Repository URL to install this package:
|
Version:
2.4.1 ▾
|
# mypy: ignore-errors
# Torch
from torch.jit.annotations import BroadcastingList2, BroadcastingList3 # noqa: F401
import torch.nn.functional as F
import torch
import torch.cuda
import torch.jit
import torch.jit._logging
import torch.jit.frontend
from torch.testing._internal.common_nn import module_tests, new_module_tests
from torch.testing._internal.common_utils import is_iterable_of_tensors, noncontiguous_like
import collections
from copy import deepcopy
from typing import Any, Dict, List, Union
import math # noqa: F401
# Testing utils
from torch import inf
assert torch.get_default_dtype() == torch.float32
L = 20
M = 10
S = 5
def unpack_variables(args):
if isinstance(args, tuple):
return tuple(unpack_variables(elem) for elem in args)
else:
return args
class dont_convert(tuple):
pass
non_differentiable = collections.namedtuple('non_differentiable', ['tensor'])
def create_input(call_args, requires_grad=True, non_contiguous=False, call_kwargs=None, dtype=torch.float, device=None):
if not isinstance(call_args, tuple):
call_args = (call_args,)
def map_arg(arg):
def maybe_non_contig(tensor):
if not non_contiguous or tensor.numel() < 2:
return tensor.clone()
return noncontiguous_like(tensor)
def conjugate(tensor):
return tensor.conj()
if isinstance(arg, (torch.Size, dont_convert)):
return arg
elif isinstance(arg, tuple) and len(arg) == 0:
var = conjugate(torch.randn((), dtype=dtype, device=device))
var.requires_grad = requires_grad
return var
elif isinstance(arg, tuple) and not isinstance(arg[0], torch.Tensor):
return conjugate(maybe_non_contig(torch.randn(*arg, dtype=dtype, device=device))).requires_grad_(requires_grad)
# double check casting
elif isinstance(arg, non_differentiable):
if isinstance(arg.tensor, torch.Tensor):
return conjugate(maybe_non_contig(arg.tensor.to(device=device)))
return conjugate(maybe_non_contig(arg.tensor.to(device=device)))
elif isinstance(arg, torch.Tensor):
if arg.is_complex() != dtype.is_complex:
raise RuntimeError("User provided tensor is real for a test that runs with complex dtype, ",
"which is not supported for now")
# NOTE: We do clone() after detach() here because we need to be able to change size/storage of v afterwards
v = conjugate(maybe_non_contig(arg)).detach().to(device=device).clone()
v.requires_grad = requires_grad and (v.is_floating_point() or v.is_complex())
return v
elif callable(arg):
return map_arg(arg(dtype=dtype, device=device))
else:
return arg
args_out = tuple(map_arg(arg) for arg in call_args)
kwargs_out = {k: map_arg(v) for k, v in call_kwargs.items()} if call_kwargs else {}
return args_out, kwargs_out
# NB: JIT script tests for all nn functional interfaces, script mode does
# not support in_place operations yet, so no inplace operation tests added.
# removed all the deprecated functions
#
# (
# method name,
# input size/constructing fn,
# args (tuple represents shape of a tensor arg),
# test variant name(will be used at test name suffix,
# 'inplace' skips grad tests), // optional
# (True, nonfusible_nodes, fusible_nodes) for autodiff // optional
# fn to determine if test should be skipped, // optional
# fn mapping output to part that should be gradcheck'ed, // optional
# kwargs for function, // optional
# )
nn_functional_tests = [
('conv1d', (S, S, S), ((S, S, S),)),
('conv2d', (S, S, S, S), ((S, S, S, S),)),
