or from is current DeviceMesh
to a new DeviceMesh. i.e. we can turn a Sharded DTensor to a Replicated DTensor by
specifying a Replicate placement for each dimension of the DeviceMesh.
Args:
device_mesh (:class:`DeviceMesh`, optional): DeviceMesh to place the
DTensor, if not specified, must be called under a DeviceMesh
context manager, default: None
placements (List[:class:`Placement`], optional): the new placements that
describes how to place the DTensor into the DeviceMesh, must
have the same number of elements as `device_mesh.ndim`.
Keyword args:
async_op (bool, optional): whether to perform the DTensor redistribute operation
asynchronously or not. Default: False
Returns:
A :class:`DTensor` object
.. note:: `redistribute` is differentiable.
"""
# NOTE: This redistribute API currently only supports out
# of place redistribution, i.e. it always create a new
# DTensor object and leave the original one unchanged.
# if device_mesh is not specified, use the current device_mesh
device_mesh = device_mesh or self.device_mesh
# raise error if new placements not specified
if placements is None:
raise RuntimeError("placements is needed for redistribute!")
placements = list(placements)
for i, placement in enumerate(placements):
if placement.is_partial():
raise RuntimeError(
"Can not redistribute to Partial, redistributing to Partial is for internal use only!"
)
elif isinstance(placement, Shard) and placement.dim < 0:
# normalize shard dim to be positive
placements[i] = Shard(placement.dim + self.ndim)
placements = tuple(placements)
# pyre-fixme[16]: `Redistribute` has no attribute `apply`.
return Redistribute.apply(self, device_mesh, placements, async_op)
def full_tensor(
self, *, grad_placements: Optional[Sequence[Placement]] = None
) -> torch.Tensor:
"""
Return the full tensor of this DTensor. It will perform necessary collectives
to gather the local tensors from other ranks in its DeviceMesh and concatenate
them together. It's a syntatic sugar of the following code:
`dtensor.redistribute(placements=[Replicate()] * mesh.ndim).to_local()`
Keyword args:
grad_placements (List[:class:`Placement`], optional): the placements describes
the future layout of any gradient layout of the full Tensor returned from this
function.
`full_tensor` converts DTensor to a full torch.Tensor and the returned torch.tensor
might not be used as the original replicated DTensor layout later in the code. This
argument is the hint that user can give to autograd in case the gradient
layout of the returned tensor does not match the original replicated DTensor layout.
If not specified, we will assume the gradient layout of the full tensor be replicated.
Returns:
A :class:`torch.Tensor` object that represents the full tensor of this DTensor.
.. note:: `full_tensor` is differentiable.
"""
redist_res = self.redistribute(
placements=[Replicate()] * self.device_mesh.ndim, async_op=False
)
return _ToTorchTensor.apply(redist_res, grad_placements)
@property
def device_mesh(self) -> DeviceMesh:
"""
The :class:`DeviceMesh` attribute that associates with this DTensor object.
.. note:: device_mesh is a read-only property, it can not be set.
"""
return self._spec.mesh
@property
def placements(self) -> Sequence[Placement]:
"""
The placements attribute of this DTensor that describes the layout of this
DTensor on the its DeviceMesh.
.. note:: placements is a read-only property, it can not be set.
"""
return self._spec.placements
def distribute_tensor(
tensor: torch.Tensor,
device_mesh: Optional[DeviceMesh] = None,
placements: Optional[Sequence[Placement]] = None,
) -> DTensor:
"""
Distribute a leaf torch.Tensor (i.e. nn.Parameter) to the ``device_mesh`` according
to the ``placements`` specified. The rank of ``device_mesh`` and ``placements`` must be
the same. If you want to construct a DTensor in the middle of the Autograd computation,
please use ``DTensor.from_local`` instead.
Args:
tensor (torch.Tensor): torch.Tensor to be distributed. Note that if you
want to shard a tensor on a dimension that is not evenly divisible by
the number of devices in that mesh dimension, we use ``torch.chunk``
semantic to shard the tensor and scatter the shards.
device_mesh (:class:`DeviceMesh`, optional): DeviceMesh to distribute the
tensor, if not specified, must be called under a DeviceMesh context
manager, default: None
placements (List[:class:`Placement`], optional): the placements that
describes how to place the tensor on DeviceMesh, must have the same
number of elements as `device_mesh.ndim`. If not specified, we will
by default replicate the tensor across the `device_mesh` from the
first rank of each dimension of the `device_mesh`.
Returns:
A :class:`DTensor` or `XLAShardedTensor` object.
