Repository URL to install this package:
|
Version:
0.19.1 ▾
|
import math
from typing import List, Optional
import torch
from torch import nn, Tensor
from .image_list import ImageList
class AnchorGenerator(nn.Module):
"""
Module that generates anchors for a set of feature maps and
image sizes.
The module support computing anchors at multiple sizes and aspect ratios
per feature map. This module assumes aspect ratio = height / width for
each anchor.
sizes and aspect_ratios should have the same number of elements, and it should
correspond to the number of feature maps.
sizes[i] and aspect_ratios[i] can have an arbitrary number of elements,
and AnchorGenerator will output a set of sizes[i] * aspect_ratios[i] anchors
per spatial location for feature map i.
Args:
sizes (Tuple[Tuple[int]]):
aspect_ratios (Tuple[Tuple[float]]):
"""
__annotations__ = {
"cell_anchors": List[torch.Tensor],
}
def __init__(
self,
sizes=((128, 256, 512),),
aspect_ratios=((0.5, 1.0, 2.0),),
):
super().__init__()
if not isinstance(sizes[0], (list, tuple)):
# TODO change this
sizes = tuple((s,) for s in sizes)
if not isinstance(aspect_ratios[0], (list, tuple)):
aspect_ratios = (aspect_ratios,) * len(sizes)
self.sizes = sizes
self.aspect_ratios = aspect_ratios
self.cell_anchors = [
self.generate_anchors(size, aspect_ratio) for size, aspect_ratio in zip(sizes, aspect_ratios)
]
# TODO: https://github.com/pytorch/pytorch/issues/26792
# For every (aspect_ratios, scales) combination, output a zero-centered anchor with those values.
# (scales, aspect_ratios) are usually an element of zip(self.scales, self.aspect_ratios)
# This method assumes aspect ratio = height / width for an anchor.
def generate_anchors(
self,
scales: List[int],
aspect_ratios: List[float],
dtype: torch.dtype = torch.float32,
device: torch.device = torch.device("cpu"),
) -> Tensor:
scales = torch.as_tensor(scales, dtype=dtype, device=device)
aspect_ratios = torch.as_tensor(aspect_ratios, dtype=dtype, device=device)
h_ratios = torch.sqrt(aspect_ratios)
w_ratios = 1 / h_ratios
ws = (w_ratios[:, None] * scales[None, :]).view(-1)
hs = (h_ratios[:, None] * scales[None, :]).view(-1)
base_anchors = torch.stack([-ws, -hs, ws, hs], dim=1) / 2
return base_anchors.round()
def set_cell_anchors(self, dtype: torch.dtype, device: torch.device):
self.cell_anchors = [cell_anchor.to(dtype=dtype, device=device) for cell_anchor in self.cell_anchors]
def num_anchors_per_location(self) -> List[int]:
return [len(s) * len(a) for s, a in zip(self.sizes, self.aspect_ratios)]
# For every combination of (a, (g, s), i) in (self.cell_anchors, zip(grid_sizes, strides), 0:2),
# output g[i] anchors that are s[i] distance apart in direction i, with the same dimensions as a.
def grid_anchors(self, grid_sizes: List[List[int]], strides: List[List[Tensor]]) -> List[Tensor]:
anchors = []
cell_anchors = self.cell_anchors
torch._assert(cell_anchors is not None, "cell_anchors should not be None")
torch._assert(
len(grid_sizes) == len(strides) == len(cell_anchors),
"Anchors should be Tuple[Tuple[int]] because each feature "
"map could potentially have different sizes and aspect ratios. "
"There needs to be a match between the number of "
"feature maps passed and the number of sizes / aspect ratios specified.",
)
for size, stride, base_anchors in zip(grid_sizes, strides, cell_anchors):
grid_height, grid_width = size
stride_height, stride_width = stride
device = base_anchors.device
# For output anchor, compute [x_center, y_center, x_center, y_center]
shifts_x = torch.arange(0, grid_width, dtype=torch.int32, device=device) * stride_width
shifts_y = torch.arange(0, grid_height, dtype=torch.int32, device=device) * stride_height
shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x, indexing="ij")
shift_x = shift_x.reshape(-1)
shift_y = shift_y.reshape(-1)
shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1)
# For every (base anchor, output anchor) pair,
# offset each zero-centered base anchor by the center of the output anchor.
anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4))
return anchors
def forward(self, image_list: ImageList, feature_maps: List[Tensor]) -> List[Tensor]:
grid_sizes = [feature_map.shape[-2:] for feature_map in feature_maps]
image_size = image_list.tensors.shape[-2:]
dtype, device = feature_maps[0].dtype, feature_maps[0].device
strides = [
[
torch.empty((), dtype=torch.int64, device=device).fill_(image_size[0] // g[0]),
torch.empty((), dtype=torch.int64, device=device).fill_(image_size[1] // g[1]),
]
for g in grid_sizes
]
self.set_cell_anchors(dtype, device)
anchors_over_all_feature_maps = self.grid_anchors(grid_sizes, strides)
anchors: List[List[torch.Tensor]] = []
for _ in range(len(image_list.image_sizes)):
anchors_in_image = [anchors_per_feature_map for anchors_per_feature_map in anchors_over_all_feature_maps]
anchors.append(anchors_in_image)
anchors = [torch.cat(anchors_per_image) for anchors_per_image in anchors]
return anchors
class DefaultBoxGenerator(nn.Module):
"""
This module generates the default boxes of SSD for a set of feature maps and image sizes.