('conv3d', (S, S, S, S, S), ((S, S, S, S, S),)),
('conv_transpose1d', (S, S, S), ((S, S, S),)),
('conv_transpose2d', (S, S, S, S), ((S, S, S, S),)),
('conv_transpose3d', (S, S, S, S, S), ((S, S, S, S, S),)),
('conv_tbc', (S, S, S), ((S, S, S), (S,), 2)),
('avg_pool1d', (S, S, S), (3,)),
('avg_pool2d', (S, S, S, S), (3,), '', (True,)),
('avg_pool3d', (S, S, S, S, S), (3,)),
('fractional_max_pool2d', (S, S, S, S), (3, [2, 3],)),
('max_pool1d', (S, S, S), (2, 1)),
('max_pool1d', (S, S, S), (2, 1, 1, 1, False, True), 'with_indices'),
('max_pool2d', (S, S, S, S), (2, 1), '', (True, 'aten::max_pool2d_with_indices')),
('max_pool2d', (S, S, S, S), (2, 1, 1, 1, False, True), 'with_indices', (True, 'aten::max_pool2d_with_indices')),
('max_pool3d', (S, S, S, S, S), (2, 1)),
('max_unpool1d', torch.tensor([[[2., 4]]]), (torch.tensor([[[1, 3]]]), 2, 2, 0)),
('max_unpool2d', torch.tensor([[[[2., 4]]]]), (torch.tensor([[[[1, 3]]]]), 2, 2, 0)),
('max_unpool3d', torch.tensor([[[[[2., 4]]]]]), (torch.tensor([[[[[1, 3]]]]]), 2, 2, 0)),
('lp_pool1d', (S, S, S), (2., 3, 2,)),
('lp_pool2d', (S, S, S, S), (2., 3, 2,)),
('lp_pool3d', (S, S, S, S, S), (2., 3, 2,)),
('adaptive_max_pool1d', (S, S, S), (5,)),
('adaptive_max_pool2d', (S, S, S, S), ([5, 7],)),
('adaptive_max_pool3d', (S, S, S, S, S), ([3, 2, 2],)),
('adaptive_avg_pool1d', (S, S, S), (5,), '', (True,)),
('adaptive_avg_pool2d', (S, S, S, S), ([5, 7],), '', (True,)),
('adaptive_avg_pool3d', (S, S, S, S, S), ([3, 2, 2],), '', (True,)),
('dropout', (S, S, S), (0.5,), '', (True, 'aten::native_dropout')),
('alpha_dropout', (S, S, S), (0.5,)),
('dropout2d', (S, S, S), (0.5,)),
('dropout2d', (S, S, S, S), (0.5,), 'batched'),
('dropout3d', (S, S, S, S), (0.5,)),
('dropout3d', (S, S, S, S, S), (0.5,), 'batched'),
('feature_alpha_dropout', (S, S, S), (0.5,)),
('threshold', (S, S, S), (0.1, 2.), '', (True,)),
('threshold', (S, S, S), (0.1, 2., True), 'inplace'),
('relu', (S, S, S), (), '', (True,)),
('relu', (S, S, S), (), 'inplace'),
('glu', (S - 1, S - 1, S - 1), (),),
('hardtanh', (S, S, S), (-0.5, 0.5), '', (True,)),
('hardtanh', (S, S, S), (-0.5, 0.5, True), 'inplace'),
('relu6', (S, S, S), (), '', (True,)),
('relu6', (S, S, S), (True), 'inplace'),
('elu', (S, S, S), (0.9,),),
('elu', (S, S, S), (0.9, True), 'inplace'),
('selu', (S, S, S), (),),
('selu', (S, S, S), (True), 'inplace'),
('celu', (S, S, S), (0.9,),),
('celu', (S, S, S), (0.9, True), 'inplace'),
('leaky_relu', (S, S, S), (0.02,), '', (True,)),
('leaky_relu', (S, S, S), (0.02,), 'inplace'),
('rrelu', (S, S), (0.1, 0.3, False),),
('rrelu', (S, S), (0.1, 0.3, False, True), 'inplace'),
('hardshrink', (S, S, S), (0.4,), '', (True,)),
('tanhshrink', (S, S, S), (),),
('softsign', (S, S, S), (),),
('softplus', (S, S, S), (), '', (True,)),
('softmin', (S, S, S), (0,),),
('softmax', (S, S, S), (0,), '', (True,)),
('softmax', (S, S, S), (0, 3, torch.double), 'with_all_args', (True,)),
('tanh', (S, S, S), (), '', (True,)),
('sigmoid', (S, S, S), (), '', (True,)),
('silu', (S, S, S), (), '', (True,)),
('log_softmax', (S, S, S), (0,), '', (True,)),
('linear', (S, S), ((M, S),), '', (True, ['aten::linear'])),
('linear', (S, S), ((M, S), (M,)), 'addmm', (True, ['aten::linear'])),
('bilinear', (S, S, S), ((S, S, M), torch.zeros(M, S, M),),),
('embedding', torch.tensor([[1, 2, 4, 5], [4, 3, 2, 5]]), (torch.rand(6, 3), ), '', (True,)),
