Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

aaronreidsmith / matplotlib   python

Repository URL to install this package:

Version: 3.1.2 

/ axes / _axes.py

import collections.abc
import functools
import itertools
import logging
import math
import operator
from numbers import Number

import numpy as np
from numpy import ma

from matplotlib import _preprocess_data, rcParams
import matplotlib.cbook as cbook
import matplotlib.collections as mcoll
import matplotlib.colors as mcolors
import matplotlib.contour as mcontour
import matplotlib.category as _  # <-registers a category unit converter
import matplotlib.dates as _  # <-registers a date unit converter
import matplotlib.docstring as docstring
import matplotlib.image as mimage
import matplotlib.legend as mlegend
import matplotlib.lines as mlines
import matplotlib.markers as mmarkers
import matplotlib.mlab as mlab
import matplotlib.path as mpath
import matplotlib.patches as mpatches
import matplotlib.quiver as mquiver
import matplotlib.stackplot as mstack
import matplotlib.streamplot as mstream
import matplotlib.table as mtable
import matplotlib.text as mtext
import matplotlib.ticker as mticker
import matplotlib.transforms as mtransforms
import matplotlib.tri as mtri
from matplotlib.container import BarContainer, ErrorbarContainer, StemContainer
from matplotlib.axes._base import _AxesBase, _process_plot_format
from matplotlib.axes._secondary_axes import SecondaryAxis

try:
    from numpy.lib.histograms import histogram_bin_edges
except ImportError:
    # this function is new in np 1.15
    def histogram_bin_edges(arr, bins, range=None, weights=None):
        # this in True for 1D arrays, and False for None and str
        if np.ndim(bins) == 1:
            return bins

        if isinstance(bins, str):
            # rather than backporting the internals, just do the full
            # computation.  If this is too slow for users, they can
            # update numpy, or pick a manual number of bins
            return np.histogram(arr, bins, range, weights)[1]
        else:
            if bins is None:
                # hard-code numpy's default
                bins = 10
            if range is None:
                range = np.min(arr), np.max(arr)

            return np.linspace(*range, bins + 1)


_log = logging.getLogger(__name__)


def _make_inset_locator(bounds, trans, parent):
    """
    Helper function to locate inset axes, used in
    `.Axes.inset_axes`.

    A locator gets used in `Axes.set_aspect` to override the default
    locations...  It is a function that takes an axes object and
    a renderer and tells `set_aspect` where it is to be placed.

    Here *rect* is a rectangle [l, b, w, h] that specifies the
    location for the axes in the transform given by *trans* on the
    *parent*.
    """
    _bounds = mtransforms.Bbox.from_bounds(*bounds)
    _trans = trans
    _parent = parent

    def inset_locator(ax, renderer):
        bbox = _bounds
        bb = mtransforms.TransformedBbox(bbox, _trans)
        tr = _parent.figure.transFigure.inverted()
        bb = mtransforms.TransformedBbox(bb, tr)
        return bb

    return inset_locator


# The axes module contains all the wrappers to plotting functions.
# All the other methods should go in the _AxesBase class.


class Axes(_AxesBase):
    """
    The :class:`Axes` contains most of the figure elements:
    :class:`~matplotlib.axis.Axis`, :class:`~matplotlib.axis.Tick`,
    :class:`~matplotlib.lines.Line2D`, :class:`~matplotlib.text.Text`,
    :class:`~matplotlib.patches.Polygon`, etc., and sets the
    coordinate system.

    The :class:`Axes` instance supports callbacks through a callbacks
    attribute which is a :class:`~matplotlib.cbook.CallbackRegistry`
    instance.  The events you can connect to are 'xlim_changed' and
    'ylim_changed' and the callback will be called with func(*ax*)
    where *ax* is the :class:`Axes` instance.

    Attributes
    ----------
    dataLim : `.BBox`
        The bounding box enclosing all data displayed in the Axes.
    viewLim : `.BBox`
        The view limits in data coordinates.

    """
    ### Labelling, legend and texts

    @cbook.deprecated("3.1")
    @property
    def aname(self):
        return 'Axes'

    def get_title(self, loc="center"):
        """
        Get an axes title.

        Get one of the three available axes titles. The available titles
        are positioned above the axes in the center, flush with the left
        edge, and flush with the right edge.

        Parameters
        ----------
        loc : {'center', 'left', 'right'}, str, optional
            Which title to get, defaults to 'center'.

        Returns
        -------
        title : str
            The title text string.

        """
        try:
            title = {'left': self._left_title,
                     'center': self.title,
                     'right': self._right_title}[loc.lower()]
        except KeyError:
            raise ValueError("'%s' is not a valid location" % loc)
        return title.get_text()

    def set_title(self, label, fontdict=None, loc="center", pad=None,
                    **kwargs):
        """
        Set a title for the axes.

        Set one of the three available axes titles. The available titles
        are positioned above the axes in the center, flush with the left
        edge, and flush with the right edge.

        Parameters
        ----------
        label : str
            Text to use for the title

        fontdict : dict
            A dictionary controlling the appearance of the title text,
            the default `fontdict` is::

               {'fontsize': rcParams['axes.titlesize'],
                'fontweight' : rcParams['axes.titleweight'],
                'verticalalignment': 'baseline',
                'horizontalalignment': loc}

        loc : {'center', 'left', 'right'}, str, optional
            Which title to set, defaults to 'center'

        pad : float
            The offset of the title from the top of the axes, in points.
            Default is ``None`` to use rcParams['axes.titlepad'].

        Returns
        -------
        text : :class:`~matplotlib.text.Text`
            The matplotlib text instance representing the title

        Other Parameters
        ----------------
        **kwargs : `~matplotlib.text.Text` properties
            Other keyword arguments are text properties, see
            :class:`~matplotlib.text.Text` for a list of valid text
            properties.
        """
        try:
            title = {'left': self._left_title,
                     'center': self.title,
                     'right': self._right_title}[loc.lower()]
        except KeyError:
            raise ValueError("'%s' is not a valid location" % loc)
        default = {
            'fontsize': rcParams['axes.titlesize'],
            'fontweight': rcParams['axes.titleweight'],
            'verticalalignment': 'baseline',
            'horizontalalignment': loc.lower()}
        if pad is None:
            pad = rcParams['axes.titlepad']
        self._set_title_offset_trans(float(pad))
        title.set_text(label)
        title.update(default)
        if fontdict is not None:
            title.update(fontdict)
        title.update(kwargs)
        return title

    def get_xlabel(self):
        """
        Get the xlabel text string.
        """
        label = self.xaxis.get_label()
        return label.get_text()

    def set_xlabel(self, xlabel, fontdict=None, labelpad=None, **kwargs):
        """
        Set the label for the x-axis.

        Parameters
        ----------
        xlabel : str
            The label text.

        labelpad : scalar, optional, default: None
            Spacing in points from the axes bounding box including ticks
            and tick labels.

        Other Parameters
        ----------------
        **kwargs : `.Text` properties
            `.Text` properties control the appearance of the label.

        See also
        --------
        text : for information on how override and the optional args work
        """
        if labelpad is not None:
            self.xaxis.labelpad = labelpad
        return self.xaxis.set_label_text(xlabel, fontdict, **kwargs)

    def get_ylabel(self):
        """
        Get the ylabel text string.
        """
        label = self.yaxis.get_label()
        return label.get_text()

    def set_ylabel(self, ylabel, fontdict=None, labelpad=None, **kwargs):
        """
        Set the label for the y-axis.

        Parameters
        ----------
        ylabel : str
            The label text.

        labelpad : scalar, optional, default: None
            Spacing in points from the axes bounding box including ticks
            and tick labels.

        Other Parameters
        ----------------
        **kwargs : `.Text` properties
            `.Text` properties control the appearance of the label.

        See also
        --------
        text : for information on how override and the optional args work

        """
        if labelpad is not None:
            self.yaxis.labelpad = labelpad
        return self.yaxis.set_label_text(ylabel, fontdict, **kwargs)

    def get_legend_handles_labels(self, legend_handler_map=None):
        """
        Return handles and labels for legend

        ``ax.legend()`` is equivalent to ::

          h, l = ax.get_legend_handles_labels()
          ax.legend(h, l)

        """

        # pass through to legend.
        handles, labels = mlegend._get_legend_handles_labels([self],
                legend_handler_map)
        return handles, labels

    @docstring.dedent_interpd
    def legend(self, *args, **kwargs):
        """
        Place a legend on the axes.

        Call signatures::

            legend()
            legend(labels)
            legend(handles, labels)

        The call signatures correspond to three different ways how to use
        this method.

        **1. Automatic detection of elements to be shown in the legend**

        The elements to be added to the legend are automatically determined,
        when you do not pass in any extra arguments.

        In this case, the labels are taken from the artist. You can specify
        them either at artist creation or by calling the
        :meth:`~.Artist.set_label` method on the artist::

            line, = ax.plot([1, 2, 3], label='Inline label')
            ax.legend()

        or::

            line, = ax.plot([1, 2, 3])
            line.set_label('Label via method')
            ax.legend()

        Specific lines can be excluded from the automatic legend element
        selection by defining a label starting with an underscore.
        This is default for all artists, so calling `Axes.legend` without
        any arguments and without setting the labels manually will result in
        no legend being drawn.


        **2. Labeling existing plot elements**

        To make a legend for lines which already exist on the axes
        (via plot for instance), simply call this function with an iterable
        of strings, one for each legend item. For example::

            ax.plot([1, 2, 3])
            ax.legend(['A simple line'])

        Note: This way of using is discouraged, because the relation between
        plot elements and labels is only implicit by their order and can
        easily be mixed up.


        **3. Explicitly defining the elements in the legend**

        For full control of which artists have a legend entry, it is possible
        to pass an iterable of legend artists followed by an iterable of
        legend labels respectively::

            legend((line1, line2, line3), ('label1', 'label2', 'label3'))

        Parameters
        ----------

        handles : sequence of `.Artist`, optional
            A list of Artists (lines, patches) to be added to the legend.
            Use this together with *labels*, if you need full control on what
            is shown in the legend and the automatic mechanism described above
            is not sufficient.

            The length of handles and labels should be the same in this
            case. If they are not, they are truncated to the smaller length.

        labels : sequence of strings, optional
            A list of labels to show next to the artists.
            Use this together with *handles*, if you need full control on what
            is shown in the legend and the automatic mechanism described above
            is not sufficient.

        Other Parameters
        ----------------

        %(_legend_kw_doc)s

        Returns
        -------

        :class:`matplotlib.legend.Legend` instance

        Notes
        -----

        Not all kinds of artist are supported by the legend command. See
        :doc:`/tutorials/intermediate/legend_guide` for details.

        Examples
        --------

        .. plot:: gallery/text_labels_and_annotations/legend.py

        """
        handles, labels, extra_args, kwargs = mlegend._parse_legend_args(
                [self],
                *args,
                **kwargs)
        if len(extra_args):
            raise TypeError('legend only accepts two non-keyword arguments')
        self.legend_ = mlegend.Legend(self, handles, labels, **kwargs)
        self.legend_._remove_method = self._remove_legend
        return self.legend_

    def _remove_legend(self, legend):
        self.legend_ = None

    def inset_axes(self, bounds, *, transform=None, zorder=5,
            **kwargs):
        """
        Add a child inset axes to this existing axes.

        Warnings
        --------

        This method is experimental as of 3.0, and the API may change.

        Parameters
        ----------

        bounds : [x0, y0, width, height]
            Lower-left corner of inset axes, and its width and height.

        transform : `.Transform`
            Defaults to `ax.transAxes`, i.e. the units of *rect* are in
            axes-relative coordinates.

        zorder : number
            Defaults to 5 (same as `.Axes.legend`).  Adjust higher or lower
            to change whether it is above or below data plotted on the
            parent axes.

        **kwargs

            Other *kwargs* are passed on to the `axes.Axes` child axes.

        Returns
        -------

        Axes
            The created `.axes.Axes` instance.

        Examples
        --------

        This example makes two inset axes, the first is in axes-relative
        coordinates, and the second in data-coordinates::

            fig, ax = plt.subplots()
            ax.plot(range(10))
            axin1 = ax.inset_axes([0.8, 0.1, 0.15, 0.15])
            axin2 = ax.inset_axes(
                    [5, 7, 2.3, 2.3], transform=ax.transData)

        """
        if transform is None:
            transform = self.transAxes
        label = kwargs.pop('label', 'inset_axes')

        # This puts the rectangle into figure-relative coordinates.
        inset_locator = _make_inset_locator(bounds, transform, self)
        bb = inset_locator(None, None)

        inset_ax = Axes(self.figure, bb.bounds, zorder=zorder,
                label=label, **kwargs)

        # this locator lets the axes move if in data coordinates.
        # it gets called in `ax.apply_aspect() (of all places)
        inset_ax.set_axes_locator(inset_locator)

        self.add_child_axes(inset_ax)

        return inset_ax

    def indicate_inset(self, bounds, inset_ax=None, *, transform=None,
            facecolor='none', edgecolor='0.5', alpha=0.5,
            zorder=4.99, **kwargs):
        """
        Add an inset indicator to the axes.  This is a rectangle on the plot
        at the position indicated by *bounds* that optionally has lines that
        connect the rectangle to an inset axes
        (`.Axes.inset_axes`).

        Warnings
        --------

        This method is experimental as of 3.0, and the API may change.


        Parameters
        ----------

        bounds : [x0, y0, width, height]
            Lower-left corner of rectangle to be marked, and its width
            and height.

        inset_ax : `.Axes`
            An optional inset axes to draw connecting lines to.  Two lines are
            drawn connecting the indicator box to the inset axes on corners
            chosen so as to not overlap with the indicator box.

        transform : `.Transform`
            Transform for the rectangle co-ordinates. Defaults to
            `ax.transAxes`, i.e. the units of *rect* are in axes-relative
            coordinates.

        facecolor : Matplotlib color
            Facecolor of the rectangle (default 'none').

        edgecolor : Matplotlib color
            Color of the rectangle and color of the connecting lines.  Default
            is '0.5'.

        alpha : number
            Transparency of the rectangle and connector lines.  Default is 0.5.

        zorder : number
            Drawing order of the rectangle and connector lines. Default is 4.99
            (just below the default level of inset axes).

        **kwargs
            Other *kwargs* are passed on to the rectangle patch.

        Returns
        -------

        rectangle_patch : `.Patches.Rectangle`
             Rectangle artist.

        connector_lines : 4-tuple of `.Patches.ConnectionPatch`
            One for each of four connector lines.  Two are set with visibility
            to *False*,  but the user can set the visibility to True if the
            automatic choice is not deemed correct.

        """

        # to make the axes connectors work, we need to apply the aspect to
        # the parent axes.
        self.apply_aspect()

        if transform is None:
            transform = self.transData
        label = kwargs.pop('label', 'indicate_inset')

        xy = (bounds[0], bounds[1])
        rectpatch = mpatches.Rectangle(xy, bounds[2], bounds[3],
                facecolor=facecolor, edgecolor=edgecolor, alpha=alpha,
                zorder=zorder,  label=label, transform=transform, **kwargs)
        self.add_patch(rectpatch)

        if inset_ax is not None:
            # want to connect the indicator to the rect....
            connects = []
            xr = [bounds[0], bounds[0]+bounds[2]]
            yr = [bounds[1], bounds[1]+bounds[3]]
            for xc in range(2):
                for yc in range(2):
                    xyA = (xc, yc)
                    xyB = (xr[xc], yr[yc])
                    connects += [mpatches.ConnectionPatch(xyA, xyB,
                            'axes fraction', 'data',
                            axesA=inset_ax, axesB=self, arrowstyle="-",
                            zorder=zorder, edgecolor=edgecolor, alpha=alpha)]
                    self.add_patch(connects[-1])
            # decide which two of the lines to keep visible....
            pos = inset_ax.get_position()
            bboxins = pos.transformed(self.figure.transFigure)
            rectbbox = mtransforms.Bbox.from_bounds(
                        *bounds).transformed(transform)
            x0 = rectbbox.x0 < bboxins.x0
            x1 = rectbbox.x1 < bboxins.x1
            y0 = rectbbox.y0 < bboxins.y0
            y1 = rectbbox.y1 < bboxins.y1
            connects[0].set_visible(x0 ^ y0)
            connects[1].set_visible(x0 == y1)
            connects[2].set_visible(x1 == y0)
            connects[3].set_visible(x1 ^ y1)

        return rectpatch, connects

    def indicate_inset_zoom(self, inset_ax, **kwargs):
        """
        Add an inset indicator rectangle to the axes based on the axis
        limits for an *inset_ax* and draw connectors between *inset_ax*
        and the rectangle.