Args:
aspect_ratios (List[List[int]]): A list with all the aspect ratios used in each feature map.
min_ratio (float): The minimum scale :math:`\text{s}_{\text{min}}` of the default boxes used in the estimation
of the scales of each feature map. It is used only if the ``scales`` parameter is not provided.
max_ratio (float): The maximum scale :math:`\text{s}_{\text{max}}` of the default boxes used in the estimation
of the scales of each feature map. It is used only if the ``scales`` parameter is not provided.
scales (List[float]], optional): The scales of the default boxes. If not provided it will be estimated using
the ``min_ratio`` and ``max_ratio`` parameters.
steps (List[int]], optional): It's a hyper-parameter that affects the tiling of default boxes. If not provided
it will be estimated from the data.
clip (bool): Whether the standardized values of default boxes should be clipped between 0 and 1. The clipping
is applied while the boxes are encoded in format ``(cx, cy, w, h)``.
"""
def __init__(
self,
aspect_ratios: List[List[int]],
min_ratio: float = 0.15,
max_ratio: float = 0.9,
scales: Optional[List[float]] = None,
steps: Optional[List[int]] = None,
clip: bool = True,
):
super().__init__()
if steps is not None and len(aspect_ratios) != len(steps):
raise ValueError("aspect_ratios and steps should have the same length")
self.aspect_ratios = aspect_ratios
self.steps = steps
self.clip = clip
num_outputs = len(aspect_ratios)
# Estimation of default boxes scales
if scales is None:
if num_outputs > 1:
range_ratio = max_ratio - min_ratio
self.scales = [min_ratio + range_ratio * k / (num_outputs - 1.0) for k in range(num_outputs)]
self.scales.append(1.0)
else:
self.scales = [min_ratio, max_ratio]
else:
self.scales = scales
self._wh_pairs = self._generate_wh_pairs(num_outputs)
def _generate_wh_pairs(
self, num_outputs: int, dtype: torch.dtype = torch.float32, device: torch.device = torch.device("cpu")
) -> List[Tensor]:
_wh_pairs: List[Tensor] = []
for k in range(num_outputs):
# Adding the 2 default width-height pairs for aspect ratio 1 and scale s'k
s_k = self.scales[k]
s_prime_k = math.sqrt(self.scales[k] * self.scales[k + 1])
wh_pairs = [[s_k, s_k], [s_prime_k, s_prime_k]]
# Adding 2 pairs for each aspect ratio of the feature map k
for ar in self.aspect_ratios[k]:
sq_ar = math.sqrt(ar)
w = self.scales[k] * sq_ar
h = self.scales[k] / sq_ar
wh_pairs.extend([[w, h], [h, w]])
_wh_pairs.append(torch.as_tensor(wh_pairs, dtype=dtype, device=device))
return _wh_pairs
def num_anchors_per_location(self) -> List[int]:
# Estimate num of anchors based on aspect ratios: 2 default boxes + 2 * ratios of feaure map.
return [2 + 2 * len(r) for r in self.aspect_ratios]
# Default Boxes calculation based on page 6 of SSD paper
def _grid_default_boxes(
self, grid_sizes: List[List[int]], image_size: List[int], dtype: torch.dtype = torch.float32
) -> Tensor:
default_boxes = []
for k, f_k in enumerate(grid_sizes):
# Now add the default boxes for each width-height pair
if self.steps is not None:
x_f_k = image_size[1] / self.steps[k]
y_f_k = image_size[0] / self.steps[k]
else:
y_f_k, x_f_k = f_k
shifts_x = ((torch.arange(0, f_k[1]) + 0.5) / x_f_k).to(dtype=dtype)
shifts_y = ((torch.arange(0, f_k[0]) + 0.5) / y_f_k).to(dtype=dtype)
shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x, indexing="ij")
shift_x = shift_x.reshape(-1)
shift_y = shift_y.reshape(-1)
shifts = torch.stack((shift_x, shift_y) * len(self._wh_pairs[k]), dim=-1).reshape(-1, 2)
# Clipping the default boxes while the boxes are encoded in format (cx, cy, w, h)
_wh_pair = self._wh_pairs[k].clamp(min=0, max=1) if self.clip else self._wh_pairs[k]
wh_pairs = _wh_pair.repeat((f_k[0] * f_k[1]), 1)
default_box = torch.cat((shifts, wh_pairs), dim=1)
default_boxes.append(default_box)
return torch.cat(default_boxes, dim=0)
def __repr__(self) -> str:
s = (
f"{self.__class__.__name__}("
f"aspect_ratios={self.aspect_ratios}"
f", clip={self.clip}"
f", scales={self.scales}"
f", steps={self.steps}"
")"
)
return s
def forward(self, image_list: ImageList, feature_maps: List[Tensor]) -> List[Tensor]:
grid_sizes = [feature_map.shape[-2:] for feature_map in feature_maps]
image_size = image_list.tensors.shape[-2:]
dtype, device = feature_maps[0].dtype, feature_maps[0].device
default_boxes = self._grid_default_boxes(grid_sizes, image_size, dtype=dtype)
default_boxes = default_boxes.to(device)
dboxes = []
x_y_size = torch.tensor([image_size[1], image_size[0]], device=default_boxes.device)
for _ in image_list.image_sizes:
dboxes_in_image = default_boxes
dboxes_in_image = torch.cat(
[
(dboxes_in_image[:, :2] - 0.5 * dboxes_in_image[:, 2:]) * x_y_size,
(dboxes_in_image[:, :2] + 0.5 * dboxes_in_image[:, 2:]) * x_y_size,
],
-1,
)
dboxes.append(dboxes_in_image)
return dboxes