('embedding_bag', torch.tensor([1, 2, 4, 2]), (torch.rand(5, 3), torch.tensor([0, 4]),),),
('batch_norm', (S, S),
(non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)), None, None, True, ),
'training', (True, 'aten::_batch_norm_impl_index')),
('batch_norm', (0, S, S, S),
(non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)), True, ),
'size_zero', (True, 'aten::_batch_norm_impl_index')),
('batch_norm', (0, S, S, S),
(non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)), True, ),
'size_zero_inference', (True, 'aten::_batch_norm_impl_index')),
('batch_norm', (S, S),
(non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)), True, ),
'with_weight_and_bias_training', (True, 'aten::_batch_norm_impl_index')),
('batch_norm', (S, S), (non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
None, non_differentiable(torch.ones(S)), True, ),
'with_only_bias_training', (True, 'aten::_batch_norm_impl_index')),
('batch_norm', (S, S), (non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
non_differentiable(torch.randn(S)), None, True, ),
'with_only_weight_training', (True, 'aten::_batch_norm_impl_index')),
('batch_norm', (S, S), (non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
None, None, False, ),
'inference', (True, 'aten::_batch_norm_impl_index')),
('batch_norm', (S, S), (non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)), False, ),
'with_weight_and_bias_inference', (True, 'aten::_batch_norm_impl_index')),
('batch_norm', (S, S), (non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
None, non_differentiable(torch.ones(S)), False, ),
'with_only_bias_inference', (True, 'aten::_batch_norm_impl_index')),
('batch_norm', (S, S), (non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
non_differentiable(torch.randn(S)), None, False, ),
'with_only_weight_inference', (True, 'aten::_batch_norm_impl_index')),
('instance_norm', (S, S, S), (non_differentiable(torch.zeros(S)), non_differentiable(torch.ones(S))),),
('layer_norm', (S, S, S, S), ([5],), '',
(False, ['aten::contiguous', 'aten::_batch_norm_impl_index'])),
('layer_norm', (S, S, S, S), ([5], non_differentiable(torch.rand(S)),), 'with_only_weight',
(False, ['aten::contiguous', 'aten::_batch_norm_impl_index'])),
('layer_norm', (S, S, S, S), ([5], None, non_differentiable(torch.rand(S)),), 'with_only_bias',
(False, ['aten::contiguous', 'aten::_batch_norm_impl_index'])),
('layer_norm', (S, S, S, S), ([5], non_differentiable(torch.rand(S)),
non_differentiable(torch.rand(S))), 'with_weight_and_bias',
(False, ['aten::contiguous', 'aten::_batch_norm_impl_index', 'aten::addcmul'])),
('group_norm', (S, S, S), (1, torch.rand(5),),),
('local_response_norm', (S, S, S), (2, ),),
('nll_loss', F.log_softmax(torch.randn(3, 5), dim=0), (torch.tensor([1, 0, 4]),), '',),
('poisson_nll_loss', torch.rand(S, 2), (torch.rand(S, 2),),),
('poisson_nll_loss', torch.rand(S, 2), (torch.rand(S, 2), True, True), 'full'),
('kl_div', F.log_softmax(torch.randn(S, 10), 1), (F.softmax(torch.randn(S, 10), 1),),),
('cross_entropy', (3, S), (torch.randint(S, (3,), dtype=torch.int64),),),
('binary_cross_entropy_with_logits', (3,), (torch.empty(3).random_(2), ),),
('smooth_l1_loss', (3, S), (non_differentiable(torch.rand(3, S)),),),
('huber_loss', (3, S), (non_differentiable(torch.rand(3, S)),),),
('l1_loss', (3, S), (non_differentiable(torch.rand(3, S)),),),
('mse_loss', (3, S), (non_differentiable(torch.rand(3, S)),),),