        Warnings
        --------

        This method is experimental as of 3.0, and the API may change.

        Parameters
        ----------

        inset_ax : `.Axes`
            Inset axes to draw connecting lines to.  Two lines are
            drawn connecting the indicator box to the inset axes on corners
            chosen so as to not overlap with the indicator box.

        **kwargs
            Other *kwargs* are passed on to `.Axes.inset_rectangle`

        Returns
        -------

        rectangle_patch : `.Patches.Rectangle`
             Rectangle artist.

        connector_lines : 4-tuple of `.Patches.ConnectionPatch`
            One for each of four connector lines.  Two are set with visibility
            to *False*,  but the user can set the visibility to True if the
            automatic choice is not deemed correct.

        """

        xlim = inset_ax.get_xlim()
        ylim = inset_ax.get_ylim()
        rect = [xlim[0], ylim[0], xlim[1] - xlim[0], ylim[1] - ylim[0]]
        rectpatch, connects = self.indicate_inset(
                rect, inset_ax, **kwargs)

        return rectpatch, connects

    @docstring.dedent_interpd
    def secondary_xaxis(self, location, *, functions=None, **kwargs):
        """
        Add a second x-axis to this axes.

        For example if we want to have a second scale for the data plotted on
        the xaxis.

        %(_secax_docstring)s

        Examples
        --------

        The main axis shows frequency, and the secondary axis shows period.

        .. plot::

            fig, ax = plt.subplots()
            ax.loglog(range(1, 360, 5), range(1, 360, 5))
            ax.set_xlabel('frequency [Hz]')


            def invert(x):
                return 1 / x

            secax = ax.secondary_xaxis('top', functions=(invert, invert))
            secax.set_xlabel('Period [s]')
            plt.show()


        """
        if (location in ['top', 'bottom'] or isinstance(location, Number)):
            secondary_ax = SecondaryAxis(self, 'x', location, functions,
                                         **kwargs)
            self.add_child_axes(secondary_ax)
            return secondary_ax
        else:
            raise ValueError('secondary_xaxis location must be either '
                             'a float or "top"/"bottom"')

    def secondary_yaxis(self, location, *, functions=None, **kwargs):
        """
        Add a second y-axis to this axes.

        For example if we want to have a second scale for the data plotted on
        the yaxis.

        %(_secax_docstring)s

        Examples
        --------

        Add a secondary axes that converts from radians to degrees

        .. plot::

            fig, ax = plt.subplots()
            ax.plot(range(1, 360, 5), range(1, 360, 5))
            ax.set_ylabel('degrees')
            secax = ax.secondary_yaxis('right', functions=(np.deg2rad,
                                                           np.rad2deg))
            secax.set_ylabel('radians')

        """
        if location in ['left', 'right'] or isinstance(location, Number):
            secondary_ax = SecondaryAxis(self, 'y', location,
                                         functions, **kwargs)
            self.add_child_axes(secondary_ax)
            return secondary_ax
        else:
            raise ValueError('secondary_yaxis location must be either '
                             'a float or "left"/"right"')

    @cbook._delete_parameter("3.1", "withdash")
    def text(self, x, y, s, fontdict=None, withdash=False, **kwargs):
        """
        Add text to the axes.

        Add the text *s* to the axes at location *x*, *y* in data coordinates.

        Parameters
        ----------
        x, y : scalars
            The position to place the text. By default, this is in data
            coordinates. The coordinate system can be changed using the
            *transform* parameter.

        s : str
            The text.

        fontdict : dictionary, optional, default: None
            A dictionary to override the default text properties. If fontdict
            is None, the defaults are determined by your rc parameters.

        withdash : boolean, optional, default: False
            Creates a `~matplotlib.text.TextWithDash` instance instead of a
            `~matplotlib.text.Text` instance.

        Returns
        -------
        text : `.Text`
            The created `.Text` instance.

        Other Parameters
        ----------------
        **kwargs : `~matplotlib.text.Text` properties.
            Other miscellaneous text parameters.

        Examples
        --------
        Individual keyword arguments can be used to override any given
        parameter::

            >>> text(x, y, s, fontsize=12)

        The default transform specifies that text is in data coords,
        alternatively, you can specify text in axis coords (0,0 is
        lower-left and 1,1 is upper-right).  The example below places
        text in the center of the axes::

            >>> text(0.5, 0.5, 'matplotlib', horizontalalignment='center',
            ...      verticalalignment='center', transform=ax.transAxes)

        You can put a rectangular box around the text instance (e.g., to
        set a background color) by using the keyword `bbox`.  `bbox` is
        a dictionary of `~matplotlib.patches.Rectangle`
        properties.  For example::

            >>> text(x, y, s, bbox=dict(facecolor='red', alpha=0.5))
        """
        if fontdict is None:
            fontdict = {}

        effective_kwargs = {
            'verticalalignment': 'baseline',
            'horizontalalignment': 'left',
            'transform': self.transData,
            'clip_on': False,
            **fontdict,
            **kwargs,
        }

        # At some point if we feel confident that TextWithDash
        # is robust as a drop-in replacement for Text and that
        # the performance impact of the heavier-weight class
        # isn't too significant, it may make sense to eliminate
        # the withdash kwarg and simply delegate whether there's
        # a dash to TextWithDash and dashlength.

        if (withdash
                and withdash is not cbook.deprecation._deprecated_parameter):
            t = mtext.TextWithDash(x, y, text=s)
        else:
            t = mtext.Text(x, y, text=s)
        t.update(effective_kwargs)

        t.set_clip_path(self.patch)
        self._add_text(t)
        return t

    @docstring.dedent_interpd
    def annotate(self, s, xy, *args, **kwargs):
        a = mtext.Annotation(s, xy, *args, **kwargs)
        a.set_transform(mtransforms.IdentityTransform())
        if 'clip_on' in kwargs:
            a.set_clip_path(self.patch)
        self._add_text(a)
        return a
    annotate.__doc__ = mtext.Annotation.__init__.__doc__
    #### Lines and spans

    @docstring.dedent_interpd
    def axhline(self, y=0, xmin=0, xmax=1, **kwargs):
        """
        Add a horizontal line across the axis.

        Parameters
        ----------
        y : scalar, optional, default: 0
            y position in data coordinates of the horizontal line.

        xmin : scalar, optional, default: 0
            Should be between 0 and 1, 0 being the far left of the plot, 1 the
            far right of the plot.

        xmax : scalar, optional, default: 1
            Should be between 0 and 1, 0 being the far left of the plot, 1 the
            far right of the plot.

        Returns
        -------
        line : :class:`~matplotlib.lines.Line2D`

        Other Parameters
        ----------------
        **kwargs
            Valid kwargs are :class:`~matplotlib.lines.Line2D` properties,
            with the exception of 'transform':

        %(_Line2D_docstr)s

        See also
        --------
        hlines : Add horizontal lines in data coordinates.
        axhspan : Add a horizontal span (rectangle) across the axis.

        Examples
        --------

        * draw a thick red hline at 'y' = 0 that spans the xrange::

            >>> axhline(linewidth=4, color='r')

        * draw a default hline at 'y' = 1 that spans the xrange::

            >>> axhline(y=1)

        * draw a default hline at 'y' = .5 that spans the middle half of
          the xrange::

            >>> axhline(y=.5, xmin=0.25, xmax=0.75)

        """
        if "transform" in kwargs:
            raise ValueError(
                "'transform' is not allowed as a kwarg;"
                + "axhline generates its own transform.")
        ymin, ymax = self.get_ybound()

        # We need to strip away the units for comparison with
        # non-unitized bounds
        self._process_unit_info(ydata=y, kwargs=kwargs)
        yy = self.convert_yunits(y)
        scaley = (yy < ymin) or (yy > ymax)

        trans = self.get_yaxis_transform(which='grid')
        l = mlines.Line2D([xmin, xmax], [y, y], transform=trans, **kwargs)
        self.add_line(l)
        self.autoscale_view(scalex=False, scaley=scaley)
        return l

    @docstring.dedent_interpd
    def axvline(self, x=0, ymin=0, ymax=1, **kwargs):
        """
        Add a vertical line across the axes.

        Parameters
        ----------
        x : scalar, optional, default: 0
            x position in data coordinates of the vertical line.

        ymin : scalar, optional, default: 0
            Should be between 0 and 1, 0 being the bottom of the plot, 1 the
            top of the plot.

        ymax : scalar, optional, default: 1
            Should be between 0 and 1, 0 being the bottom of the plot, 1 the
            top of the plot.

        Returns
        -------
        line : :class:`~matplotlib.lines.Line2D`

        Other Parameters
        ----------------
        **kwargs
            Valid kwargs are :class:`~matplotlib.lines.Line2D` properties,
            with the exception of 'transform':

        %(_Line2D_docstr)s

        Examples
        --------
        * draw a thick red vline at *x* = 0 that spans the yrange::

            >>> axvline(linewidth=4, color='r')

        * draw a default vline at *x* = 1 that spans the yrange::

            >>> axvline(x=1)

        * draw a default vline at *x* = .5 that spans the middle half of
          the yrange::

            >>> axvline(x=.5, ymin=0.25, ymax=0.75)

        See also
        --------
        vlines : Add vertical lines in data coordinates.
        axvspan : Add a vertical span (rectangle) across the axis.
        """

        if "transform" in kwargs:
            raise ValueError(
                "'transform' is not allowed as a kwarg;"
                + "axvline generates its own transform.")
        xmin, xmax = self.get_xbound()

        # We need to strip away the units for comparison with
        # non-unitized bounds
        self._process_unit_info(xdata=x, kwargs=kwargs)
        xx = self.convert_xunits(x)
        scalex = (xx < xmin) or (xx > xmax)

        trans = self.get_xaxis_transform(which='grid')
        l = mlines.Line2D([x, x], [ymin, ymax], transform=trans, **kwargs)
        self.add_line(l)
        self.autoscale_view(scalex=scalex, scaley=False)
        return l

    @docstring.dedent_interpd
    def axhspan(self, ymin, ymax, xmin=0, xmax=1, **kwargs):
        """
        Add a horizontal span (rectangle) across the axis.

        Draw a horizontal span (rectangle) from *ymin* to *ymax*.
        With the default values of *xmin* = 0 and *xmax* = 1, this
        always spans the xrange, regardless of the xlim settings, even
        if you change them, e.g., with the :meth:`set_xlim` command.
        That is, the horizontal extent is in axes coords: 0=left,
        0.5=middle, 1.0=right but the *y* location is in data
        coordinates.

        Parameters
        ----------
        ymin : float
               Lower limit of the horizontal span in data units.
        ymax : float
               Upper limit of the horizontal span in data units.
        xmin : float, optional, default: 0
               Lower limit of the vertical span in axes (relative
               0-1) units.
        xmax : float, optional, default: 1
               Upper limit of the vertical span in axes (relative
               0-1) units.

        Returns
        -------
        Polygon : `~matplotlib.patches.Polygon`

        Other Parameters
        ----------------
        **kwargs : `~matplotlib.patches.Polygon` properties.

        %(Polygon)s

        See Also
        --------
        axvspan : Add a vertical span across the axes.
        """
        trans = self.get_yaxis_transform(which='grid')

        # process the unit information
        self._process_unit_info([xmin, xmax], [ymin, ymax], kwargs=kwargs)

        # first we need to strip away the units
        xmin, xmax = self.convert_xunits([xmin, xmax])
        ymin, ymax = self.convert_yunits([ymin, ymax])

        verts = (xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin)
        p = mpatches.Polygon(verts, **kwargs)
        p.set_transform(trans)
        self.add_patch(p)
        self.autoscale_view(scalex=False)
        return p

    def axvspan(self, xmin, xmax, ymin=0, ymax=1, **kwargs):
        """
        Add a vertical span (rectangle) across the axes.

        Draw a vertical span (rectangle) from `xmin` to `xmax`.  With
        the default values of `ymin` = 0 and `ymax` = 1. This always
        spans the yrange, regardless of the ylim settings, even if you
        change them, e.g., with the :meth:`set_ylim` command.  That is,
        the vertical extent is in axes coords: 0=bottom, 0.5=middle,
        1.0=top but the x location is in data coordinates.

        Parameters
        ----------
        xmin : scalar
            Number indicating the first X-axis coordinate of the vertical
            span rectangle in data units.
        xmax : scalar
            Number indicating the second X-axis coordinate of the vertical
            span rectangle in data units.
        ymin : scalar, optional
            Number indicating the first Y-axis coordinate of the vertical
            span rectangle in relative Y-axis units (0-1). Default to 0.
        ymax : scalar, optional
            Number indicating the second Y-axis coordinate of the vertical
            span rectangle in relative Y-axis units (0-1). Default to 1.

        Returns
        -------
        rectangle : `~matplotlib.patches.Polygon`
            Vertical span (rectangle) from (xmin, ymin) to (xmax, ymax).

        Other Parameters
        ----------------
        **kwargs
            Optional parameters are properties of the class `.Polygon`.

        See Also
        --------
        axhspan : Add a horizontal span across the axes.

        Examples
        --------
        Draw a vertical, green, translucent rectangle from x = 1.25 to
        x = 1.55 that spans the yrange of the axes.

        >>> axvspan(1.25, 1.55, facecolor='g', alpha=0.5)

        """
        trans = self.get_xaxis_transform(which='grid')

        # process the unit information
        self._process_unit_info([xmin, xmax], [ymin, ymax], kwargs=kwargs)

        # first we need to strip away the units
        xmin, xmax = self.convert_xunits([xmin, xmax])
        ymin, ymax = self.convert_yunits([ymin, ymax])

        verts = [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin)]
        p = mpatches.Polygon(verts, **kwargs)
        p.set_transform(trans)
        self.add_patch(p)
        self.autoscale_view(scaley=False)
        return p

    @_preprocess_data(replace_names=["y", "xmin", "xmax", "colors"],
                      label_namer="y")
    def hlines(self, y, xmin, xmax, colors='k', linestyles='solid',
               label='', **kwargs):
        """
        Plot horizontal lines at each *y* from *xmin* to *xmax*.

        Parameters
        ----------
        y : scalar or sequence of scalar
            y-indexes where to plot the lines.

        xmin, xmax : scalar or 1D array_like
            Respective beginning and end of each line. If scalars are
            provided, all lines will have same length.

        colors : array_like of colors, optional, default: 'k'

        linestyles : {'solid', 'dashed', 'dashdot', 'dotted'}, optional

        label : string, optional, default: ''

        Returns
        -------
        lines : `~matplotlib.collections.LineCollection`

        Other Parameters
        ----------------
        **kwargs :  `~matplotlib.collections.LineCollection` properties.

