Repository URL to install this package:
Version:
2.4.1 ▾
|
# mypy: ignore-errors
import copy
import math
import os
import sys
from dataclasses import dataclass
from functools import partial, wraps
from typing import Callable, List
import torch
import torch.fx as fx
from torch.hub import tqdm
from torch.multiprocessing.reductions import StorageWeakRef
from torch.utils._content_store import ContentStoreWriter
from .compile_utils import get_outputs, get_placeholders
is_tuple = object()
@dataclass
class LoadTensorMeta:
size: List[int]
stride: List[int]
dtype: torch.dtype
device: torch.device
class ConcreteProp(torch.fx.Interpreter):
def __init__(self, mod, *, writer=None, skip_offload=False):
super().__init__(mod)
self.writer = writer
self.skip_offload = skip_offload
self.seen_storages = set()
def run_node(self, n):
self.pbar.update(1)
r = super().run_node(n)
name = n.name
if isinstance(r, torch.Tensor):
if self.writer is None:
n.meta["concrete_value"] = r
else:
if StorageWeakRef(r.untyped_storage()) in self.seen_storages:
# Refuse to offload tensors which alias other live
# tensors, because this will violate operator contracts
n.meta["concrete_value"] = None
else:
if not self.skip_offload:
self.writer.write_tensor(os.path.join("eager", name), r)
n.meta["concrete_value"] = LoadTensorMeta(
r.size(), r.stride(), r.dtype, r.device
)
self.seen_storages.add(StorageWeakRef(r.untyped_storage()))
else:
n.meta["concrete_value"] = is_tuple
return r
def propagate(self, *args):
with tqdm(
desc="Saving intermediates for delta debugging",
total=len(self.module.graph.nodes),
disable=self.writer is None,
) as pbar:
self.pbar = pbar
r = super().run(*args)
if not self.skip_offload:
pbar.set_description(
"Saved! To skip next time, run with --skip-saving-eager-intermediates"
)
return r
def is_load_tensor_node(node):
return (
node.op == "call_function"
and node.target is torch.ops.debugprims.load_tensor.default
)
# inplace modifies node/inps
def _convert_node_to_placeholder(graph, node, inps):
if node.op == "output" or node.op == "placeholder":
return False
if is_load_tensor_node(node):
return False
concrete_val = node.meta.get("concrete_value", None)
if isinstance(concrete_val, torch.Tensor):
node.op = "placeholder"
node.target = node.name
node.args = ()
node.kwargs = {}
inps.append(concrete_val)
return True
elif concrete_val is None:
return False
elif concrete_val is is_tuple:
r = False
for tuple_user in list(node.users):
r = _convert_node_to_placeholder(graph, tuple_user, inps) or r
# NB: We must not erase the node at this point, because
# we are iterating over the nodes and this would change
# the iteration order
# graph.erase_node(node)
return r
elif isinstance(concrete_val, LoadTensorMeta):
node.op = "call_function"
node.target = torch.ops.debugprims.load_tensor.default
node.args = (
os.path.join("eager", node.name),
concrete_val.size,
concrete_val.stride,
)
node.kwargs = {
"device": concrete_val.device,
"dtype": concrete_val.dtype,
}
return True
return False
def create_minified_hlo_graph(minified_fx_graph, inputs):
"""
Takes minified FX graph as primary input, and ports it to HLO via StableHLO
Provides minified HLO graph as output, and archive them to local directory
"""
hlo_dir = f"{os.getcwd()}/hlo_files"
os.makedirs(hlo_dir, exists_ok=True)
from torch_xla.stablehlo import save_torch_model_as_stablehlo
save_torch_model_as_stablehlo(minified_fx_graph, inputs, hlo_dir)
def dump_state(fx_g, inps):
print(
f"""
# Working Repro with {len(fx_g.graph.nodes)} nodes
inps = {[(i.shape, i.dtype, i.device.type) for i in inps]}
inps = [torch.zeros(())] + [torch.ones(shape, dtype=dtype, device=device) for (shape, dtype, device) in inps]
{fx_g.code}
"""
)
def is_power_of_two(n):
if n == 0:
return False
return (n & (n - 1)) == 0
@dataclass
class ReproState:
graph: fx.Graph
inps: List[torch.Tensor]
def __post_init__(self):
ph_nodes = get_placeholders(self.graph)
assert len(ph_nodes) == len(self.inps)
def minifier(
fail_f: fx.GraphModule,
inps,
module_fails,
dump_state: Callable = dump_state,
*,
save_dir=None,
offload_to_disk=False,
skip_offload=False,
skip_sanity=False,
max_granularity=None,
):
"""
Minimizes a FX graph with given inputs, such that the resulting FX graph still returns True for module_fails.
Does 2 main strategies:
1. Truncates suffix: Removes some suffix from the graph and sets a new output.
2. Delta Debugging: Tries replacing half of the graph with inputs. If fails,
tries replacing quarter of the graph, etc.