Note:
When initialize the DeviceMesh with the `xla` device_type, `distribute_tensor`
return `XLAShardedTensor` instead. see [link](https://github.com/pytorch/pytorch/issues/92909)
for more details. The XLA integration is experimental and subject to change.
"""
torch._C._log_api_usage_once("torch.dtensor.distribute_tensor")
# get default device mesh if there's nothing specified
device_mesh = device_mesh or _mesh_resources.get_current_mesh()
device_type = device_mesh.device_type
if device_type == "xla":
try:
# call PyTorch/XLA SPMD for `xla` backend type device mesh.
# This returns XLAShardedTensor
from torch_xla.distributed.spmd import ( # type:ignore[import]
xla_distribute_tensor,
)
return xla_distribute_tensor(
tensor, device_mesh, placements
) # type:ignore[return-value]
except ImportError as e:
msg = "To use DTensor API with xla, you must install the torch_xla package!"
raise ImportError(msg) from e
# instantiate a RNG tracker if haven't. By default DTensor uses an
# OffsetBasedRNGTracker to perform random operators.
# TODO: the value assignment to global variable is not the ideal solution
# we can replace it in future.
if not random._rng_tracker and is_rng_supported_mesh(device_mesh):
random._rng_tracker = OffsetBasedRNGTracker(device_type)
if not tensor.is_leaf:
raise RuntimeError(
"`distribute_tensor` should be used to distribute leaf tensors! but found non-leaf tensor!"
)
# convert tensor to the corresponding device type if it's not in that device type
if device_type != tensor.device.type and not tensor.is_meta:
tensor = tensor.to(device_type)
# set default placements to replicated if not specified
if placements is None:
placements = [Replicate() for _ in range(device_mesh.ndim)]
if len(placements) != device_mesh.ndim:
raise ValueError(
f"`placements` must have the same length as `device_mesh.ndim`! "
f"Found placements length: {len(placements)}, and device_mesh.ndim: {device_mesh.ndim}."
)
if isinstance(tensor, DTensor):
# if the tensor is already a DTensor, we need to check:
# 1. if the we can further shard this DTensor if the two device mesh belong to
# the same parenet mesh and further sharding is possible.
# 2. check if device mesh and placements are the same
if tensor.device_mesh != device_mesh:
raise ValueError(
f"Cannot distribute a DTensor with device mesh {tensor.device_mesh} "
f"to a different device mesh {device_mesh}."
)
if tensor.placements != tuple(placements):
raise ValueError(
f"Cannot distribute a DTensor with placements {tensor.placements} "
f"to a different placements {placements}. do you want to call "
f"`redistribute` instead?"
)
return tensor
local_tensor = tensor.detach()
# distribute the tensor according to the placements.
placements = list(placements)
for idx, placement in enumerate(placements):
if placement.is_shard():
placement = cast(Shard, placement)
if placement.dim < 0:
# normalize shard placement dim
placement = Shard(placement.dim + tensor.ndim)
placements[idx] = placement
local_tensor = placement._shard_tensor(local_tensor, device_mesh, idx)
elif placement.is_replicate():
placement = cast(Replicate, placement)
local_tensor = placement._replicate_tensor(local_tensor, device_mesh, idx)
else:
raise RuntimeError(
f"Trying to distribute tensor with unsupported placements {placement} on device mesh dimension {idx}!"
)
placements = tuple(placements)
assert local_tensor is not None, "distributing a tensor should not be None"
# detach the local tensor passed to DTensor since after the construction
# of DTensor, autograd would work on top of DTensor instead of local tensor
spec = DTensorSpec(
mesh=device_mesh,
placements=placements,
tensor_meta=TensorMeta(
shape=tensor.size(),
stride=tensor.stride(),
dtype=tensor.dtype,
),
)
return DTensor(
local_tensor.requires_grad_(tensor.requires_grad),
spec,
requires_grad=tensor.requires_grad,
)
def distribute_module(
module: nn.Module,
device_mesh: Optional[DeviceMesh] = None,
partition_fn: Optional[Callable[[str, nn.Module, DeviceMesh], None]] = None,
input_fn: Optional[Callable[[nn.Module, Any, DeviceMesh], None]] = None,
output_fn: Optional[Callable[[nn.Module, Any, DeviceMesh], None]] = None,
) -> nn.Module:
"""
This function expose three functions to control the Tensors inside the module:
1. To perform sharding on the module before runtime execution by specifying the
``partition_fn`` (i.e. allow user to convert Module parameters to :class:`DTensor`
parameters according to the `partition_fn` specified).