        See also
        --------
        vlines : vertical lines
        axhline: horizontal line across the axes
        """

        # We do the conversion first since not all unitized data is uniform
        # process the unit information
        self._process_unit_info([xmin, xmax], y, kwargs=kwargs)
        y = self.convert_yunits(y)
        xmin = self.convert_xunits(xmin)
        xmax = self.convert_xunits(xmax)

        if not np.iterable(y):
            y = [y]
        if not np.iterable(xmin):
            xmin = [xmin]
        if not np.iterable(xmax):
            xmax = [xmax]

        y, xmin, xmax = cbook.delete_masked_points(y, xmin, xmax)

        y = np.ravel(y)
        xmin = np.resize(xmin, y.shape)
        xmax = np.resize(xmax, y.shape)

        verts = [((thisxmin, thisy), (thisxmax, thisy))
                 for thisxmin, thisxmax, thisy in zip(xmin, xmax, y)]
        lines = mcoll.LineCollection(verts, colors=colors,
                                     linestyles=linestyles, label=label)
        self.add_collection(lines, autolim=False)
        lines.update(kwargs)

        if len(y) > 0:
            minx = min(xmin.min(), xmax.min())
            maxx = max(xmin.max(), xmax.max())
            miny = y.min()
            maxy = y.max()

            corners = (minx, miny), (maxx, maxy)

            self.update_datalim(corners)
            self.autoscale_view()

        return lines

    @_preprocess_data(replace_names=["x", "ymin", "ymax", "colors"],
                      label_namer="x")
    def vlines(self, x, ymin, ymax, colors='k', linestyles='solid',
               label='', **kwargs):
        """
        Plot vertical lines.

        Plot vertical lines at each *x* from *ymin* to *ymax*.

        Parameters
        ----------
        x : scalar or 1D array_like
            x-indexes where to plot the lines.

        ymin, ymax : scalar or 1D array_like
            Respective beginning and end of each line. If scalars are
            provided, all lines will have same length.

        colors : array_like of colors, optional, default: 'k'

        linestyles : {'solid', 'dashed', 'dashdot', 'dotted'}, optional

        label : string, optional, default: ''

        Returns
        -------
        lines : `~matplotlib.collections.LineCollection`

        Other Parameters
        ----------------
        **kwargs : `~matplotlib.collections.LineCollection` properties.

        See also
        --------
        hlines : horizontal lines
        axvline: vertical line across the axes
        """

        self._process_unit_info(xdata=x, ydata=[ymin, ymax], kwargs=kwargs)

        # We do the conversion first since not all unitized data is uniform
        x = self.convert_xunits(x)
        ymin = self.convert_yunits(ymin)
        ymax = self.convert_yunits(ymax)

        if not np.iterable(x):
            x = [x]
        if not np.iterable(ymin):
            ymin = [ymin]
        if not np.iterable(ymax):
            ymax = [ymax]

        x, ymin, ymax = cbook.delete_masked_points(x, ymin, ymax)

        x = np.ravel(x)
        ymin = np.resize(ymin, x.shape)
        ymax = np.resize(ymax, x.shape)

        verts = [((thisx, thisymin), (thisx, thisymax))
                 for thisx, thisymin, thisymax in zip(x, ymin, ymax)]
        lines = mcoll.LineCollection(verts, colors=colors,
                                     linestyles=linestyles, label=label)
        self.add_collection(lines, autolim=False)
        lines.update(kwargs)

        if len(x) > 0:
            minx = x.min()
            maxx = x.max()
            miny = min(ymin.min(), ymax.min())
            maxy = max(ymin.max(), ymax.max())

            corners = (minx, miny), (maxx, maxy)
            self.update_datalim(corners)
            self.autoscale_view()

        return lines

    @_preprocess_data(replace_names=["positions", "lineoffsets",
                                     "linelengths", "linewidths",
                                     "colors", "linestyles"])
    @docstring.dedent_interpd
    def eventplot(self, positions, orientation='horizontal', lineoffsets=1,
                  linelengths=1, linewidths=None, colors=None,
                  linestyles='solid', **kwargs):
        """
        Plot identical parallel lines at the given positions.

        *positions* should be a 1D or 2D array-like object, with each row
        corresponding to a row or column of lines.

        This type of plot is commonly used in neuroscience for representing
        neural events, where it is usually called a spike raster, dot raster,
        or raster plot.

        However, it is useful in any situation where you wish to show the
        timing or position of multiple sets of discrete events, such as the
        arrival times of people to a business on each day of the month or the
        date of hurricanes each year of the last century.

        Parameters
        ----------
        positions : 1D or 2D array-like object
            Each value is an event. If *positions* is a 2D array-like, each
            row corresponds to a row or a column of lines (depending on the
            *orientation* parameter).

        orientation : {'horizontal', 'vertical'}, optional
            Controls the direction of the event collections:

                - 'horizontal' : the lines are arranged horizontally in rows,
                  and are vertical.
                - 'vertical' : the lines are arranged vertically in columns,
                  and are horizontal.

        lineoffsets : scalar or sequence of scalars, optional, default: 1
            The offset of the center of the lines from the origin, in the
            direction orthogonal to *orientation*.

        linelengths : scalar or sequence of scalars, optional, default: 1
            The total height of the lines (i.e. the lines stretches from
            ``lineoffset - linelength/2`` to ``lineoffset + linelength/2``).

        linewidths : scalar, scalar sequence or None, optional, default: None
            The line width(s) of the event lines, in points. If it is None,
            defaults to its rcParams setting.

        colors : color, sequence of colors or None, optional, default: None
            The color(s) of the event lines. If it is None, defaults to its
            rcParams setting.

        linestyles : str or tuple or a sequence of such values, optional
            Default is 'solid'. Valid strings are ['solid', 'dashed',
            'dashdot', 'dotted', '-', '--', '-.', ':']. Dash tuples
            should be of the form::

                (offset, onoffseq),

            where *onoffseq* is an even length tuple of on and off ink
            in points.

        **kwargs : optional
            Other keyword arguments are line collection properties.  See
            :class:`~matplotlib.collections.LineCollection` for a list of
            the valid properties.

        Returns
        -------

        list : A list of :class:`~.collections.EventCollection` objects.
            Contains the :class:`~.collections.EventCollection` that
            were added.

        Notes
        -----

        For *linelengths*, *linewidths*, *colors*, and *linestyles*, if only
        a single value is given, that value is applied to all lines.  If an
        array-like is given, it must have the same length as *positions*, and
        each value will be applied to the corresponding row of the array.

        Examples
        --------

        .. plot:: gallery/lines_bars_and_markers/eventplot_demo.py
        """
        self._process_unit_info(xdata=positions,
                                ydata=[lineoffsets, linelengths],
                                kwargs=kwargs)

        # We do the conversion first since not all unitized data is uniform
        positions = self.convert_xunits(positions)
        lineoffsets = self.convert_yunits(lineoffsets)
        linelengths = self.convert_yunits(linelengths)

        if not np.iterable(positions):
            positions = [positions]
        elif any(np.iterable(position) for position in positions):
            positions = [np.asanyarray(position) for position in positions]
        else:
            positions = [np.asanyarray(positions)]

        if len(positions) == 0:
            return []

        # prevent 'singular' keys from **kwargs dict from overriding the effect
        # of 'plural' keyword arguments (e.g. 'color' overriding 'colors')
        colors = cbook.local_over_kwdict(colors, kwargs, 'color')
        linewidths = cbook.local_over_kwdict(linewidths, kwargs, 'linewidth')
        linestyles = cbook.local_over_kwdict(linestyles, kwargs, 'linestyle')

        if not np.iterable(lineoffsets):
            lineoffsets = [lineoffsets]
        if not np.iterable(linelengths):
            linelengths = [linelengths]
        if not np.iterable(linewidths):
            linewidths = [linewidths]
        if not np.iterable(colors):
            colors = [colors]
        if hasattr(linestyles, 'lower') or not np.iterable(linestyles):
            linestyles = [linestyles]

        lineoffsets = np.asarray(lineoffsets)
        linelengths = np.asarray(linelengths)
        linewidths = np.asarray(linewidths)

        if len(lineoffsets) == 0:
            lineoffsets = [None]
        if len(linelengths) == 0:
            linelengths = [None]
        if len(linewidths) == 0:
            lineoffsets = [None]
        if len(linewidths) == 0:
            lineoffsets = [None]
        if len(colors) == 0:
            colors = [None]
        try:
            # Early conversion of the colors into RGBA values to take care
            # of cases like colors='0.5' or colors='C1'.  (Issue #8193)
            colors = mcolors.to_rgba_array(colors)
        except ValueError:
            # Will fail if any element of *colors* is None. But as long
            # as len(colors) == 1 or len(positions), the rest of the
            # code should process *colors* properly.
            pass

        if len(lineoffsets) == 1 and len(positions) != 1:
            lineoffsets = np.tile(lineoffsets, len(positions))
            lineoffsets[0] = 0
            lineoffsets = np.cumsum(lineoffsets)
        if len(linelengths) == 1:
            linelengths = np.tile(linelengths, len(positions))
        if len(linewidths) == 1:
            linewidths = np.tile(linewidths, len(positions))
        if len(colors) == 1:
            colors = list(colors)
            colors = colors * len(positions)
        if len(linestyles) == 1:
            linestyles = [linestyles] * len(positions)

        if len(lineoffsets) != len(positions):
            raise ValueError('lineoffsets and positions are unequal sized '
                             'sequences')
        if len(linelengths) != len(positions):
            raise ValueError('linelengths and positions are unequal sized '
                             'sequences')
        if len(linewidths) != len(positions):
            raise ValueError('linewidths and positions are unequal sized '
                             'sequences')
        if len(colors) != len(positions):
            raise ValueError('colors and positions are unequal sized '
                             'sequences')
        if len(linestyles) != len(positions):
            raise ValueError('linestyles and positions are unequal sized '
                             'sequences')

        colls = []
        for position, lineoffset, linelength, linewidth, color, linestyle in \
            zip(positions, lineoffsets, linelengths, linewidths,
                           colors, linestyles):
            coll = mcoll.EventCollection(position,
                                         orientation=orientation,
                                         lineoffset=lineoffset,
                                         linelength=linelength,
                                         linewidth=linewidth,
                                         color=color,
                                         linestyle=linestyle)
            self.add_collection(coll, autolim=False)
            coll.update(kwargs)
            colls.append(coll)

        if len(positions) > 0:
            # try to get min/max
            min_max = [(np.min(_p), np.max(_p)) for _p in positions
                       if len(_p) > 0]
            # if we have any non-empty positions, try to autoscale
            if len(min_max) > 0:
                mins, maxes = zip(*min_max)
                minpos = np.min(mins)
                maxpos = np.max(maxes)

                minline = (lineoffsets - linelengths).min()
                maxline = (lineoffsets + linelengths).max()

                if (orientation is not None and
                        orientation.lower() == "vertical"):
                    corners = (minline, minpos), (maxline, maxpos)
                else:  # "horizontal", None or "none" (see EventCollection)
                    corners = (minpos, minline), (maxpos, maxline)
                self.update_datalim(corners)
                self.autoscale_view()

        return colls

    #### Basic plotting

    # Uses a custom implementation of data-kwarg handling in
    # _process_plot_var_args.
    @docstring.dedent_interpd
    def plot(self, *args, scalex=True, scaley=True, data=None, **kwargs):
        """
        Plot y versus x as lines and/or markers.

        Call signatures::

            plot([x], y, [fmt], *, data=None, **kwargs)
            plot([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)

        The coordinates of the points or line nodes are given by *x*, *y*.

        The optional parameter *fmt* is a convenient way for defining basic
        formatting like color, marker and linestyle. It's a shortcut string
        notation described in the *Notes* section below.

        >>> plot(x, y)        # plot x and y using default line style and color
        >>> plot(x, y, 'bo')  # plot x and y using blue circle markers
        >>> plot(y)           # plot y using x as index array 0..N-1
        >>> plot(y, 'r+')     # ditto, but with red plusses

        You can use `.Line2D` properties as keyword arguments for more
        control on the appearance. Line properties and *fmt* can be mixed.
        The following two calls yield identical results:

        >>> plot(x, y, 'go--', linewidth=2, markersize=12)
        >>> plot(x, y, color='green', marker='o', linestyle='dashed',
        ...      linewidth=2, markersize=12)

        When conflicting with *fmt*, keyword arguments take precedence.


        **Plotting labelled data**

        There's a convenient way for plotting objects with labelled data (i.e.
        data that can be accessed by index ``obj['y']``). Instead of giving
        the data in *x* and *y*, you can provide the object in the *data*
        parameter and just give the labels for *x* and *y*::

        >>> plot('xlabel', 'ylabel', data=obj)

        All indexable objects are supported. This could e.g. be a `dict`, a
        `pandas.DataFame` or a structured numpy array.


        **Plotting multiple sets of data**

        There are various ways to plot multiple sets of data.

        - The most straight forward way is just to call `plot` multiple times.
          Example:

          >>> plot(x1, y1, 'bo')
          >>> plot(x2, y2, 'go')

        - Alternatively, if your data is already a 2d array, you can pass it
          directly to *x*, *y*. A separate data set will be drawn for every
          column.

          Example: an array ``a`` where the first column represents the *x*
          values and the other columns are the *y* columns::

          >>> plot(a[0], a[1:])

        - The third way is to specify multiple sets of *[x]*, *y*, *[fmt]*
          groups::

          >>> plot(x1, y1, 'g^', x2, y2, 'g-')

          In this case, any additional keyword argument applies to all
          datasets. Also this syntax cannot be combined with the *data*
          parameter.

        By default, each line is assigned a different style specified by a
        'style cycle'. The *fmt* and line property parameters are only
        necessary if you want explicit deviations from these defaults.
        Alternatively, you can also change the style cycle using the
        'axes.prop_cycle' rcParam.


        Parameters
        ----------
        x, y : array-like or scalar
            The horizontal / vertical coordinates of the data points.
            *x* values are optional and default to `range(len(y))`.

            Commonly, these parameters are 1D arrays.

            They can also be scalars, or two-dimensional (in that case, the
            columns represent separate data sets).

            These arguments cannot be passed as keywords.

        fmt : str, optional
            A format string, e.g. 'ro' for red circles. See the *Notes*
            section for a full description of the format strings.

            Format strings are just an abbreviation for quickly setting
            basic line properties. All of these and more can also be
            controlled by keyword arguments.

            This argument cannot be passed as keyword.

        data : indexable object, optional
            An object with labelled data. If given, provide the label names to
            plot in *x* and *y*.

            .. note::
                Technically there's a slight ambiguity in calls where the
                second label is a valid *fmt*. `plot('n', 'o', data=obj)`
                could be `plt(x, y)` or `plt(y, fmt)`. In such cases,
                the former interpretation is chosen, but a warning is issued.
                You may suppress the warning by adding an empty format string
                `plot('n', 'o', '', data=obj)`.

        Other Parameters
        ----------------
        scalex, scaley : bool, optional, default: True
            These parameters determined if the view limits are adapted to
            the data limits. The values are passed on to `autoscale_view`.

        **kwargs : `.Line2D` properties, optional
            *kwargs* are used to specify properties like a line label (for
            auto legends), linewidth, antialiasing, marker face color.
            Example::

            >>> plot([1,2,3], [1,2,3], 'go-', label='line 1', linewidth=2)
            >>> plot([1,2,3], [1,4,9], 'rs',  label='line 2')

            If you make multiple lines with one plot command, the kwargs
            apply to all those lines.

            Here is a list of available `.Line2D` properties:

        %(_Line2D_docstr)s

        Returns
        -------
        lines
            A list of `.Line2D` objects representing the plotted data.

        See Also
        --------
        scatter : XY scatter plot with markers of varying size and/or color (
            sometimes also called bubble chart).

        Notes
        -----
        **Format Strings**

        A format string consists of a part for color, marker and line::

            fmt = '[marker][line][color]'

        Each of them is optional. If not provided, the value from the style
        cycle is used. Exception: If ``line`` is given, but no ``marker``,
        the data will be a line without markers.

        Other combinations such as ``[color][marker][line]`` are also
        supported, but note that their parsing may be ambiguous.