('smooth_l1_loss', (3, S), ((torch.rand(3, S)),), 'with_grad'),
('huber_loss', (3, S), ((torch.rand(3, S)),), 'with_grad'),
('l1_loss', (3, S), ((torch.rand(3, S)),), 'with_grad'),
('mse_loss', (3, S), ((torch.rand(3, S)),), 'with_grad'),
('margin_ranking_loss', (S,), ((S,), (S,)),),
('hinge_embedding_loss', (3, S), (non_differentiable(torch.rand(3, S)),),),
('soft_margin_loss', (3, S), (non_differentiable(torch.rand(3, S)),),),
('multilabel_soft_margin_loss', (3, S), (non_differentiable(torch.rand(3, S)),),),
('cosine_embedding_loss', (S, S), ((S, S), non_differentiable(torch.rand(S,))),),
('pixel_shuffle', (1, 9, 4, 4), (3,),),
('pixel_unshuffle', (1, 1, 12, 12), (3,),),
('affine_grid', (S, 2, 3), (torch.Size([S, 1, 7, 7]),),),
('pad', (3, 3, 4, 2), ([1, 1],),),
('pairwise_distance', (S, S), ((S, S),),),
('pdist', (S, S), (),),
('cosine_similarity', (S, S), ((S, S),),),
('triplet_margin_loss', (S, S), ((S, S), (S, S)),),
('normalize', (S, S, S), (),),
('unfold', (S, S, S, S), ([2, 3]),),
('fold', (1, 3 * 2 * 2, 12), ([4, 5], [2, 2]),),
('grid_sample', (S, S, S, S), (non_differentiable(torch.rand(S, S, S, 2)),),),
('gumbel_softmax', (S, S), (2.,), '', (True, ['aten::softmax', 'aten::add', 'aten::div'], ['aten::neg'])),
('gumbel_softmax', (S, S), (2., True,), 'hard', (True, ['aten::softmax', 'aten::add', 'aten::div'], ['aten::neg'])),
('multilabel_margin_loss', torch.tensor([[0.2, -0.2, 0.07]]), (torch.tensor([[0, 0, 1]]),),),
('multi_margin_loss', (S, S), (non_differentiable(torch.randint(S, (S, ), dtype=torch.int64)),
1, 1., non_differentiable(torch.randn(S))),),
('binary_cross_entropy', torch.randn(3, 2).sigmoid(), (non_differentiable(torch.rand(3, 2)),
non_differentiable(torch.randn(3, 2))),),
('binary_cross_entropy', torch.randn(3, 2).sigmoid(),
(non_differentiable(torch.rand(3, 2)),
non_differentiable(torch.randn(3, 2)), None, None, 'mean'), 'size_average'),
('ctc_loss', torch.rand(S, S, S).log_softmax(2).detach().requires_grad_(),
(torch.randint(1, S, (S, S), dtype=torch.long), torch.full((S,), S, dtype=torch.long),
torch.randint(1, S, (S,), dtype=torch.long))),
('upsample', torch.randn(S, S, M, M), (None, 2.), 'with_scale'),
('upsample', torch.randn(S, S, M, M), (4,), 'with_size'),
('interpolate', torch.zeros(3, 3).view(1, 1, 3, 3), (2,), 'nearest_4d'),
('interpolate', torch.randn(S, S, M, M), (None, 2.), 'nearest_4d_with_scale'),
('interpolate', torch.randn(S, S, M, M), (4,), 'nearest_4d_with_size'),
('interpolate', torch.zeros(3, 3).view(1, 1, 3, 3), (2,), 'area_4d'),
('interpolate', torch.randn(S, S, M, M), (None, 2.), 'area_4d_with_scale'),
('interpolate', torch.randn(S, S, M, M), (4,), 'area_4d_with_size'),
('interpolate', torch.zeros(3, 3).view(1, 1, 3, 3), (2,), 'bilinear_4d'),
('interpolate', torch.randn(S, S, M, M), (None, 2.), 'bilinear_4d_with_scale'),
('interpolate', torch.randn(S, S, M, M), (4,), 'bilinear_4d_with_size'),
('interpolate', torch.zeros(3, 3).view(1, 1, 3, 3), (2,), 'bicubic_4d'),
('interpolate', torch.randn(S, S, M, M), (None, 2.), 'bicubic_4d_with_scale'),
('interpolate', torch.randn(S, S, M, M), (4,), 'bicubic_4d_with_size'),
('interpolate', torch.zeros(3, 3).view(1, 3, 3), (2,), 'nearest_3d'),
('interpolate', torch.randn(S, M, M), (None, 2.), 'nearest_3d_with_scale'),
('interpolate', torch.randn(S, M, M), (4,), 'nearest_3d_with_size'),
('interpolate', torch.zeros(3, 3).view(1, 3, 3), (2,), 'area_3d'),