>>> # xdoctest: +SKIP(failing)
>>> failing_function = fx.symbolic_trace(f)
>>> minimize(failing_function, [torch.randn(5)], lambda fx_g, inps: fx_g(*inps))
note: module_fails returns True if it fails.
"""
assert isinstance(inps, (tuple, list))
failing_graph = fail_f.graph
cur_size = len(failing_graph.nodes)
if max_granularity is not None and not is_power_of_two(max_granularity):
raise RuntimeError(f"max_granularity {max_granularity} not power of two")
num_queries = 0
def deepcopy_fx_graph(fx_graph):
return fx.GraphModule(fail_f, copy.deepcopy(fx_graph)).graph
def graph_fails(graph, inps):
nonlocal num_queries
graph = copy.deepcopy(graph)
num_queries += 1
mod = fx.GraphModule(fail_f, graph)
mod.graph.lint()
return module_fails(mod, inps)
writer = None
if offload_to_disk:
writer = ContentStoreWriter(save_dir)
ConcreteProp(fail_f, writer=writer, skip_offload=skip_offload).propagate(*inps)
if not skip_sanity and not graph_fails(failing_graph, inps):
raise RuntimeError("Input graph did not fail the tester")
print(f"Started off with {cur_size} nodes", file=sys.stderr)
def _register_strategy(strategy: Callable, name: str):
@wraps(strategy)
def new_func(old_state: ReproState, granularity=1):
print(file=sys.stderr)
print(
f"Strategy: {name} (G: {granularity}) "
f"({len(old_state.graph.nodes)} nodes, {len(old_state.inps)} inputs)",
file=sys.stderr,
)
new_state = strategy(
deepcopy_fx_graph(old_state.graph), list(old_state.inps), granularity
)
if new_state is not None:
new_nodes = len(new_state.graph.nodes)
old_nodes = len(old_state.graph.nodes)
new_inps = len(new_state.inps)
old_inps = len(old_state.inps)
new_outs = len(get_outputs(new_state.graph))
old_outs = len(get_outputs(old_state.graph))
progress_made = False
if new_nodes < old_nodes:
progress_made = True
print(
f"SUCCESS: Went from {old_nodes} to {new_nodes} nodes",
file=sys.stderr,
)
if new_inps > old_inps:
progress_made = True
print(
f"SUCCESS: Went from {old_inps} to {new_inps} inputs",
file=sys.stderr,
)
if new_outs < old_outs:
progress_made = True
print(
f"SUCCESS: Went from {old_outs} to {new_outs} outputs",
file=sys.stderr,
)
if not progress_made:
raise RuntimeError("Success raised but no progress made?")
if not graph_fails(new_state.graph, new_state.inps):
print(
"WARNING: Something went wrong, not applying this minification",
file=sys.stderr,
)
return None
return new_state
else:
print(f"FAIL: {name}", file=sys.stderr)
return None
return new_func
def register_strategy(name: str):
return partial(_register_strategy, name=name)
@register_strategy("Truncate suffix")
def remove_suffix(cur_graph, cur_inps, granularity):
tested = set()
new_graph = fx.Graph()
env = {}
for idx, node in enumerate(cur_graph.nodes):
new_node = new_graph.node_copy(node, lambda x: env[x])
if node.op not in ["placeholder", "output"]:
# If idx is divisible by (granularity * 2), it would have been checked already.
if (
idx % granularity == 0
and (idx % (granularity * 2) != 0)
and idx not in tested
):
output_node = new_graph.output((new_node,))
if len(new_graph.nodes) < len(cur_graph.nodes) and graph_fails(
new_graph, cur_inps
):
return ReproState(new_graph, cur_inps)
else:
tested.add(idx)
new_graph.erase_node(output_node)
env[node] = new_node
return None
@register_strategy("Remove outputs")
def remove_outputs(cur_graph, cur_inps, granularity):
granularity = max(1, granularity // 2)
for idx, node in enumerate(cur_graph.nodes):
node.idx = idx
if node.op == "output":
output = node
break
if isinstance(output.args[0], fx.Node):
return None
output_args = sorted(
output.args[0], key=lambda x: x.idx if isinstance(x, fx.Node) else int(1e9)
)
if len(output_args) == 1:
return None
for idx in range(0, len(output_args), granularity):
output.args = (output_args[:idx] + output_args[idx + granularity :],)
if graph_fails(cur_graph, cur_inps):
return ReproState(cur_graph, cur_inps)
return None
def remove_unused_inputs_unchecked(cur_state: ReproState):
cur_graph = cur_state.graph
cur_inps = cur_state.inps
ph_nodes = get_placeholders(cur_graph)
assert len(ph_nodes) == len(cur_inps)
new_inps = []
for idx in range(len(ph_nodes)):
if len(ph_nodes[idx].users) == 0:
cur_graph.erase_node(ph_nodes[idx])
else:
new_inps.append(cur_inps[idx])
if len(new_inps) < len(cur_inps):
return ReproState(cur_graph, new_inps)
return None
def remove_unused_inputs_checked(cur_state: ReproState):
new_state = remove_unused_inputs_unchecked(cur_state)