        **Markers**

        =============    ===============================
        character        description
        =============    ===============================
        ``'.'``          point marker
        ``','``          pixel marker
        ``'o'``          circle marker
        ``'v'``          triangle_down marker
        ``'^'``          triangle_up marker
        ``'<'``          triangle_left marker
        ``'>'``          triangle_right marker
        ``'1'``          tri_down marker
        ``'2'``          tri_up marker
        ``'3'``          tri_left marker
        ``'4'``          tri_right marker
        ``'s'``          square marker
        ``'p'``          pentagon marker
        ``'*'``          star marker
        ``'h'``          hexagon1 marker
        ``'H'``          hexagon2 marker
        ``'+'``          plus marker
        ``'x'``          x marker
        ``'D'``          diamond marker
        ``'d'``          thin_diamond marker
        ``'|'``          vline marker
        ``'_'``          hline marker
        =============    ===============================

        **Line Styles**

        =============    ===============================
        character        description
        =============    ===============================
        ``'-'``          solid line style
        ``'--'``         dashed line style
        ``'-.'``         dash-dot line style
        ``':'``          dotted line style
        =============    ===============================

        Example format strings::

            'b'    # blue markers with default shape
            'or'   # red circles
            '-g'   # green solid line
            '--'   # dashed line with default color
            '^k:'  # black triangle_up markers connected by a dotted line

        **Colors**

        The supported color abbreviations are the single letter codes

        =============    ===============================
        character        color
        =============    ===============================
        ``'b'``          blue
        ``'g'``          green
        ``'r'``          red
        ``'c'``          cyan
        ``'m'``          magenta
        ``'y'``          yellow
        ``'k'``          black
        ``'w'``          white
        =============    ===============================

        and the ``'CN'`` colors that index into the default property cycle.

        If the color is the only part of the format string, you can
        additionally use any  `matplotlib.colors` spec, e.g. full names
        (``'green'``) or hex strings (``'#008000'``).
        """
        kwargs = cbook.normalize_kwargs(kwargs, mlines.Line2D._alias_map)
        lines = [*self._get_lines(*args, data=data, **kwargs)]
        for line in lines:
            self.add_line(line)
        self.autoscale_view(scalex=scalex, scaley=scaley)
        return lines

    @_preprocess_data(replace_names=["x", "y"], label_namer="y")
    @docstring.dedent_interpd
    def plot_date(self, x, y, fmt='o', tz=None, xdate=True, ydate=False,
                  **kwargs):
        """
        Plot data that contains dates.

        Similar to `.plot`, this plots *y* vs. *x* as lines or markers.
        However, the axis labels are formatted as dates depending on *xdate*
        and *ydate*.

        Parameters
        ----------
        x, y : array-like
            The coordinates of the data points. If *xdate* or *ydate* is
            *True*, the respective values *x* or *y* are interpreted as
            :ref:`Matplotlib dates <date-format>`.

        fmt : str, optional
            The plot format string. For details, see the corresponding
            parameter in `.plot`.

        tz : [ *None* | timezone string | :class:`tzinfo` instance]
            The time zone to use in labeling dates. If *None*, defaults to
            rcParam ``timezone``.

        xdate : bool, optional, default: True
            If *True*, the *x*-axis will be interpreted as Matplotlib dates.

        ydate : bool, optional, default: False
            If *True*, the *y*-axis will be interpreted as Matplotlib dates.


        Returns
        -------
        lines
            A list of `~.Line2D` objects representing the plotted data.


        Other Parameters
        ----------------
        **kwargs
            Keyword arguments control the :class:`~matplotlib.lines.Line2D`
            properties:

        %(_Line2D_docstr)s


        See Also
        --------
        matplotlib.dates : Helper functions on dates.
        matplotlib.dates.date2num : Convert dates to num.
        matplotlib.dates.num2date : Convert num to dates.
        matplotlib.dates.drange : Create an equally spaced sequence of dates.


        Notes
        -----
        If you are using custom date tickers and formatters, it may be
        necessary to set the formatters/locators after the call to
        `.plot_date`. `.plot_date` will set the default tick locator to
        `.AutoDateLocator` (if the tick locator is not already set to a
        `.DateLocator` instance) and the default tick formatter to
        `.AutoDateFormatter` (if the tick formatter is not already set to a
        `.DateFormatter` instance).
        """
        if xdate:
            self.xaxis_date(tz)
        if ydate:
            self.yaxis_date(tz)

        ret = self.plot(x, y, fmt, **kwargs)

        self.autoscale_view()

        return ret

    # @_preprocess_data() # let 'plot' do the unpacking..
    @docstring.dedent_interpd
    def loglog(self, *args, **kwargs):
        """
        Make a plot with log scaling on both the x and y axis.

        Call signatures::

            loglog([x], y, [fmt], data=None, **kwargs)
            loglog([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)

        This is just a thin wrapper around `.plot` which additionally changes
        both the x-axis and the y-axis to log scaling. All of the concepts and
        parameters of plot can be used here as well.

        The additional parameters *basex/y*, *subsx/y* and *nonposx/y* control
        the x/y-axis properties. They are just forwarded to `.Axes.set_xscale`
        and `.Axes.set_yscale`.

        Parameters
        ----------
        basex, basey : scalar, optional, default 10
            Base of the x/y logarithm.

        subsx, subsy : sequence, optional
            The location of the minor x/y ticks. If *None*, reasonable
            locations are automatically chosen depending on the number of
            decades in the plot.
            See `.Axes.set_xscale` / `.Axes.set_yscale` for details.

        nonposx, nonposy : {'mask', 'clip'}, optional, default 'mask'
            Non-positive values in x or y can be masked as invalid, or clipped
            to a very small positive number.

        Returns
        -------
        lines
            A list of `~.Line2D` objects representing the plotted data.

        Other Parameters
        ----------------
        **kwargs
            All parameters supported by `.plot`.
        """
        dx = {k: kwargs.pop(k) for k in ['basex', 'subsx', 'nonposx']
              if k in kwargs}
        dy = {k: kwargs.pop(k) for k in ['basey', 'subsy', 'nonposy']
              if k in kwargs}

        self.set_xscale('log', **dx)
        self.set_yscale('log', **dy)

        l = self.plot(*args, **kwargs)
        return l

    # @_preprocess_data() # let 'plot' do the unpacking..
    @docstring.dedent_interpd
    def semilogx(self, *args, **kwargs):
        """
        Make a plot with log scaling on the x axis.

        Call signatures::

            semilogx([x], y, [fmt], data=None, **kwargs)
            semilogx([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)

        This is just a thin wrapper around `.plot` which additionally changes
        the x-axis to log scaling. All of the concepts and parameters of plot
        can be used here as well.

        The additional parameters *basex*, *subsx* and *nonposx* control the
        x-axis properties. They are just forwarded to `.Axes.set_xscale`.

        Parameters
        ----------
        basex : scalar, optional, default 10
            Base of the x logarithm.

        subsx : array_like, optional
            The location of the minor xticks. If *None*, reasonable locations
            are automatically chosen depending on the number of decades in the
            plot. See `.Axes.set_xscale` for details.

        nonposx : {'mask', 'clip'}, optional, default 'mask'
            Non-positive values in x can be masked as invalid, or clipped to a
            very small positive number.

        Returns
        -------
        lines
            A list of `~.Line2D` objects representing the plotted data.

        Other Parameters
        ----------------
        **kwargs
            All parameters supported by `.plot`.
        """
        d = {k: kwargs.pop(k) for k in ['basex', 'subsx', 'nonposx']
             if k in kwargs}

        self.set_xscale('log', **d)
        l = self.plot(*args, **kwargs)
        return l

    # @_preprocess_data() # let 'plot' do the unpacking..
    @docstring.dedent_interpd
    def semilogy(self, *args, **kwargs):
        """
        Make a plot with log scaling on the y axis.

        Call signatures::

            semilogy([x], y, [fmt], data=None, **kwargs)
            semilogy([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)

        This is just a thin wrapper around `.plot` which additionally changes
        the y-axis to log scaling. All of the concepts and parameters of plot
        can be used here as well.

        The additional parameters *basey*, *subsy* and *nonposy* control the
        y-axis properties. They are just forwarded to `.Axes.set_yscale`.

        Parameters
        ----------
        basey : scalar, optional, default 10
            Base of the y logarithm.

        subsy : array_like, optional
            The location of the minor yticks. If *None*, reasonable locations
            are automatically chosen depending on the number of decades in the
            plot. See `.Axes.set_yscale` for details.

        nonposy : {'mask', 'clip'}, optional, default 'mask'
            Non-positive values in y can be masked as invalid, or clipped to a
            very small positive number.

        Returns
        -------
        lines
            A list of `~.Line2D` objects representing the plotted data.

        Other Parameters
        ----------------
        **kwargs
            All parameters supported by `.plot`.
        """
        d = {k: kwargs.pop(k) for k in ['basey', 'subsy', 'nonposy']
             if k in kwargs}
        self.set_yscale('log', **d)
        l = self.plot(*args, **kwargs)

        return l

    @_preprocess_data(replace_names=["x"], label_namer="x")
    def acorr(self, x, **kwargs):
        """
        Plot the autocorrelation of *x*.

        Parameters
        ----------
        x : array-like

        detrend : callable, optional, default: `mlab.detrend_none`
            *x* is detrended by the *detrend* callable. This must be a
            function ``x = detrend(x)`` accepting and returning an
            `numpy.array`. Default is no normalization.

        normed : bool, optional, default: True
            If ``True``, input vectors are normalised to unit length.

        usevlines : bool, optional, default: True
            Determines the plot style.

            If ``True``, vertical lines are plotted from 0 to the acorr value
            using `Axes.vlines`. Additionally, a horizontal line is plotted
            at y=0 using `Axes.axhline`.

            If ``False``, markers are plotted at the acorr values using
            `Axes.plot`.

        maxlags : int, optional, default: 10
            Number of lags to show. If ``None``, will return all
            ``2 * len(x) - 1`` lags.

        Returns
        -------
        lags : array (length ``2*maxlags+1``)
            The lag vector.
        c : array  (length ``2*maxlags+1``)
            The auto correlation vector.
        line : `.LineCollection` or `.Line2D`
            `.Artist` added to the axes of the correlation:

            - `.LineCollection` if *usevlines* is True.
            - `.Line2D` if *usevlines* is False.
        b : `.Line2D` or None
            Horizontal line at 0 if *usevlines* is True
            None *usevlines* is False.

        Other Parameters
        ----------------
        linestyle : `.Line2D` property, optional
            The linestyle for plotting the data points.
            Only used if *usevlines* is ``False``.

        marker : str, optional, default: 'o'
            The marker for plotting the data points.
            Only used if *usevlines* is ``False``.

        Notes
        -----
        The cross correlation is performed with :func:`numpy.correlate` with
        ``mode = "full"``.
        """
        return self.xcorr(x, x, **kwargs)

    @_preprocess_data(replace_names=["x", "y"], label_namer="y")
    def xcorr(self, x, y, normed=True, detrend=mlab.detrend_none,
              usevlines=True, maxlags=10, **kwargs):
        r"""
        Plot the cross correlation between *x* and *y*.

        The correlation with lag k is defined as
        :math:`\sum_n x[n+k] \cdot y^*[n]`, where :math:`y^*` is the complex
        conjugate of :math:`y`.

        Parameters
        ----------
        x : array-like of length n

        y : array-like of length n

        detrend : callable, optional, default: `mlab.detrend_none`
            *x* and *y* are detrended by the *detrend* callable. This must be a
            function ``x = detrend(x)`` accepting and returning an
            `numpy.array`. Default is no normalization.

        normed : bool, optional, default: True
            If ``True``, input vectors are normalised to unit length.

        usevlines : bool, optional, default: True
            Determines the plot style.

            If ``True``, vertical lines are plotted from 0 to the xcorr value
            using `Axes.vlines`. Additionally, a horizontal line is plotted
            at y=0 using `Axes.axhline`.

            If ``False``, markers are plotted at the xcorr values using
            `Axes.plot`.

        maxlags : int, optional, default: 10
            Number of lags to show. If None, will return all ``2 * len(x) - 1``
            lags.

        Returns
        -------
        lags : array (length ``2*maxlags+1``)
            The lag vector.
        c : array  (length ``2*maxlags+1``)
            The auto correlation vector.
        line : `.LineCollection` or `.Line2D`
            `.Artist` added to the axes of the correlation:

            - `.LineCollection` if *usevlines* is True.
            - `.Line2D` if *usevlines* is False.
        b : `.Line2D` or None
            Horizontal line at 0 if *usevlines* is True
            None *usevlines* is False.

        Other Parameters
        ----------------
        linestyle : `.Line2D` property, optional
            The linestyle for plotting the data points.
            Only used if *usevlines* is ``False``.

        marker : str, optional, default: 'o'
            The marker for plotting the data points.
            Only used if *usevlines* is ``False``.

        Notes
        -----
        The cross correlation is performed with :func:`numpy.correlate` with
        ``mode = "full"``.
        """
        Nx = len(x)
        if Nx != len(y):
            raise ValueError('x and y must be equal length')

        x = detrend(np.asarray(x))
        y = detrend(np.asarray(y))

        correls = np.correlate(x, y, mode="full")

        if normed:
            correls /= np.sqrt(np.dot(x, x) * np.dot(y, y))

        if maxlags is None:
            maxlags = Nx - 1

        if maxlags >= Nx or maxlags < 1:
            raise ValueError('maxlags must be None or strictly '
                             'positive < %d' % Nx)

        lags = np.arange(-maxlags, maxlags + 1)
        correls = correls[Nx - 1 - maxlags:Nx + maxlags]

        if usevlines:
            a = self.vlines(lags, [0], correls, **kwargs)
            # Make label empty so only vertical lines get a legend entry
            kwargs.pop('label', '')
            b = self.axhline(**kwargs)
        else:
            kwargs.setdefault('marker', 'o')
            kwargs.setdefault('linestyle', 'None')
            a, = self.plot(lags, correls, **kwargs)
            b = None
        return lags, correls, a, b

    #### Specialized plotting

    # @_preprocess_data() # let 'plot' do the unpacking..
    def step(self, x, y, *args, where='pre', data=None, **kwargs):
        """
        Make a step plot.

        Call signatures::

            step(x, y, [fmt], *, data=None, where='pre', **kwargs)
            step(x, y, [fmt], x2, y2, [fmt2], ..., *, where='pre', **kwargs)

        This is just a thin wrapper around `.plot` which changes some
        formatting options. Most of the concepts and parameters of plot can be
        used here as well.

        Parameters
        ----------
        x : array_like
            1-D sequence of x positions. It is assumed, but not checked, that
            it is uniformly increasing.

        y : array_like
            1-D sequence of y levels.

        fmt : str, optional
            A format string, e.g. 'g' for a green line. See `.plot` for a more
            detailed description.

            Note: While full format strings are accepted, it is recommended to
            only specify the color. Line styles are currently ignored (use
            the keyword argument *linestyle* instead). Markers are accepted
            and plotted on the given positions, however, this is a rarely
            needed feature for step plots.

        data : indexable object, optional
            An object with labelled data. If given, provide the label names to
            plot in *x* and *y*.

        where : {'pre', 'post', 'mid'}, optional, default 'pre'
            Define where the steps should be placed:

            - 'pre': The y value is continued constantly to the left from
              every *x* position, i.e. the interval ``(x[i-1], x[i]]`` has the
              value ``y[i]``.
            - 'post': The y value is continued constantly to the right from
              every *x* position, i.e. the interval ``[x[i], x[i+1])`` has the
              value ``y[i]``.
            - 'mid': Steps occur half-way between the *x* positions.

        Returns
        -------
        lines
            A list of `.Line2D` objects representing the plotted data.

        Other Parameters
        ----------------
        **kwargs
            Additional parameters are the same as those for `.plot`.