2. To control the inputs or outputs of the module during runtime execution by
specifying the ``input_fn`` and ``output_fn``. (i.e. convert the input to
:class:`DTensor`, convert the output back to torch.Tensor)
Args:
module (:class:`nn.Module`): user module to be partitioned.
device_mesh (:class:`DeviceMesh`): the device mesh to place the module.
partition_fn (Callable): the function to partition parameters (i.e. shard certain
parameters across the `device_mesh`). If `partition_fn` is not specified,
by default we replicate all module parameters of `module` across the mesh.
input_fn (Callable): specify the input distribution, i.e. could control how the
input of the module is sharded. `input_fn` will be installed as a module
`forward_pre_hook` (pre forward hook).
output_fn (Callable): specify the output distribution, i.e. could control how the
output is sharded, or convert it back to torch.Tensor. output_fn will be
installed as a module `forward_hook` (post forward hook).
Returns:
A module that contains parameters/buffers that are all `DTensor`s.
Note:
When initialize the DeviceMesh with the `xla` device_type, `distribute_module`
return nn.Module with PyTorch/XLA SPMD annotated parameters. See [link](https://github.com/pytorch/pytorch/issues/92909)
for more details. The XLA integration is experimental and subject to change.
"""
torch._C._log_api_usage_once("torch.dtensor.distribute_module")
device_mesh = device_mesh or _mesh_resources.get_current_mesh()
device_type = device_mesh.device_type
if device_type == "xla":
try:
# This function annotates all module parameters for auto-partitioning with
# PyTorch/XLA SPMD or explicitly partition to :class:`XLAShardedTensor` parameters
# according to the `partition_fn` specified.
from torch_xla.distributed.spmd import ( # type:ignore[import]
xla_distribute_module,
)
return xla_distribute_module(
module, device_mesh, partition_fn, input_fn, output_fn
) # type:ignore[return-value]
except ImportError as e:
msg = "To use DTensor API with xla, you must install the torch_xla package!"
raise ImportError(msg) from e
def replicate_module_params_buffers(m: nn.Module, mesh: DeviceMesh) -> None:
# This function loop over the immediate module parameters and
# buffers, replicate all non DTensor params/buffers to DTensor
# parameters/buffers, if they have not been partitioned in the
# partition_fn, we can't easily use `module._apply` here
# because we don't know what happened inside partition_fn as
# user could do anything, i.e. install hooks, and we want to
# preserve those.
full_replicate = [Replicate()] * mesh.ndim
for key, param in m._parameters.items():
if param is not None and not isinstance(param, DTensor):
m.register_parameter(
key,
nn.Parameter(distribute_tensor(param.data, mesh, full_replicate)),
)
for key, buffer in m._buffers.items():
if buffer is not None and not isinstance(buffer, DTensor):
m._buffers[key] = distribute_tensor(buffer, mesh, full_replicate)
if partition_fn is None:
# if partition_fn not specified, we by default replicate
# all module params/buffers
for name, submod in module.named_modules():
replicate_module_params_buffers(submod, device_mesh)
else:
# apply partition_fun to submodules
for name, submod in module.named_modules():
partition_fn(name, submod, device_mesh)
replicate_module_params_buffers(submod, device_mesh)
# register input_fn as module forward pre hook
if input_fn is not None:
# check the input_fn signature
num_args = len(inspect.signature(input_fn).parameters)
if num_args == 2:
# input_fn only takes in inputs and device mesh
warnings.warn(
"Deprecating input_fn that takes two arguments (inputs, device_mesh), "
"please use input_fn that takes in (module, inputs, device_mesh) instead!",
FutureWarning,
stacklevel=2,
)
module.register_forward_pre_hook(lambda _, inputs: input_fn(inputs, device_mesh)) # type: ignore[call-arg]
elif num_args == 3:
# input_fn takes in module, inputs, device mesh
module.register_forward_pre_hook(
lambda mod, inputs: input_fn(mod, inputs, device_mesh)
)
else:
raise ValueError(
f"input_fn should take in 3 arguments, but got {num_args} arguments!"
)
# register output_fn as module forward hook
if output_fn is not None:
num_args = len(inspect.signature(output_fn).parameters)
if num_args == 2:
# output_fn only takes in outputs and device mesh
warnings.warn(
"Deprecating output_fn that takes two arguments (inputs, device_mesh), "
"please use output_fn that takes in (module, inputs, device_mesh) instead!",
FutureWarning,
stacklevel=2,
)
module.register_forward_hook(
lambda mod, inputs, outputs: output_fn(outputs, device_mesh) # type: ignore[call-arg]
)
elif num_args == 3:
module.register_forward_hook(
lambda mod, inputs, outputs: output_fn(mod, outputs, device_mesh)
)
else:
raise ValueError(
f"output_fn should take in 3 arguments, but got {num_args} arguments!"
)
return module