if new_state is not None and graph_fails(new_state.graph, new_state.inps):
return new_state
return None
def _remove_unused_wrapper(cur_graph, cur_inps, granularity):
return remove_unused_inputs_checked(ReproState(cur_graph, cur_inps))
remove_unused_inputs = register_strategy("Remove unused inputs")(
_remove_unused_wrapper
)
@register_strategy("Eliminate dead code")
def eliminate_dead_code(cur_graph, cur_inps, granularity):
if cur_graph.eliminate_dead_code() and graph_fails(cur_graph, cur_inps):
return ReproState(cur_graph, cur_inps)
return None
def _consolidate_placeholders(cur_graph, inps):
new_graph = fx.Graph()
env = {}
seen_non_placeholder = False
# Move all placeholders to the front; also, if any load_tensor
# is at the front, convert it into an input (because it can be live
# all the time)
for node in cur_graph.nodes:
if node.op == "placeholder":
new_node = new_graph.node_copy(node, lambda x: env[x])
env[node] = new_node
elif not seen_non_placeholder and is_load_tensor_node(node):
new_node = new_graph.placeholder(node.name)
env[node] = new_node
inps.append(
torch.ops.debugprims.load_tensor.default(*node.args, **node.kwargs)
)
else:
seen_non_placeholder = True
# Move everyone else
for node in cur_graph.nodes:
if node not in env:
new_node = new_graph.node_copy(node, lambda x: env[x])
env[node] = new_node
return new_graph
@register_strategy("Delta Debugging")
def delta_debugging(cur_graph: fx.Graph, cur_inps, granularity):
num_nodes = len(cur_graph.nodes)
for start_range in range(0, num_nodes, granularity):
is_removing = False
new_graph = deepcopy_fx_graph(cur_graph)
new_inps = cur_inps[:]
end_range = min(num_nodes, start_range + granularity)
for idx in range(start_range, end_range):
new_node = list(new_graph.nodes)[idx]
if _convert_node_to_placeholder(new_graph, new_node, new_inps):
is_removing = True
if not is_removing:
continue
new_graph.eliminate_dead_code()
new_graph = _consolidate_placeholders(new_graph, new_inps)
new_state = remove_unused_inputs_unchecked(ReproState(new_graph, new_inps))
if new_state is None:
new_state = ReproState(new_graph, new_inps)
if graph_fails(new_state.graph, new_state.inps):
return ReproState(new_state.graph, new_state.inps)
return None
@register_strategy("Consolidate Inputs")
def consolidate_inputs(cur_graph, cur_inps, granularity):
old_len = len(cur_inps)
cur_graph = _consolidate_placeholders(cur_graph, cur_inps)
if len(cur_inps) > old_len and graph_fails(cur_graph, cur_inps):
return ReproState(cur_graph, cur_inps)
return None
failing_state = ReproState(failing_graph, inps)
def try_granularity(failing_state, granularity, use_non_granular):
print(f"Trying granularity {granularity}", file=sys.stderr)
strategies = []
num_nodes = len(failing_state.graph.nodes)
num_outputs = len(get_outputs(failing_state.graph))
if num_outputs > num_nodes // 2:
strategies += [remove_outputs]
if use_non_granular:
strategies += [
eliminate_dead_code,
remove_unused_inputs,
consolidate_inputs,
]
strategies += [remove_suffix, delta_debugging]
for strategy in strategies:
new_state = strategy(failing_state, granularity)
if new_state is not None:
return new_state
return None
while True:
dump_state(fx.GraphModule(fail_f, failing_state.graph), failing_state.inps)
granularity = int(2 ** (math.floor(math.log2(len(failing_state.graph.nodes)))))
if max_granularity is not None:
granularity = min(max_granularity, granularity)
new_state = try_granularity(failing_state, granularity, use_non_granular=True)
if new_state is not None:
failing_state = new_state
continue
granularity //= 2
has_progress = False
while granularity >= 1:
new_state = try_granularity(
failing_state, granularity, use_non_granular=False
)
if new_state is not None:
failing_state = new_state
has_progress = True
break
granularity //= 2
if has_progress:
continue
new_state = remove_outputs(failing_state, 1)
if new_state is not None:
failing_state = new_state
continue
break
if not graph_fails(failing_state.graph, failing_state.inps):
raise RuntimeError("Uh oh, something went wrong :( Final graph is not failing")
print(f"Made {num_queries} queries", file=sys.stderr)
failing_fx = fx.GraphModule(fail_f, failing_state.graph)
# If XLA debugging environment is enabled, create minified HLO graph as well
if "XLA_HLO_DEBUG" in os.environ:
create_minified_hlo_graph(failing_fx, failing_state.inps)
dump_state(failing_fx, failing_state.inps)
print("Wrote minimal repro out to repro.py", file=sys.stderr)
return failing_fx, failing_state.inps