        Notes
        -----
        .. [notes section required to get data note injection right]
        """
        if where not in ('pre', 'post', 'mid'):
            raise ValueError("'where' argument to step must be "
                             "'pre', 'post' or 'mid'")
        kwargs['drawstyle'] = 'steps-' + where
        return self.plot(x, y, *args, data=data, **kwargs)

    @staticmethod
    def _convert_dx(dx, x0, xconv, convert):
        """
        Small helper to do logic of width conversion flexibly.

        *dx* and *x0* have units, but *xconv* has already been converted
        to unitless (and is an ndarray).  This allows the *dx* to have units
        that are different from *x0*, but are still accepted by the
        ``__add__`` operator of *x0*.
        """

        # x should be an array...
        assert type(xconv) is np.ndarray

        if xconv.size == 0:
            # xconv has already been converted, but maybe empty...
            return convert(dx)

        try:
            # attempt to add the width to x0; this works for
            # datetime+timedelta, for instance

            # only use the first element of x and x0.  This saves
            # having to be sure addition works across the whole
            # vector.  This is particularly an issue if
            # x0 and dx are lists so x0 + dx just concatenates the lists.
            # We can't just cast x0 and dx to numpy arrays because that
            # removes the units from unit packages like `pint` that
            # wrap numpy arrays.
            try:
                x0 = cbook.safe_first_element(x0)
            except (TypeError, IndexError, KeyError):
                x0 = x0

            try:
                x = cbook.safe_first_element(xconv)
            except (TypeError, IndexError, KeyError):
                x = xconv

            delist = False
            if not np.iterable(dx):
                dx = [dx]
                delist = True
            dx = [convert(x0 + ddx) - x for ddx in dx]
            if delist:
                dx = dx[0]
        except (ValueError, TypeError, AttributeError):
            # if the above fails (for any reason) just fallback to what
            # we do by default and convert dx by itself.
            dx = convert(dx)
        return dx

    @_preprocess_data()
    @docstring.dedent_interpd
    def bar(self, x, height, width=0.8, bottom=None, *, align="center",
            **kwargs):
        r"""
        Make a bar plot.

        The bars are positioned at *x* with the given *align*\ment. Their
        dimensions are given by *width* and *height*. The vertical baseline
        is *bottom* (default 0).

        Each of *x*, *height*, *width*, and *bottom* may either be a scalar
        applying to all bars, or it may be a sequence of length N providing a
        separate value for each bar.

        Parameters
        ----------
        x : sequence of scalars
            The x coordinates of the bars. See also *align* for the
            alignment of the bars to the coordinates.

        height : scalar or sequence of scalars
            The height(s) of the bars.

        width : scalar or array-like, optional
            The width(s) of the bars (default: 0.8).

        bottom : scalar or array-like, optional
            The y coordinate(s) of the bars bases (default: 0).

        align : {'center', 'edge'}, optional, default: 'center'
            Alignment of the bars to the *x* coordinates:

            - 'center': Center the base on the *x* positions.
            - 'edge': Align the left edges of the bars with the *x* positions.

            To align the bars on the right edge pass a negative *width* and
            ``align='edge'``.

        Returns
        -------
        container : `.BarContainer`
            Container with all the bars and optionally errorbars.

        Other Parameters
        ----------------
        color : scalar or array-like, optional
            The colors of the bar faces.

        edgecolor : scalar or array-like, optional
            The colors of the bar edges.

        linewidth : scalar or array-like, optional
            Width of the bar edge(s). If 0, don't draw edges.

        tick_label : string or array-like, optional
            The tick labels of the bars.
            Default: None (Use default numeric labels.)

        xerr, yerr : scalar or array-like of shape(N,) or shape(2,N), optional
            If not *None*, add horizontal / vertical errorbars to the bar tips.
            The values are +/- sizes relative to the data:

            - scalar: symmetric +/- values for all bars
            - shape(N,): symmetric +/- values for each bar
            - shape(2,N): Separate - and + values for each bar. First row
                contains the lower errors, the second row contains the
                upper errors.
            - *None*: No errorbar. (Default)

            See :doc:`/gallery/statistics/errorbar_features`
            for an example on the usage of ``xerr`` and ``yerr``.

        ecolor : scalar or array-like, optional, default: 'black'
            The line color of the errorbars.

        capsize : scalar, optional
           The length of the error bar caps in points.
           Default: None, which will take the value from
           :rc:`errorbar.capsize`.

        error_kw : dict, optional
            Dictionary of kwargs to be passed to the `~.Axes.errorbar`
            method. Values of *ecolor* or *capsize* defined here take
            precedence over the independent kwargs.

        log : bool, optional, default: False
            If *True*, set the y-axis to be log scale.

        orientation : {'vertical',  'horizontal'}, optional
            *This is for internal use only.* Please use `barh` for
            horizontal bar plots. Default: 'vertical'.

        See also
        --------
        barh: Plot a horizontal bar plot.

        Notes
        -----
        The optional arguments *color*, *edgecolor*, *linewidth*,
        *xerr*, and *yerr* can be either scalars or sequences of
        length equal to the number of bars.  This enables you to use
        bar as the basis for stacked bar charts, or candlestick plots.
        Detail: *xerr* and *yerr* are passed directly to
        :meth:`errorbar`, so they can also have shape 2xN for
        independent specification of lower and upper errors.

        Other optional kwargs:

        %(Rectangle)s

        """
        kwargs = cbook.normalize_kwargs(kwargs, mpatches.Patch._alias_map)
        color = kwargs.pop('color', None)
        if color is None:
            color = self._get_patches_for_fill.get_next_color()
        edgecolor = kwargs.pop('edgecolor', None)
        linewidth = kwargs.pop('linewidth', None)

        # Because xerr and yerr will be passed to errorbar, most dimension
        # checking and processing will be left to the errorbar method.
        xerr = kwargs.pop('xerr', None)
        yerr = kwargs.pop('yerr', None)
        error_kw = kwargs.pop('error_kw', {})
        ezorder = error_kw.pop('zorder', None)
        if ezorder is None:
            ezorder = kwargs.get('zorder', None)
            if ezorder is not None:
                # If using the bar zorder, increment slightly to make sure
                # errorbars are drawn on top of bars
                ezorder += 0.01
        error_kw.setdefault('zorder', ezorder)
        ecolor = kwargs.pop('ecolor', 'k')
        capsize = kwargs.pop('capsize', rcParams["errorbar.capsize"])
        error_kw.setdefault('ecolor', ecolor)
        error_kw.setdefault('capsize', capsize)

        orientation = kwargs.pop('orientation', 'vertical')
        log = kwargs.pop('log', False)
        label = kwargs.pop('label', '')
        tick_labels = kwargs.pop('tick_label', None)

        adjust_ylim = False
        adjust_xlim = False

        y = bottom  # Matches barh call signature.
        if orientation == 'vertical':
            if bottom is None:
                if self.get_yscale() == 'log':
                    adjust_ylim = True
                y = 0

        elif orientation == 'horizontal':
            if x is None:
                if self.get_xscale() == 'log':
                    adjust_xlim = True
                x = 0

        if orientation == 'vertical':
            self._process_unit_info(xdata=x, ydata=height, kwargs=kwargs)
            if log:
                self.set_yscale('log', nonposy='clip')
        elif orientation == 'horizontal':
            self._process_unit_info(xdata=width, ydata=y, kwargs=kwargs)
            if log:
                self.set_xscale('log', nonposx='clip')
        else:
            raise ValueError('invalid orientation: %s' % orientation)

        # lets do some conversions now since some types cannot be
        # subtracted uniformly
        if self.xaxis is not None:
            x0 = x
            x = np.asarray(self.convert_xunits(x))
            width = self._convert_dx(width, x0, x, self.convert_xunits)
            if xerr is not None:
                xerr = self._convert_dx(xerr, x0, x, self.convert_xunits)
        if self.yaxis is not None:
            y0 = y
            y = np.asarray(self.convert_yunits(y))
            height = self._convert_dx(height, y0, y, self.convert_yunits)
            if yerr is not None:
                yerr = self._convert_dx(yerr, y0, y, self.convert_yunits)

        x, height, width, y, linewidth = np.broadcast_arrays(
            # Make args iterable too.
            np.atleast_1d(x), height, width, y, linewidth)

        # Now that units have been converted, set the tick locations.
        if orientation == 'vertical':
            tick_label_axis = self.xaxis
            tick_label_position = x
        elif orientation == 'horizontal':
            tick_label_axis = self.yaxis
            tick_label_position = y

        linewidth = itertools.cycle(np.atleast_1d(linewidth))
        color = itertools.chain(itertools.cycle(mcolors.to_rgba_array(color)),
                                # Fallback if color == "none".
                                itertools.repeat('none'))
        if edgecolor is None:
            edgecolor = itertools.repeat(None)
        else:
            edgecolor = itertools.chain(
                itertools.cycle(mcolors.to_rgba_array(edgecolor)),
                # Fallback if edgecolor == "none".
                itertools.repeat('none'))

        # We will now resolve the alignment and really have
        # left, bottom, width, height vectors
        if align == 'center':
            if orientation == 'vertical':
                try:
                    left = x - width / 2
                except TypeError as e:
                    raise TypeError(f'the dtypes of parameters x ({x.dtype}) '
                                    f'and width ({width.dtype}) '
                                    f'are incompatible') from e
                bottom = y
            elif orientation == 'horizontal':
                try:
                    bottom = y - height / 2
                except TypeError as e:
                    raise TypeError(f'the dtypes of parameters y ({y.dtype}) '
                                    f'and height ({height.dtype}) '
                                    f'are incompatible') from e
                left = x
        elif align == 'edge':
            left = x
            bottom = y
        else:
            raise ValueError('invalid alignment: %s' % align)

        patches = []
        args = zip(left, bottom, width, height, color, edgecolor, linewidth)
        for l, b, w, h, c, e, lw in args:
            r = mpatches.Rectangle(
                xy=(l, b), width=w, height=h,
                facecolor=c,
                edgecolor=e,
                linewidth=lw,
                label='_nolegend_',
                )
            r.update(kwargs)
            r.get_path()._interpolation_steps = 100
            if orientation == 'vertical':
                r.sticky_edges.y.append(b)
            elif orientation == 'horizontal':
                r.sticky_edges.x.append(l)
            self.add_patch(r)
            patches.append(r)

        if xerr is not None or yerr is not None:
            if orientation == 'vertical':
                # using list comps rather than arrays to preserve unit info
                ex = [l + 0.5 * w for l, w in zip(left, width)]
                ey = [b + h for b, h in zip(bottom, height)]

            elif orientation == 'horizontal':
                # using list comps rather than arrays to preserve unit info
                ex = [l + w for l, w in zip(left, width)]
                ey = [b + 0.5 * h for b, h in zip(bottom, height)]

            error_kw.setdefault("label", '_nolegend_')

            errorbar = self.errorbar(ex, ey,
                                     yerr=yerr, xerr=xerr,
                                     fmt='none', **error_kw)
        else:
            errorbar = None

        if adjust_xlim:
            xmin, xmax = self.dataLim.intervalx
            xmin = min(w for w in width if w > 0)
            if xerr is not None:
                xmin = xmin - np.max(xerr)
            xmin = max(xmin * 0.9, 1e-100)
            self.dataLim.intervalx = (xmin, xmax)

        if adjust_ylim:
            ymin, ymax = self.dataLim.intervaly
            ymin = min(h for h in height if h > 0)
            if yerr is not None:
                ymin = ymin - np.max(yerr)
            ymin = max(ymin * 0.9, 1e-100)
            self.dataLim.intervaly = (ymin, ymax)
        self.autoscale_view()

        bar_container = BarContainer(patches, errorbar, label=label)
        self.add_container(bar_container)

        if tick_labels is not None:
            tick_labels = np.broadcast_to(tick_labels, len(patches))
            tick_label_axis.set_ticks(tick_label_position)
            tick_label_axis.set_ticklabels(tick_labels)

        return bar_container

    @docstring.dedent_interpd
    def barh(self, y, width, height=0.8, left=None, *, align="center",
             **kwargs):
        r"""
        Make a horizontal bar plot.

        The bars are positioned at *y* with the given *align*\ment. Their
        dimensions are given by *width* and *height*. The horizontal baseline
        is *left* (default 0).

        Each of *y*, *width*, *height*, and *left* may either be a scalar
        applying to all bars, or it may be a sequence of length N providing a
        separate value for each bar.

        Parameters
        ----------
        y : scalar or array-like
            The y coordinates of the bars. See also *align* for the
            alignment of the bars to the coordinates.

        width : scalar or array-like
            The width(s) of the bars.

        height : sequence of scalars, optional, default: 0.8
            The heights of the bars.

        left : sequence of scalars
            The x coordinates of the left sides of the bars (default: 0).

        align : {'center', 'edge'}, optional, default: 'center'
            Alignment of the base to the *y* coordinates*:

            - 'center': Center the bars on the *y* positions.
            - 'edge': Align the bottom edges of the bars with the *y*
              positions.

            To align the bars on the top edge pass a negative *height* and
            ``align='edge'``.

        Returns
        -------
        container : `.BarContainer`
            Container with all the bars and optionally errorbars.

        Other Parameters
        ----------------
        color : scalar or array-like, optional
            The colors of the bar faces.

        edgecolor : scalar or array-like, optional
            The colors of the bar edges.

        linewidth : scalar or array-like, optional
            Width of the bar edge(s). If 0, don't draw edges.

        tick_label : string or array-like, optional
            The tick labels of the bars.
            Default: None (Use default numeric labels.)

        xerr, yerr : scalar or array-like of shape(N,) or shape(2,N), optional
            If not ``None``, add horizontal / vertical errorbars to the
            bar tips. The values are +/- sizes relative to the data:

            - scalar: symmetric +/- values for all bars
            - shape(N,): symmetric +/- values for each bar
            - shape(2,N): Separate - and + values for each bar. First row
                contains the lower errors, the second row contains the
                upper errors.
            - *None*: No errorbar. (default)

            See :doc:`/gallery/statistics/errorbar_features`
            for an example on the usage of ``xerr`` and ``yerr``.

        ecolor : scalar or array-like, optional, default: 'black'
            The line color of the errorbars.

        capsize : scalar, optional
           The length of the error bar caps in points.
           Default: None, which will take the value from
           :rc:`errorbar.capsize`.

        error_kw : dict, optional
            Dictionary of kwargs to be passed to the `~.Axes.errorbar`
            method. Values of *ecolor* or *capsize* defined here take
            precedence over the independent kwargs.

        log : bool, optional, default: False
            If ``True``, set the x-axis to be log scale.

        See also
        --------
        bar: Plot a vertical bar plot.

        Notes
        -----
        The optional arguments *color*, *edgecolor*, *linewidth*,
        *xerr*, and *yerr* can be either scalars or sequences of
        length equal to the number of bars.  This enables you to use
        bar as the basis for stacked bar charts, or candlestick plots.
        Detail: *xerr* and *yerr* are passed directly to
        :meth:`errorbar`, so they can also have shape 2xN for
        independent specification of lower and upper errors.

        Other optional kwargs:

        %(Rectangle)s

        """
        kwargs.setdefault('orientation', 'horizontal')
        patches = self.bar(x=left, height=height, width=width, bottom=y,
                           align=align, **kwargs)
        return patches

    @_preprocess_data()
    @docstring.dedent_interpd
    def broken_barh(self, xranges, yrange, **kwargs):
        """
        Plot a horizontal sequence of rectangles.

        A rectangle is drawn for each element of *xranges*. All rectangles
        have the same vertical position and size defined by *yrange*.

        This is a convenience function for instantiating a
        `.BrokenBarHCollection`, adding it to the axes and autoscaling the
        view.

        Parameters
        ----------
        xranges : sequence of tuples (*xmin*, *xwidth*)
            The x-positions and extends of the rectangles. For each tuple
            (*xmin*, *xwidth*) a rectangle is drawn from *xmin* to *xmin* +
            *xwidth*.
        yranges : (*ymin*, *ymax*)
            The y-position and extend for all the rectangles.