('interpolate', torch.randn(S, M, M), (None, 2.), 'area_3d_with_scale'),
('interpolate', torch.randn(S, M, M), (4,), 'area_3d_with_size'),
('interpolate', torch.zeros(3, 3).view(1, 3, 3), (2,), 'linear_3d'),
('interpolate', torch.randn(S, M, M), (None, 2.), 'linear_3d_with_scale'),
('interpolate', torch.randn(S, M, M), (4,), 'linear_3d_with_size'),
('interpolate', torch.randn(S, M, M, M, M), (None, 2.), 'nearest_5d_with_scale'),
('interpolate', torch.randn(S, M, M, M, M), (4,), 'nearest_5d_with_size'),
('interpolate', torch.zeros(3, 3, 3).view(1, 1, 3, 3, 3), (2,), 'area_5d'),
('interpolate', torch.randn(S, M, M, M, M), (None, 2.), 'area_5d_with_scale'),
('interpolate', torch.randn(S, M, M, M, M), (4,), 'area_5d_with_size'),
('interpolate', torch.zeros(3, 3, 3).view(1, 1, 3, 3, 3), (2,), 'trilinear_5d'),
('interpolate', torch.randn(S, M, M, M, M), (None, 2.), 'trilinear_5d_with_scale'),
('interpolate', torch.randn(S, M, M, M, M), (4,), 'trilinear_5d_with_size'),
('interpolate', torch.zeros(3, 3).view(1, 1, 3, 3), (2, None, 'nearest', None, False),
'nearest_4d_not_recompute_scale_factor'),
('interpolate', torch.randn(S, S, M, M), (4, None, 'nearest', None, False),
'nearest_4d_with_size_not_recompute_scale_factor'),
('interpolate', torch.randn(S, S, M, M), (None, 2., 'bilinear', None, False),
'bilinear_4d_with_scale_not_recompute_scale_factor'),
('interpolate', torch.randn(S, S, M, M), (4, None, 'bilinear', None, False),
'bilinear_4d_with_size_not_recompute_scale_factor'),
('interpolate', torch.randn(S, S, M, M), (None, 2., 'bicubic', None, False),
'bicubic_4d_with_scale_not_recompute_scale_factor'),
('interpolate', torch.randn(S, S, M, M), (4, None, 'bicubic', None, False),
'bicubic_4d_with_size_not_recompute_scale_factor'),
('interpolate', torch.randn(S, M, M), (None, 2., 'nearest', None, False),
'nearest_3d_with_scale_not_recompute_scale_factor'),
('interpolate', torch.randn(S, M, M), (4, None, 'nearest', None, False),
'nearest_3d_with_size_not_recompute_scale_factor'),
('interpolate', torch.randn(S, M, M), (None, 2., 'linear', None, False),
'linear_3d_with_scale_not_recompute_scale_factor'),
('interpolate', torch.randn(S, M, M), (4, None, 'linear', None, False),
'linear_3d_with_size_not_recompute_scale_factor'),
('interpolate', torch.randn(S, M, M, M, M), (None, 2., 'nearest', None, False),
'nearest_5d_with_scale_not_recompute_scale_factor'),
('interpolate', torch.randn(S, M, M, M, M), (4, None, 'nearest', None, False),
'nearest_5d_with_size_not_recompute_scale_factor'),
('interpolate', torch.randn(S, M, M, M, M), (None, 2., 'trilinear', None, False),
'trilinear_5d_with_scale_not_recompute_scale_factor'),
('interpolate', torch.randn(S, M, M, M, M), (4, None, 'trilinear', None, False),
'trilinear_5d_with_size_not_recompute_scale_factor'),
]
script_template = '''
def the_method({}):
return {}
'''
def value_to_literal(value):
if isinstance(value, str):
# Quotes string and escapes special characters
return ascii(value)
if isinstance(value, torch.Tensor):
return 'torch.' + str(value)
else:
return str(value)
def get_call(method_name, func_type, args, kwargs):
kwargs_str = ', '.join([k + '=' + value_to_literal(v) for k, v in kwargs.items()])
self_arg = args[0]
if func_type == 'method':
args = args[1:]
argument_str = ', '.join(args)
argument_str += ', ' if len(args) and len(kwargs) else ''
argument_str += kwargs_str