        Other Parameters
        ----------------
        **kwargs : :class:`.BrokenBarHCollection` properties

            Each *kwarg* can be either a single argument applying to all
            rectangles, e.g.::

                facecolors='black'

            or a sequence of arguments over which is cycled, e.g.::

                facecolors=('black', 'blue')

            would create interleaving black and blue rectangles.

            Supported keywords:

            %(BrokenBarHCollection)s

        Returns
        -------
        collection : A :class:`~.collections.BrokenBarHCollection`
        """
        # process the unit information
        if len(xranges):
            xdata = cbook.safe_first_element(xranges)
        else:
            xdata = None
        if len(yrange):
            ydata = cbook.safe_first_element(yrange)
        else:
            ydata = None
        self._process_unit_info(xdata=xdata,
                                ydata=ydata,
                                kwargs=kwargs)
        xranges_conv = []
        for xr in xranges:
            if len(xr) != 2:
                raise ValueError('each range in xrange must be a sequence '
                                 'with two elements (i.e. an Nx2 array)')
            # convert the absolute values, not the x and dx...
            x_conv = np.asarray(self.convert_xunits(xr[0]))
            x1 = self._convert_dx(xr[1], xr[0], x_conv, self.convert_xunits)
            xranges_conv.append((x_conv, x1))

        yrange_conv = self.convert_yunits(yrange)

        col = mcoll.BrokenBarHCollection(xranges_conv, yrange_conv, **kwargs)
        self.add_collection(col, autolim=True)
        self.autoscale_view()

        return col

    @_preprocess_data()
    def stem(self, *args, linefmt=None, markerfmt=None, basefmt=None, bottom=0,
             label=None, use_line_collection=False):
        """
        Create a stem plot.

        A stem plot plots vertical lines at each *x* location from the baseline
        to *y*, and places a marker there.

        Call signature::

          stem([x,] y, linefmt=None, markerfmt=None, basefmt=None)

        The x-positions are optional. The formats may be provided either as
        positional or as keyword-arguments.

        Parameters
        ----------
        x : array-like, optional
            The x-positions of the stems. Default: (0, 1, ..., len(y) - 1).

        y : array-like
            The y-values of the stem heads.

        linefmt : str, optional
            A string defining the properties of the vertical lines. Usually,
            this will be a color or a color and a linestyle:

            =========  =============
            Character  Line Style
            =========  =============
            ``'-'``    solid line
            ``'--'``   dashed line
            ``'-.'``   dash-dot line
            ``':'``    dotted line
            =========  =============

            Default: 'C0-', i.e. solid line with the first color of the color
            cycle.

            Note: While it is technically possible to specify valid formats
            other than color or color and linestyle (e.g. 'rx' or '-.'), this
            is beyond the intention of the method and will most likely not
            result in a reasonable reasonable plot.

        markerfmt : str, optional
            A string defining the properties of the markers at the stem heads.
            Default: 'C0o', i.e. filled circles with the first color of the
            color cycle.

        basefmt : str, optional
            A format string defining the properties of the baseline.

            Default: 'C3-' ('C2-' in classic mode).

        bottom : float, optional, default: 0
            The y-position of the baseline.

        label : str, optional, default: None
            The label to use for the stems in legends.

        use_line_collection : bool, optional, default: False
            If ``True``, store and plot the stem lines as a
            `~.collections.LineCollection` instead of individual lines. This
            significantly increases performance, and will become the default
            option in Matplotlib 3.3. If ``False``, defaults to the old
            behavior of using a list of `.Line2D` objects.


        Returns
        -------
        container : :class:`~matplotlib.container.StemContainer`
            The container may be treated like a tuple
            (*markerline*, *stemlines*, *baseline*)


        Notes
        -----

        .. seealso::
            The MATLAB function
            `stem <http://www.mathworks.com/help/techdoc/ref/stem.html>`_
            which inspired this method.

        """
        if not 1 <= len(args) <= 5:
            raise TypeError('stem expected between 1 and 5 positional '
                            'arguments, got {}'.format(args))

        y = np.asarray(args[0])
        args = args[1:]

        # Try a second one
        if not args:
            x = np.arange(len(y))
        else:
            x = y
            y = np.asarray(args[0], dtype=float)
            args = args[1:]
        self._process_unit_info(xdata=x, ydata=y)
        x = self.convert_xunits(x)
        y = self.convert_yunits(y)

        # defaults for formats
        if linefmt is None:
            try:
                # fallback to positional argument
                linefmt = args[0]
            except IndexError:
                linecolor = 'C0'
                linemarker = 'None'
                linestyle = '-'
            else:
                linestyle, linemarker, linecolor = \
                    _process_plot_format(linefmt)
        else:
            linestyle, linemarker, linecolor = _process_plot_format(linefmt)

        if markerfmt is None:
            try:
                # fallback to positional argument
                markerfmt = args[1]
            except IndexError:
                markercolor = 'C0'
                markermarker = 'o'
                markerstyle = 'None'
            else:
                markerstyle, markermarker, markercolor = \
                    _process_plot_format(markerfmt)
        else:
            markerstyle, markermarker, markercolor = \
                _process_plot_format(markerfmt)

        if basefmt is None:
            try:
                # fallback to positional argument
                basefmt = args[2]
            except IndexError:
                if rcParams['_internal.classic_mode']:
                    basecolor = 'C2'
                else:
                    basecolor = 'C3'
                basemarker = 'None'
                basestyle = '-'
            else:
                basestyle, basemarker, basecolor = \
                    _process_plot_format(basefmt)
        else:
            basestyle, basemarker, basecolor = _process_plot_format(basefmt)

        # New behaviour in 3.1 is to use a LineCollection for the stemlines
        if use_line_collection:
            stemlines = [((xi, bottom), (xi, yi)) for xi, yi in zip(x, y)]
            if linestyle is None:
                linestyle = rcParams['lines.linestyle']
            stemlines = mcoll.LineCollection(stemlines, linestyles=linestyle,
                                             colors=linecolor,
                                             label='_nolegend_')
            self.add_collection(stemlines)
        # Old behaviour is to plot each of the lines individually
        else:
            cbook._warn_external(
                'In Matplotlib 3.3 individual lines on a stem plot will be '
                'added as a LineCollection instead of individual lines. '
                'This significantly improves the performance of a stem plot. '
                'To remove this warning and switch to the new behaviour, '
                'set the "use_line_collection" keyword argument to True.')
            stemlines = []
            for xi, yi in zip(x, y):
                l, = self.plot([xi, xi], [bottom, yi],
                               color=linecolor, linestyle=linestyle,
                               marker=linemarker, label="_nolegend_")
                stemlines.append(l)

        markerline, = self.plot(x, y, color=markercolor, linestyle=markerstyle,
                                marker=markermarker, label="_nolegend_")

        baseline, = self.plot([np.min(x), np.max(x)], [bottom, bottom],
                              color=basecolor, linestyle=basestyle,
                              marker=basemarker, label="_nolegend_")

        stem_container = StemContainer((markerline, stemlines, baseline),
                                       label=label)
        self.add_container(stem_container)
        return stem_container

    @_preprocess_data(replace_names=["x", "explode", "labels", "colors"])
    def pie(self, x, explode=None, labels=None, colors=None,
            autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1,
            startangle=None, radius=None, counterclock=True,
            wedgeprops=None, textprops=None, center=(0, 0),
            frame=False, rotatelabels=False):
        """
        Plot a pie chart.

        Make a pie chart of array *x*.  The fractional area of each wedge is
        given by ``x/sum(x)``.  If ``sum(x) < 1``, then the values of *x* give
        the fractional area directly and the array will not be normalized. The
        resulting pie will have an empty wedge of size ``1 - sum(x)``.

        The wedges are plotted counterclockwise, by default starting from the
        x-axis.

        Parameters
        ----------
        x : array-like
            The wedge sizes.

        explode : array-like, optional, default: None
            If not *None*, is a ``len(x)`` array which specifies the fraction
            of the radius with which to offset each wedge.

        labels : list, optional, default: None
            A sequence of strings providing the labels for each wedge

        colors : array-like, optional, default: None
            A sequence of matplotlib color args through which the pie chart
            will cycle.  If *None*, will use the colors in the currently
            active cycle.

        autopct : None (default), string, or function, optional
            If not *None*, is a string or function used to label the wedges
            with their numeric value.  The label will be placed inside the
            wedge.  If it is a format string, the label will be ``fmt%pct``.
            If it is a function, it will be called.

        pctdistance : float, optional, default: 0.6
            The ratio between the center of each pie slice and the start of
            the text generated by *autopct*.  Ignored if *autopct* is *None*.

        shadow : bool, optional, default: False
            Draw a shadow beneath the pie.

        labeldistance : float or None, optional, default: 1.1
            The radial distance at which the pie labels are drawn.
            If set to ``None``, label are not drawn, but are stored for use in
            ``legend()``

        startangle : float, optional, default: None
            If not *None*, rotates the start of the pie chart by *angle*
            degrees counterclockwise from the x-axis.

        radius : float, optional, default: None
            The radius of the pie, if *radius* is *None* it will be set to 1.

        counterclock : bool, optional, default: True
            Specify fractions direction, clockwise or counterclockwise.

        wedgeprops : dict, optional, default: None
            Dict of arguments passed to the wedge objects making the pie.
            For example, you can pass in ``wedgeprops = {'linewidth': 3}``
            to set the width of the wedge border lines equal to 3.
            For more details, look at the doc/arguments of the wedge object.
            By default ``clip_on=False``.

        textprops : dict, optional, default: None
            Dict of arguments to pass to the text objects.

        center :  list of float, optional, default: (0, 0)
            Center position of the chart. Takes value (0, 0) or is a sequence
            of 2 scalars.

        frame : bool, optional, default: False
            Plot axes frame with the chart if true.

        rotatelabels : bool, optional, default: False
            Rotate each label to the angle of the corresponding slice if true.

        Returns
        -------
        patches : list
            A sequence of :class:`matplotlib.patches.Wedge` instances

        texts : list
            A list of the label :class:`matplotlib.text.Text` instances.

        autotexts : list
            A list of :class:`~matplotlib.text.Text` instances for the numeric
            labels. This will only be returned if the parameter *autopct* is
            not *None*.

        Notes
        -----
        The pie chart will probably look best if the figure and axes are
        square, or the Axes aspect is equal.
        This method sets the aspect ratio of the axis to "equal".
        The axes aspect ratio can be controlled with `Axes.set_aspect`.
        """
        self.set_aspect('equal')
        # The use of float32 is "historical", but can't be changed without
        # regenerating the test baselines.
        x = np.asarray(x, np.float32)
        if x.ndim != 1 and x.squeeze().ndim <= 1:
            cbook.warn_deprecated(
                "3.1", message="Non-1D inputs to pie() are currently "
                "squeeze()d, but this behavior is deprecated since %(since)s "
                "and will be removed %(removal)s; pass a 1D array instead.")
            x = np.atleast_1d(x.squeeze())

        sx = x.sum()
        if sx > 1:
            x = x / sx

        if labels is None:
            labels = [''] * len(x)
        if explode is None:
            explode = [0] * len(x)
        if len(x) != len(labels):
            raise ValueError("'label' must be of length 'x'")
        if len(x) != len(explode):
            raise ValueError("'explode' must be of length 'x'")
        if colors is None:
            get_next_color = self._get_patches_for_fill.get_next_color
        else:
            color_cycle = itertools.cycle(colors)

            def get_next_color():
                return next(color_cycle)

        if radius is None:
            radius = 1

        # Starting theta1 is the start fraction of the circle
        if startangle is None:
            theta1 = 0
        else:
            theta1 = startangle / 360.0

        # set default values in wedge_prop
        if wedgeprops is None:
            wedgeprops = {}
        wedgeprops.setdefault('clip_on', False)

        if textprops is None:
            textprops = {}
        textprops.setdefault('clip_on', False)

        texts = []
        slices = []
        autotexts = []

        i = 0
        for frac, label, expl in zip(x, labels, explode):
            x, y = center
            theta2 = (theta1 + frac) if counterclock else (theta1 - frac)
            thetam = 2 * np.pi * 0.5 * (theta1 + theta2)
            x += expl * math.cos(thetam)
            y += expl * math.sin(thetam)

            w = mpatches.Wedge((x, y), radius, 360. * min(theta1, theta2),
                               360. * max(theta1, theta2),
                               facecolor=get_next_color(),
                               **wedgeprops)
            slices.append(w)
            self.add_patch(w)
            w.set_label(label)

            if shadow:
                # make sure to add a shadow after the call to
                # add_patch so the figure and transform props will be
                # set
                shad = mpatches.Shadow(w, -0.02, -0.02)
                shad.set_zorder(0.9 * w.get_zorder())
                shad.set_label('_nolegend_')
                self.add_patch(shad)

            if labeldistance is not None:
                xt = x + labeldistance * radius * math.cos(thetam)
                yt = y + labeldistance * radius * math.sin(thetam)
                label_alignment_h = xt > 0 and 'left' or 'right'
                label_alignment_v = 'center'
                label_rotation = 'horizontal'
                if rotatelabels:
                    label_alignment_v = yt > 0 and 'bottom' or 'top'
                    label_rotation = np.rad2deg(thetam) + (0 if xt > 0
                                                             else 180)
                props = dict(horizontalalignment=label_alignment_h,
                            verticalalignment=label_alignment_v,
                            rotation=label_rotation,
                            size=rcParams['xtick.labelsize'])
                props.update(textprops)

                t = self.text(xt, yt, label, **props)

                texts.append(t)

            if autopct is not None:
                xt = x + pctdistance * radius * math.cos(thetam)
                yt = y + pctdistance * radius * math.sin(thetam)
                if isinstance(autopct, str):
                    s = autopct % (100. * frac)
                elif callable(autopct):
                    s = autopct(100. * frac)
                else:
                    raise TypeError(
                        'autopct must be callable or a format string')

                props = dict(horizontalalignment='center',
                             verticalalignment='center')
                props.update(textprops)
                t = self.text(xt, yt, s, **props)

                autotexts.append(t)

            theta1 = theta2
            i += 1

        if not frame:
            self.set_frame_on(False)

            self.set_xlim((-1.25 + center[0],
                           1.25 + center[0]))
            self.set_ylim((-1.25 + center[1],
                           1.25 + center[1]))
            self.set_xticks([])
            self.set_yticks([])

        if autopct is None:
            return slices, texts
        else:
            return slices, texts, autotexts

    @_preprocess_data(replace_names=["x", "y", "xerr", "yerr"],
                      label_namer="y")
    @docstring.dedent_interpd
    def errorbar(self, x, y, yerr=None, xerr=None,
                 fmt='', ecolor=None, elinewidth=None, capsize=None,
                 barsabove=False, lolims=False, uplims=False,
                 xlolims=False, xuplims=False, errorevery=1, capthick=None,
                 **kwargs):
        """
        Plot y versus x as lines and/or markers with attached errorbars.

        *x*, *y* define the data locations, *xerr*, *yerr* define the errorbar
        sizes. By default, this draws the data markers/lines as well the
        errorbars. Use fmt='none' to draw errorbars without any data markers.

        Parameters
        ----------
        x, y : scalar or array-like
            The data positions.

        xerr, yerr : scalar or array-like, shape(N,) or shape(2,N), optional
            The errorbar sizes:

            - scalar: Symmetric +/- values for all data points.
            - shape(N,): Symmetric +/-values for each data point.
            - shape(2,N): Separate - and + values for each bar. First row
                contains the lower errors, the second row contains the
                upper errors.
            - *None*: No errorbar.

            Note that all error arrays should have *positive* values.

            See :doc:`/gallery/statistics/errorbar_features`
            for an example on the usage of ``xerr`` and ``yerr``.

        fmt : plot format string, optional, default: ''
            The format for the data points / data lines. See `.plot` for
            details.

            Use 'none' (case insensitive) to plot errorbars without any data
            markers.

        ecolor : mpl color, optional, default: None
            A matplotlib color arg which gives the color the errorbar lines.
            If None, use the color of the line connecting the markers.

        elinewidth : scalar, optional, default: None
            The linewidth of the errorbar lines. If None, the linewidth of
            the current style is used.

        capsize : scalar, optional, default: None
            The length of the error bar caps in points. If None, it will take
            the value from :rc:`errorbar.capsize`.

        capthick : scalar, optional, default: None
            An alias to the keyword argument *markeredgewidth* (a.k.a. *mew*).
            This setting is a more sensible name for the property that
            controls the thickness of the error bar cap in points. For
            backwards compatibility, if *mew* or *markeredgewidth* are given,
            then they will over-ride *capthick*. This may change in future
            releases.

        barsabove : bool, optional, default: False
            If True, will plot the errorbars above the plot
            symbols. Default is below.

        lolims, uplims, xlolims, xuplims : bool, optional, default: False
            These arguments can be used to indicate that a value gives only
            upper/lower limits. In that case a caret symbol is used to
            indicate this. *lims*-arguments may be of the same type as *xerr*
            and *yerr*.  To use limits with inverted axes, :meth:`set_xlim`
            or :meth:`set_ylim` must be called before :meth:`errorbar`.

        errorevery : positive integer, optional, default: 1
            Subsamples the errorbars. e.g., if errorevery=5, errorbars for
            every 5-th datapoint will be plotted. The data plot itself still
            shows all data points.

        Returns
        -------
        container : :class:`~.container.ErrorbarContainer`
            The container contains:

            - plotline: :class:`~matplotlib.lines.Line2D` instance of
              x, y plot markers and/or line.
            - caplines: A tuple of :class:`~matplotlib.lines.Line2D` instances
              of the error bar caps.
            - barlinecols: A tuple of
              :class:`~matplotlib.collections.LineCollection` with the
              horizontal and vertical error ranges.

        Other Parameters
        ----------------
        **kwargs
            All other keyword arguments are passed on to the plot
            command for the markers. For example, this code makes big red
            squares with thick green edges::

                x,y,yerr = rand(3,10)
                errorbar(x, y, yerr, marker='s', mfc='red',
                         mec='green', ms=20, mew=4)

            where *mfc*, *mec*, *ms* and *mew* are aliases for the longer
            property names, *markerfacecolor*, *markeredgecolor*, *markersize*
            and *markeredgewidth*.

            Valid kwargs for the marker properties are `.Lines2D` properties:

        %(_Line2D_docstr)s

        """
        kwargs = cbook.normalize_kwargs(kwargs, mlines.Line2D._alias_map)
        # anything that comes in as 'None', drop so the default thing
        # happens down stream
        kwargs = {k: v for k, v in kwargs.items() if v is not None}
        kwargs.setdefault('zorder', 2)

        if errorevery < 1:
            raise ValueError(
                'errorevery has to be a strictly positive integer')

        self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs)

        plot_line = (fmt.lower() != 'none')
        label = kwargs.pop("label", None)

        if fmt == '':
            fmt_style_kwargs = {}
        else:
            fmt_style_kwargs = {k: v for k, v in
                                zip(('linestyle', 'marker', 'color'),
                                    _process_plot_format(fmt))
                                if v is not None}
        if fmt == 'none':
            # Remove alpha=0 color that _process_plot_format returns
            fmt_style_kwargs.pop('color')

        if ('color' in kwargs or 'color' in fmt_style_kwargs or
                ecolor is not None):
            base_style = {}
            if 'color' in kwargs:
                base_style['color'] = kwargs.pop('color')
        else:
            base_style = next(self._get_lines.prop_cycler)

        base_style['label'] = '_nolegend_'
        base_style.update(fmt_style_kwargs)
        if 'color' not in base_style:
            base_style['color'] = 'C0'
        if ecolor is None:
            ecolor = base_style['color']
        # make sure all the args are iterable; use lists not arrays to
        # preserve units
        if not np.iterable(x):
            x = [x]

        if not np.iterable(y):
            y = [y]

        if xerr is not None:
            if not np.iterable(xerr):
                xerr = [xerr] * len(x)

        if yerr is not None:
            if not np.iterable(yerr):
                yerr = [yerr] * len(y)

        # make the style dict for the 'normal' plot line
        plot_line_style = {
            **base_style,
            **kwargs,
            'zorder': (kwargs['zorder'] - .1 if barsabove else
                       kwargs['zorder'] + .1),
        }

        # make the style dict for the line collections (the bars)
        eb_lines_style = dict(base_style)
        eb_lines_style.pop('marker', None)
        eb_lines_style.pop('linestyle', None)
        eb_lines_style['color'] = ecolor

        if elinewidth:
            eb_lines_style['linewidth'] = elinewidth
        elif 'linewidth' in kwargs:
            eb_lines_style['linewidth'] = kwargs['linewidth']

        for key in ('transform', 'alpha', 'zorder', 'rasterized'):
            if key in kwargs:
                eb_lines_style[key] = kwargs[key]

        # set up cap style dictionary
        eb_cap_style = dict(base_style)
        # eject any marker information from format string
        eb_cap_style.pop('marker', None)
        eb_lines_style.pop('markerfacecolor', None)
        eb_lines_style.pop('markeredgewidth', None)
        eb_lines_style.pop('markeredgecolor', None)
        eb_cap_style.pop('ls', None)
        eb_cap_style['linestyle'] = 'none'
        if capsize is None:
            capsize = rcParams["errorbar.capsize"]
        if capsize > 0:
            eb_cap_style['markersize'] = 2. * capsize
        if capthick is not None:
            eb_cap_style['markeredgewidth'] = capthick

        # For backwards-compat, allow explicit setting of
        # 'markeredgewidth' to over-ride capthick.
        for key in ('markeredgewidth', 'transform', 'alpha',
                    'zorder', 'rasterized'):
            if key in kwargs:
                eb_cap_style[key] = kwargs[key]
        eb_cap_style['color'] = ecolor

        data_line = None
        if plot_line:
            data_line = mlines.Line2D(x, y, **plot_line_style)
            self.add_line(data_line)

        barcols = []
        caplines = []

        # arrays fine here, they are booleans and hence not units
        lolims = np.broadcast_to(lolims, len(x)).astype(bool)
        uplims = np.broadcast_to(uplims, len(x)).astype(bool)
        xlolims = np.broadcast_to(xlolims, len(x)).astype(bool)
        xuplims = np.broadcast_to(xuplims, len(x)).astype(bool)

        everymask = np.arange(len(x)) % errorevery == 0

        def xywhere(xs, ys, mask):
            """
            return xs[mask], ys[mask] where mask is True but xs and
            ys are not arrays
            """
            assert len(xs) == len(ys)
            assert len(xs) == len(mask)
            xs = [thisx for thisx, b in zip(xs, mask) if b]
            ys = [thisy for thisy, b in zip(ys, mask) if b]
            return xs, ys

        def extract_err(err, data):
            """
            Private function to parse *err* and subtract/add it to *data*.

            Both *err* and *data* are already iterables at this point.
            """
            try:  # Asymmetric error: pair of 1D iterables.
                a, b = err
                iter(a)
                iter(b)
            except (TypeError, ValueError):
                a = b = err  # Symmetric error: 1D iterable.
            # This could just be `np.ndim(a) > 1 and np.ndim(b) > 1`, except
            # for the (undocumented, but tested) support for (n, 1) arrays.
            a_sh = np.shape(a)
            b_sh = np.shape(b)
            if (len(a_sh) > 2 or (len(a_sh) == 2 and a_sh[1] != 1)
                    or len(b_sh) > 2 or (len(b_sh) == 2 and b_sh[1] != 1)):
                raise ValueError(
                    "err must be a scalar or a 1D or (2, n) array-like")
            if len(a_sh) == 2 or len(b_sh) == 2:
                cbook.warn_deprecated(
                    "3.1", message="Support for passing a (n, 1)-shaped error "
                    "array to errorbar() is deprecated since Matplotlib "
                    "%(since)s and will be removed %(removal)s; pass a 1D "
                    "array instead.")
            # Using list comprehensions rather than arrays to preserve units.
            for e in [a, b]:
                if len(data) != len(e):
                    raise ValueError(
                        f"The lengths of the data ({len(data)}) and the "
                        f"error {len(e)} do not match")
            low = [v - e for v, e in zip(data, a)]
            high = [v + e for v, e in zip(data, b)]
            return low, high

        if xerr is not None:
            left, right = extract_err(xerr, x)
            # select points without upper/lower limits in x and
            # draw normal errorbars for these points
            noxlims = ~(xlolims | xuplims)
            if noxlims.any() or len(noxlims) == 0:
                yo, _ = xywhere(y, right, noxlims & everymask)
                lo, ro = xywhere(left, right, noxlims & everymask)
                barcols.append(self.hlines(yo, lo, ro, **eb_lines_style))
                if capsize > 0:
                    caplines.append(mlines.Line2D(lo, yo, marker='|',
                                                  **eb_cap_style))
                    caplines.append(mlines.Line2D(ro, yo, marker='|',
                                                  **eb_cap_style))

            if xlolims.any():
                yo, _ = xywhere(y, right, xlolims & everymask)
                lo, ro = xywhere(x, right, xlolims & everymask)
                barcols.append(self.hlines(yo, lo, ro, **eb_lines_style))
                rightup, yup = xywhere(right, y, xlolims & everymask)
                if self.xaxis_inverted():
                    marker = mlines.CARETLEFTBASE
                else:
                    marker = mlines.CARETRIGHTBASE
                caplines.append(
                    mlines.Line2D(rightup, yup, ls='None', marker=marker,
                                  **eb_cap_style))
                if capsize > 0:
                    xlo, ylo = xywhere(x, y, xlolims & everymask)
                    caplines.append(mlines.Line2D(xlo, ylo, marker='|',
                                                  **eb_cap_style))

            if xuplims.any():
                yo, _ = xywhere(y, right, xuplims & everymask)
                lo, ro = xywhere(left, x, xuplims & everymask)
                barcols.append(self.hlines(yo, lo, ro, **eb_lines_style))
                leftlo, ylo = xywhere(left, y, xuplims & everymask)
                if self.xaxis_inverted():
                    marker = mlines.CARETRIGHTBASE
                else:
                    marker = mlines.CARETLEFTBASE
                caplines.append(
                    mlines.Line2D(leftlo, ylo, ls='None', marker=marker,
                                  **eb_cap_style))
                if capsize > 0:
                    xup, yup = xywhere(x, y, xuplims & everymask)
                    caplines.append(mlines.Line2D(xup, yup, marker='|',
                                                  **eb_cap_style))

        if yerr is not None:
            lower, upper = extract_err(yerr, y)
            # select points without upper/lower limits in y and
            # draw normal errorbars for these points
            noylims = ~(lolims | uplims)
            if noylims.any() or len(noylims) == 0:
                xo, _ = xywhere(x, lower, noylims & everymask)
                lo, uo = xywhere(lower, upper, noylims & everymask)
                barcols.append(self.vlines(xo, lo, uo, **eb_lines_style))
                if capsize > 0:
                    caplines.append(mlines.Line2D(xo, lo, marker='_',
                                                  **eb_cap_style))
                    caplines.append(mlines.Line2D(xo, uo, marker='_',
                                                  **eb_cap_style))

            if lolims.any():
                xo, _ = xywhere(x, lower, lolims & everymask)
                lo, uo = xywhere(y, upper, lolims & everymask)
                barcols.append(self.vlines(xo, lo, uo, **eb_lines_style))
                xup, upperup = xywhere(x, upper, lolims & everymask)
                if self.yaxis_inverted():
                    marker = mlines.CARETDOWNBASE
                else:
                    marker = mlines.CARETUPBASE
                caplines.append(
                    mlines.Line2D(xup, upperup, ls='None', marker=marker,
                                  **eb_cap_style))
                if capsize > 0:
                    xlo, ylo = xywhere(x, y, lolims & everymask)
                    caplines.append(mlines.Line2D(xlo, ylo, marker='_',
                                                  **eb_cap_style))

            if uplims.any():
                xo, _ = xywhere(x, lower, uplims & everymask)
                lo, uo = xywhere(lower, y, uplims & everymask)
                barcols.append(self.vlines(xo, lo, uo, **eb_lines_style))
                xlo, lowerlo = xywhere(x, lower, uplims & everymask)
                if self.yaxis_inverted():
                    marker = mlines.CARETUPBASE
                else:
                    marker = mlines.CARETDOWNBASE
                caplines.append(
                    mlines.Line2D(xlo, lowerlo, ls='None', marker=marker,
                                  **eb_cap_style))
                if capsize > 0:
                    xup, yup = xywhere(x, y, uplims & everymask)
                    caplines.append(mlines.Line2D(xup, yup, marker='_',
                                                  **eb_cap_style))
        for l in caplines:
            self.add_line(l)

        self.autoscale_view()
        errorbar_container = ErrorbarContainer((data_line, tuple(caplines),
                                                tuple(barcols)),
                                               has_xerr=(xerr is not None),
                                               has_yerr=(yerr is not None),
                                               label=label)
        self.containers.append(errorbar_container)

        return errorbar_container  # (l0, caplines, barcols)

    @cbook._rename_parameter("3.1", "manage_xticks", "manage_ticks")
    @_preprocess_data()
    def boxplot(self, x, notch=None, sym=None, vert=None, whis=None,
                positions=None, widths=None, patch_artist=None,
                bootstrap=None, usermedians=None, conf_intervals=None,
                meanline=None, showmeans=None, showcaps=None,
                showbox=None, showfliers=None, boxprops=None,
                labels=None, flierprops=None, medianprops=None,
                meanprops=None, capprops=None, whiskerprops=None,
                manage_ticks=True, autorange=False, zorder=None):
        """
        Make a box and whisker plot.

        Make a box and whisker plot for each column of ``x`` or each
        vector in sequence ``x``.  The box extends from the lower to
        upper quartile values of the data, with a line at the median.
        The whiskers extend from the box to show the range of the
        data.  Flier points are those past the end of the whiskers.

        Parameters
        ----------
        x : Array or a sequence of vectors.
            The input data.

        notch : bool, optional (False)
            If `True`, will produce a notched box plot. Otherwise, a
            rectangular boxplot is produced. The notches represent the
            confidence interval (CI) around the median. See the entry
            for the ``bootstrap`` parameter for information regarding
            how the locations of the notches are computed.