if func_type == 'functional' or func_type == 'function':
call = f'torch.{method_name}({argument_str})'
elif func_type == 'method':
call = f'{self_arg}.{method_name}({argument_str})'
elif func_type == 'nn_functional':
call = f'torch.nn.functional.{method_name}({argument_str})'
else:
raise TypeError('Unsupported function type')
return call
def get_constant(x):
if x == inf:
return 'math.inf'
if x == -inf:
return '-math.inf'
return x
def get_script_args(args):
formals: List[str] = []
tensors: List[Union[torch.Tensor, List[torch.Tensor]]] = []
actuals: List[str] = []
for arg in args:
if isinstance(arg, torch.Tensor):
name = f'i{len(formals)}'
formals.append(name)
actuals.append(name)
tensors.append(arg)
elif is_iterable_of_tensors(arg):
name = f'i{len(formals)}'
formals.append(name + ': List[torch.Tensor]')
actuals.append(name)
tensors.append(list(arg))
elif isinstance(arg, str):
actuals.append(f"'{arg}'")
else:
actuals.append(str(get_constant(arg)))
return (formals, tensors, actuals)
# create a script function from (name, func_type, output_process_fn),
# and returns the compiled function and example inputs
def gen_script_fn_and_args(method_name, func_type, *args, **kwargs):
formals, tensors, actuals = get_script_args(args)
call = get_call(method_name, func_type, actuals, kwargs)
script = script_template.format(', '.join(formals), call)
CU = torch.jit.CompilationUnit(script)
return CU.the_method, tensors
# create a script function from (name, func_type),
# returns a function takes in (args, kwargs) and runs the compiled function
def create_script_fn(self, method_name, func_type):
# function returns tuple containing original output and
# filtered output to be used in checking gradients
def script_fn(*args, **kwargs):
fn, tensors = gen_script_fn_and_args(method_name, func_type, *args, **kwargs)
self.assertExportImport(fn.graph, tensors)
output = fn(*tensors)
# skip type annotate function attributes for now, see: https://github.com/python/mypy/issues/2087
script_fn.last_graph = fn.graph_for(*tensors) # type: ignore[attr-defined]
return output
return script_fn
class SplitInputs:
all_tensors: List[Any]
tensor_args: List[Any]
nontensor_args: List[Any]
arg_types: List[str]
tensor_kwargs: Dict[str, Any]
kwarg_order: List[str]
nontensor_kwargs: Dict[str, Any]
kwarg_types: Dict[str, Any]
@staticmethod
def _is_tensor_input(arg):
return isinstance(arg, torch.Tensor) or is_iterable_of_tensors(arg)
def __init__(self, args, kwargs):
self.arg_types = ['t' if self._is_tensor_input(arg) else 's' for arg in args]
self.kwarg_types = {k: 't' if self._is_tensor_input(v) else 's' for k, v in kwargs.items()}
self.tensor_args = [arg for arg in args if self._is_tensor_input(arg)]
self.nontensor_args = [arg for arg in args if not self._is_tensor_input(arg)]
self.tensor_kwargs = {k: v for k, v in kwargs.items() if self._is_tensor_input(v)}
self.nontensor_kwargs = {k: v for k, v in kwargs.items() if not self._is_tensor_input(v)}
self.all_tensors = [*self.tensor_args, *[v for k, v in self.tensor_kwargs.items()]]
self.kwarg_order = [k for k, v in kwargs.items()]
def nontensors_match(self, other: 'SplitInputs'):
if self.arg_types != other.arg_types:
return False
if self.kwarg_types != other.kwarg_types:
return False
if self.kwarg_order != other.kwarg_order:
return False
if self.nontensor_args != other.nontensor_args:
return False
if self.nontensor_kwargs != other.nontensor_kwargs:
return False
return True
# make a new function where all non-tensor arguments in 'args' have been partially
# applied, and all tensor arguments remain.
# used to trace functions when some arguments are not tensors
def partial_apply_nontensors(fn, args, kwargs):
inputs = SplitInputs(args, kwargs)
def new_fn(*tensors_):
tensors = iter(tensors_)
full_args = [args[i] if s == 's' else next(tensors) for i, s in enumerate(inputs.arg_types)]
full_kwargs = {k: kwargs[k] if s == 's' else next(tensors) for k, s in inputs.kwarg_types.items()}
return fn(*full_args, **full_kwargs)
return new_fn, inputs
# create a trace function from input fn
def create_traced_fn(self, fn, cache_traced_fn=False):
def traced_fn(*inputs, **kwargs):
# `check_trace` is set to False because check_trace is run with @no_grad
# Also, `check_against_reference` already does all the checks
# against python function
fn_tensors, split_inputs = partial_apply_nontensors(fn, inputs, kwargs)
if not cache_traced_fn or not hasattr(traced_fn, 'traced'):
traced = torch.jit.trace(fn_tensors, split_inputs.all_tensors, check_trace=False)
self.assertExportImport(traced.graph, split_inputs.all_tensors)
output = traced(*split_inputs.all_tensors)
if cache_traced_fn:
traced_fn.traced = traced
traced_fn.split_inputs = split_inputs
else:
# Guard to check that nontensor inputs are the same as during tracing
self.assertTrue(traced_fn.split_inputs.nontensors_match(split_inputs))
output = traced_fn.traced(*split_inputs.all_tensors)
traced = traced_fn.traced
# skip type annotate function attributes for now, see: https://github.com/python/mypy/issues/2087
traced_fn.last_graph = traced.graph_for(*split_inputs.all_tensors) # type: ignore[attr-defined]
traced_fn.graph = traced.graph # type: ignore[attr-defined]
return output
return traced_fn
# known to be failing in script
EXCLUDE_SCRIPT = {
'test_norm_fro_default',
'test_norm_fro_cpu',
'test_norm_nuc',
'test_norm_fro',
'test_norm_nuc_batched',
# aten op has additional cudnn argument
'test_nn_unfold',
# flaky test - TODO fix
'test_nn_ctc_loss',
# unknown builtin op
'test_nn_fold',
# jit doesn't support sparse tensors.
'test_to_sparse',
'test_to_sparse_dim',
}
# generates a script function and set of example inputs
# from a specified test in the format of nn_functional_tests
def get_nn_functional_compiled_fn_and_inputs(name, self_size, args, variant_name='', *extra_args):
test_name = 'test_nn_' + name
if variant_name != '':
test_name = test_name + '_' + variant_name
no_grad = variant_name == 'inplace'
self_variable = create_input((self_size,))[0][0]
kwargs = None
# need to record this because methods can change the size (e.g. unsqueeze)
args_variable, kwargs_variable = create_input(args)
self_tensor = deepcopy(self_variable.data)
args_tensor = deepcopy(unpack_variables(args_variable))
f_args_variable = (self_variable,) + args_variable
f_args_tensor = (self_tensor,) + args_tensor
with torch._jit_internal._disable_emit_hooks():
script_fn, inputs = gen_script_fn_and_args(name, "nn_functional", *f_args_variable)
return script_fn, inputs
# additional modules test
# TODO: delete this list once we make all nn_tests work
additional_module_tests = [
{
'module_name': 'Bilinear',
'constructor_args': (S, S, M),
'input_size': (S, S),
'extra_args': ((S, S),)
},
{
'module_name': 'RNNCell',
'constructor_args': (S, S),
'input_size': (S, S),
},
{
'module_name': 'LSTMCell',
'constructor_args': (S, S),
'input_size': (S, S),
},
{
'module_name': 'GRUCell',
'constructor_args': (S, S),
'input_size': (S, S),
},
{
'module_name': 'MultiheadAttention',
'constructor_args': (128, 8),
'input_size': (10, 8, 128),
'extra_args': (torch.randn(10, 8, 128), torch.randn(10, 8, 128)),
'slowTest': True
},
{
'module_name': 'Transformer',
'constructor_args': (1, 1, 1, 1, 2),
'input_size': (3, 1, 1),
'extra_args': (torch.randn(1, 1, 1),),
'slowTest': True
}
]
EXCLUDE_SCRIPT_MODULES = {
'test_nn_AdaptiveAvgPool2d_tuple_none',
'test_nn_AdaptiveAvgPool3d_tuple_none',
'test_nn_AdaptiveMaxPool2d_tuple_none',
'test_nn_AdaptiveMaxPool3d_tuple_none',
# Doesn't use future division, so this is not supported
'test_nn_CrossMapLRN2d',
# Derivative for aten::_scaled_dot_product_flash_attention_backward is not implemented
'test_nn_TransformerDecoderLayer_gelu_activation',
'test_nn_TransformerDecoderLayer_relu_activation',
'test_nn_TransformerEncoderLayer_gelu_activation',
'test_nn_TransformerEncoderLayer_relu_activation',
'test_nn_Transformer_multilayer_coder',
}
script_method_template = '''
def forward({}):
return {}
'''
def create_script_module(self, nn_module, constructor_args, *args, **kwargs):
def script_module(*args, **kwargs):
formals, tensors, actuals = get_script_args(args)
method_args = ', '.join(['self'] + actuals)
call_args_str = ', '.join(actuals)
call = f"self.submodule({call_args_str})"
script = script_method_template.format(method_args, call)
submodule_constants = []
if kwargs.get('is_constant'):
submodule_constants = ['submodule']
# Create module to use the script method
class TheModule(torch.jit.ScriptModule):
__constants__ = submodule_constants
def __init__(self):
super().__init__()
self.submodule = nn_module(*constructor_args)
def make_module(script):
module = TheModule()
# check __repr__
str(module)
module.define(script)
return module
module = make_module(script)
if self:
self.assertExportImportModule(module, tensors)
module(*args)
# skip type annotate function attributes for now, see: https://github.com/python/mypy/issues/2087
create_script_module.last_graph = module.graph # type: ignore[attr-defined]
return module
return script_module
def check_alias_annotation(method_name, args, kwargs, *, aten_name, func_type='method'):
formals, tensors, actuals = get_script_args(args)
call = get_call(method_name, func_type, actuals, kwargs)
script = script_template.format(', '.join(formals), call)
CU = torch.jit.CompilationUnit(script)
# to clean up IR
torch._C._jit_pass_inline(CU.the_method.graph)
torch._C._jit_pass_constant_propagation(CU.the_method.graph)
torch._C._jit_check_alias_annotation(CU.the_method.graph, tuple(tensors), aten_name)
def get_nn_module_name_from_kwargs(**kwargs):
if 'module_name' in kwargs:
return kwargs['module_name']
elif 'fullname' in kwargs:
return kwargs['fullname']
elif 'constructor' in kwargs:
return kwargs['constructor'].__name__
def get_nn_mod_test_name(**kwargs):
if 'fullname' in kwargs:
test_name = kwargs['fullname']
else:
test_name = get_nn_module_name_from_kwargs(**kwargs)
if 'desc' in kwargs:
test_name = f"{test_name}_{kwargs['desc']}"
return f'test_nn_{test_name}'
def get_nn_module_class_from_kwargs(**kwargs):
name = get_nn_module_name_from_kwargs(**kwargs)
index = name.find("_")
if index == -1:
return name
else:
return name[0:name.find("_")]
def try_get_nn_module_compiled_mod_and_inputs(*args, **kwargs):
name = get_nn_module_name_from_kwargs(**kwargs)
if 'desc' in kwargs and 'eval' in kwargs['desc']:
# eval() is not supported, so skip these tests
return
test_name = name
if 'desc' in kwargs:
test_name = f"{test_name}_{kwargs['desc']}"
test_name = get_nn_mod_test_name(**kwargs)
if test_name in EXCLUDE_SCRIPT_MODULES:
return
if 'constructor' in kwargs:
nn_module = kwargs['constructor']
else:
nn_module = getattr(torch.nn, name)
if "FunctionalModule" in str(nn_module):
return
if 'constructor_args_fn' in kwargs:
constructor_args = kwargs['constructor_args_fn']()
else:
constructor_args = kwargs.get('constructor_args', ())
# Set up inputs from tuple of sizes or constructor fn
input_dtype = torch.double
if 'input_fn' in kwargs:
input = kwargs['input_fn']()
if isinstance(input, torch.Tensor):
input = (input,)
if all(tensor.is_complex() for tensor in input):
input_dtype = torch.cdouble
else:
input = (kwargs['input_size'],)
# Extra parameters to forward()
if 'extra_args' in kwargs:
input = input + kwargs['extra_args']
if 'target_size' in kwargs:
input = input + (kwargs['target_size'],)
elif 'target_fn' in kwargs:
if torch.is_tensor(input):
input = (input,)
input = input + (kwargs['target_fn'](),)
args_variable, kwargs_variable = create_input(input, dtype=input_dtype)
f_args_variable = deepcopy(unpack_variables(args_variable))
out_var = deepcopy(f_args_variable)
args, mod = f_args_variable, create_script_module(None, nn_module, constructor_args, *f_args_variable)(*f_args_variable)
return mod, out_var
def get_all_nn_module_tests():
return module_tests + new_module_tests + additional_module_tests