            .. note::

                In cases where the values of the CI are less than the
                lower quartile or greater than the upper quartile, the
                notches will extend beyond the box, giving it a
                distinctive "flipped" appearance. This is expected
                behavior and consistent with other statistical
                visualization packages.

        sym : str, optional
            The default symbol for flier points. Enter an empty string
            ('') if you don't want to show fliers. If `None`, then the
            fliers default to 'b+'  If you want more control use the
            flierprops kwarg.

        vert : bool, optional (True)
            If `True` (default), makes the boxes vertical. If `False`,
            everything is drawn horizontally.

        whis : float, sequence, or string (default = 1.5)
            As a float, determines the reach of the whiskers to the beyond the
            first and third quartiles. In other words, where IQR is the
            interquartile range (`Q3-Q1`), the upper whisker will extend to
            last datum less than `Q3 + whis*IQR`). Similarly, the lower whisker
            will extend to the first datum greater than `Q1 - whis*IQR`.
            Beyond the whiskers, data
            are considered outliers and are plotted as individual
            points. Set this to an unreasonably high value to force the
            whiskers to show the min and max values. Alternatively, set
            this to an ascending sequence of percentile (e.g., [5, 95])
            to set the whiskers at specific percentiles of the data.
            Finally, ``whis`` can be the string ``'range'`` to force the
            whiskers to the min and max of the data.

        bootstrap : int, optional
            Specifies whether to bootstrap the confidence intervals
            around the median for notched boxplots. If ``bootstrap`` is
            None, no bootstrapping is performed, and notches are
            calculated using a Gaussian-based asymptotic approximation
            (see McGill, R., Tukey, J.W., and Larsen, W.A., 1978, and
            Kendall and Stuart, 1967). Otherwise, bootstrap specifies
            the number of times to bootstrap the median to determine its
            95% confidence intervals. Values between 1000 and 10000 are
            recommended.

        usermedians : array-like, optional
            An array or sequence whose first dimension (or length) is
            compatible with ``x``. This overrides the medians computed
            by matplotlib for each element of ``usermedians`` that is not
            `None`. When an element of ``usermedians`` is None, the median
            will be computed by matplotlib as normal.

        conf_intervals : array-like, optional
            Array or sequence whose first dimension (or length) is
            compatible with ``x`` and whose second dimension is 2. When
            the an element of ``conf_intervals`` is not None, the
            notch locations computed by matplotlib are overridden
            (provided ``notch`` is `True`). When an element of
            ``conf_intervals`` is `None`, the notches are computed by the
            method specified by the other kwargs (e.g., ``bootstrap``).

        positions : array-like, optional
            Sets the positions of the boxes. The ticks and limits are
            automatically set to match the positions. Defaults to
            `range(1, N+1)` where N is the number of boxes to be drawn.

        widths : scalar or array-like
            Sets the width of each box either with a scalar or a
            sequence. The default is 0.5, or ``0.15*(distance between
            extreme positions)``, if that is smaller.

        patch_artist : bool, optional (False)
            If `False` produces boxes with the Line2D artist. Otherwise,
            boxes and drawn with Patch artists.

        labels : sequence, optional
            Labels for each dataset. Length must be compatible with
            dimensions of ``x``.

        manage_ticks : bool, optional (True)
            If True, the tick locations and labels will be adjusted to match
            the boxplot positions.

        autorange : bool, optional (False)
            When `True` and the data are distributed such that the 25th and
            75th percentiles are equal, ``whis`` is set to ``'range'`` such
            that the whisker ends are at the minimum and maximum of the data.

        meanline : bool, optional (False)
            If `True` (and ``showmeans`` is `True`), will try to render
            the mean as a line spanning the full width of the box
            according to ``meanprops`` (see below). Not recommended if
            ``shownotches`` is also True. Otherwise, means will be shown
            as points.

        zorder : scalar, optional (None)
            Sets the zorder of the boxplot.

        Other Parameters
        ----------------
        showcaps : bool, optional (True)
            Show the caps on the ends of whiskers.
        showbox : bool, optional (True)
            Show the central box.
        showfliers : bool, optional (True)
            Show the outliers beyond the caps.
        showmeans : bool, optional (False)
            Show the arithmetic means.
        capprops : dict, optional (None)
            Specifies the style of the caps.
        boxprops : dict, optional (None)
            Specifies the style of the box.
        whiskerprops : dict, optional (None)
            Specifies the style of the whiskers.
        flierprops : dict, optional (None)
            Specifies the style of the fliers.
        medianprops : dict, optional (None)
            Specifies the style of the median.
        meanprops : dict, optional (None)
            Specifies the style of the mean.

        Returns
        -------
        result : dict
          A dictionary mapping each component of the boxplot to a list
          of the :class:`matplotlib.lines.Line2D` instances
          created. That dictionary has the following keys (assuming
          vertical boxplots):

          - ``boxes``: the main body of the boxplot showing the
            quartiles and the median's confidence intervals if
            enabled.

          - ``medians``: horizontal lines at the median of each box.

          - ``whiskers``: the vertical lines extending to the most
            extreme, non-outlier data points.

          - ``caps``: the horizontal lines at the ends of the
            whiskers.

          - ``fliers``: points representing data that extend beyond
            the whiskers (fliers).

          - ``means``: points or lines representing the means.

        """

        # Missing arguments default to rcParams.
        if whis is None:
            whis = rcParams['boxplot.whiskers']
        if bootstrap is None:
            bootstrap = rcParams['boxplot.bootstrap']

        bxpstats = cbook.boxplot_stats(x, whis=whis, bootstrap=bootstrap,
                                       labels=labels, autorange=autorange)
        if notch is None:
            notch = rcParams['boxplot.notch']
        if vert is None:
            vert = rcParams['boxplot.vertical']
        if patch_artist is None:
            patch_artist = rcParams['boxplot.patchartist']
        if meanline is None:
            meanline = rcParams['boxplot.meanline']
        if showmeans is None:
            showmeans = rcParams['boxplot.showmeans']
        if showcaps is None:
            showcaps = rcParams['boxplot.showcaps']
        if showbox is None:
            showbox = rcParams['boxplot.showbox']
        if showfliers is None:
            showfliers = rcParams['boxplot.showfliers']

        if boxprops is None:
            boxprops = {}
        if whiskerprops is None:
            whiskerprops = {}
        if capprops is None:
            capprops = {}
        if medianprops is None:
            medianprops = {}
        if meanprops is None:
            meanprops = {}
        if flierprops is None:
            flierprops = {}

        if patch_artist:
            boxprops['linestyle'] = 'solid'  # Not consistent with bxp.
            if 'color' in boxprops:
                boxprops['edgecolor'] = boxprops.pop('color')

        # if non-default sym value, put it into the flier dictionary
        # the logic for providing the default symbol ('b+') now lives
        # in bxp in the initial value of final_flierprops
        # handle all of the `sym` related logic here so we only have to pass
        # on the flierprops dict.
        if sym is not None:
            # no-flier case, which should really be done with
            # 'showfliers=False' but none-the-less deal with it to keep back
            # compatibility
            if sym == '':
                # blow away existing dict and make one for invisible markers
                flierprops = dict(linestyle='none', marker='', color='none')
                # turn the fliers off just to be safe
                showfliers = False
            # now process the symbol string
            else:
                # process the symbol string
                # discarded linestyle
                _, marker, color = _process_plot_format(sym)
                # if we have a marker, use it
                if marker is not None:
                    flierprops['marker'] = marker
                # if we have a color, use it
                if color is not None:
                    # assume that if color is passed in the user want
                    # filled symbol, if the users want more control use
                    # flierprops
                    flierprops['color'] = color
                    flierprops['markerfacecolor'] = color
                    flierprops['markeredgecolor'] = color

        # replace medians if necessary:
        if usermedians is not None:
            if (len(np.ravel(usermedians)) != len(bxpstats) or
                    np.shape(usermedians)[0] != len(bxpstats)):
                raise ValueError('usermedians length not compatible with x')
            else:
                # reassign medians as necessary
                for stats, med in zip(bxpstats, usermedians):
                    if med is not None:
                        stats['med'] = med

        if conf_intervals is not None:
            if np.shape(conf_intervals)[0] != len(bxpstats):
                err_mess = 'conf_intervals length not compatible with x'
                raise ValueError(err_mess)
            else:
                for stats, ci in zip(bxpstats, conf_intervals):
                    if ci is not None:
                        if len(ci) != 2:
                            raise ValueError('each confidence interval must '
                                             'have two values')
                        else:
                            if ci[0] is not None:
                                stats['cilo'] = ci[0]
                            if ci[1] is not None:
                                stats['cihi'] = ci[1]

        artists = self.bxp(bxpstats, positions=positions, widths=widths,
                           vert=vert, patch_artist=patch_artist,
                           shownotches=notch, showmeans=showmeans,
                           showcaps=showcaps, showbox=showbox,
                           boxprops=boxprops, flierprops=flierprops,
                           medianprops=medianprops, meanprops=meanprops,
                           meanline=meanline, showfliers=showfliers,
                           capprops=capprops, whiskerprops=whiskerprops,
                           manage_ticks=manage_ticks, zorder=zorder)
        return artists

    @cbook._rename_parameter("3.1", "manage_xticks", "manage_ticks")
    def bxp(self, bxpstats, positions=None, widths=None, vert=True,
            patch_artist=False, shownotches=False, showmeans=False,
            showcaps=True, showbox=True, showfliers=True,
            boxprops=None, whiskerprops=None, flierprops=None,
            medianprops=None, capprops=None, meanprops=None,
            meanline=False, manage_ticks=True, zorder=None):
        """
        Drawing function for box and whisker plots.

        Make a box and whisker plot for each column of *x* or each
        vector in sequence *x*.  The box extends from the lower to
        upper quartile values of the data, with a line at the median.
        The whiskers extend from the box to show the range of the
        data.  Flier points are those past the end of the whiskers.

        Parameters
        ----------

        bxpstats : list of dicts
          A list of dictionaries containing stats for each boxplot.
          Required keys are:

          - ``med``: The median (scalar float).

          - ``q1``: The first quartile (25th percentile) (scalar
            float).

          - ``q3``: The third quartile (75th percentile) (scalar
            float).

          - ``whislo``: Lower bound of the lower whisker (scalar
            float).

          - ``whishi``: Upper bound of the upper whisker (scalar
            float).

          Optional keys are:

          - ``mean``: The mean (scalar float). Needed if
            ``showmeans=True``.

          - ``fliers``: Data beyond the whiskers (sequence of floats).
            Needed if ``showfliers=True``.

          - ``cilo`` & ``cihi``: Lower and upper confidence intervals
            about the median. Needed if ``shownotches=True``.

          - ``label``: Name of the dataset (string). If available,
            this will be used a tick label for the boxplot

        positions : array-like, default = [1, 2, ..., n]
          Sets the positions of the boxes. The ticks and limits
          are automatically set to match the positions.

        widths : array-like, default = None
          Either a scalar or a vector and sets the width of each
          box. The default is ``0.15*(distance between extreme
          positions)``, clipped to no less than 0.15 and no more than
          0.5.

        vert : bool, default = True
          If `True` (default), makes the boxes vertical.  If `False`,
          makes horizontal boxes.

        patch_artist : bool, default = False
          If `False` produces boxes with the
          `~matplotlib.lines.Line2D` artist.  If `True` produces boxes
          with the `~matplotlib.patches.Patch` artist.

        shownotches : bool, default = False
          If `False` (default), produces a rectangular box plot.
          If `True`, will produce a notched box plot

        showmeans : bool, default = False
          If `True`, will toggle on the rendering of the means

        showcaps  : bool, default = True
          If `True`, will toggle on the rendering of the caps

        showbox  : bool, default = True
          If `True`, will toggle on the rendering of the box

        showfliers : bool, default = True
          If `True`, will toggle on the rendering of the fliers

        boxprops : dict or None (default)
          If provided, will set the plotting style of the boxes

        whiskerprops : dict or None (default)
          If provided, will set the plotting style of the whiskers

        capprops : dict or None (default)
          If provided, will set the plotting style of the caps

        flierprops : dict or None (default)
          If provided will set the plotting style of the fliers

        medianprops : dict or None (default)
          If provided, will set the plotting style of the medians

        meanprops : dict or None (default)
          If provided, will set the plotting style of the means

        meanline : bool, default = False
          If `True` (and *showmeans* is `True`), will try to render the mean
          as a line spanning the full width of the box according to
          *meanprops*. Not recommended if *shownotches* is also True.
          Otherwise, means will be shown as points.

        manage_ticks : bool, default = True
          If True, the tick locations and labels will be adjusted to match the
          boxplot positions.

        zorder : scalar, default = None
          The zorder of the resulting boxplot.

        Returns
        -------
        result : dict
          A dictionary mapping each component of the boxplot to a list
          of the :class:`matplotlib.lines.Line2D` instances
          created. That dictionary has the following keys (assuming
          vertical boxplots):

          - ``boxes``: the main body of the boxplot showing the
            quartiles and the median's confidence intervals if
            enabled.

          - ``medians``: horizontal lines at the median of each box.

          - ``whiskers``: the vertical lines extending to the most
            extreme, non-outlier data points.

          - ``caps``: the horizontal lines at the ends of the
            whiskers.

          - ``fliers``: points representing data that extend beyond
            the whiskers (fliers).

          - ``means``: points or lines representing the means.

        Examples
        --------

        .. plot:: gallery/statistics/bxp.py

        """
        # lists of artists to be output
        whiskers = []
        caps = []
        boxes = []
        medians = []
        means = []
        fliers = []

        # empty list of xticklabels
        datalabels = []

        # Use default zorder if none specified
        if zorder is None:
            zorder = mlines.Line2D.zorder

        zdelta = 0.1

        def line_props_with_rcdefaults(subkey, explicit, zdelta=0):
            d = {k.split('.')[-1]: v for k, v in rcParams.items()
                 if k.startswith(f'boxplot.{subkey}')}
            d['zorder'] = zorder + zdelta
            if explicit is not None:
                d.update(
                    cbook.normalize_kwargs(explicit, mlines.Line2D._alias_map))
            return d

        # box properties
        if patch_artist:
            final_boxprops = dict(
                linestyle=rcParams['boxplot.boxprops.linestyle'],
                linewidth=rcParams['boxplot.boxprops.linewidth'],
                edgecolor=rcParams['boxplot.boxprops.color'],
                facecolor=('white' if rcParams['_internal.classic_mode'] else
                           rcParams['patch.facecolor']),
                zorder=zorder,
            )
            if boxprops is not None:
                final_boxprops.update(
                    cbook.normalize_kwargs(
                        boxprops, mpatches.PathPatch._alias_map))
        else:
            final_boxprops = line_props_with_rcdefaults('boxprops', boxprops)
        final_whiskerprops = line_props_with_rcdefaults(
            'whiskerprops', whiskerprops)
        final_capprops = line_props_with_rcdefaults(
            'capprops', capprops)
        final_flierprops = line_props_with_rcdefaults(
            'flierprops', flierprops)
        final_medianprops = line_props_with_rcdefaults(
            'medianprops', medianprops, zdelta)
        final_meanprops = line_props_with_rcdefaults(
            'meanprops', meanprops, zdelta)
        removed_prop = 'marker' if meanline else 'linestyle'
        # Only remove the property if it's not set explicitly as a parameter.
        if meanprops is None or removed_prop not in meanprops:
            final_meanprops[removed_prop] = ''

        def to_vc(xs, ys):
            # convert arguments to verts and codes, append (0, 0) (ignored).
            verts = np.append(np.column_stack([xs, ys]), [(0, 0)], 0)
            codes = ([mpath.Path.MOVETO]
                     + [mpath.Path.LINETO] * (len(verts) - 2)
                     + [mpath.Path.CLOSEPOLY])
            return verts, codes

        def patch_list(xs, ys, **kwargs):
            verts, codes = to_vc(xs, ys)
            path = mpath.Path(verts, codes)
            patch = mpatches.PathPatch(path, **kwargs)
            self.add_artist(patch)
            return [patch]

        # vertical or horizontal plot?
        if vert:
            def doplot(*args, **kwargs):
                return self.plot(*args, **kwargs)

            def dopatch(xs, ys, **kwargs):
                return patch_list(xs, ys, **kwargs)

        else:
            def doplot(*args, **kwargs):
                shuffled = []
                for i in range(0, len(args), 2):
                    shuffled.extend([args[i + 1], args[i]])
                return self.plot(*shuffled, **kwargs)

            def dopatch(xs, ys, **kwargs):
                xs, ys = ys, xs  # flip X, Y
                return patch_list(xs, ys, **kwargs)

        # input validation
        N = len(bxpstats)
        datashape_message = ("List of boxplot statistics and `{0}` "
                             "values must have same the length")
        # check position
        if positions is None:
            positions = list(range(1, N + 1))
        elif len(positions) != N:
            raise ValueError(datashape_message.format("positions"))

        positions = np.array(positions)
        if len(positions) > 0 and not isinstance(positions[0], Number):
            raise TypeError("positions should be an iterable of numbers")

        # width
        if widths is None:
            widths = [np.clip(0.15 * np.ptp(positions), 0.15, 0.5)] * N
        elif np.isscalar(widths):
            widths = [widths] * N
        elif len(widths) != N:
            raise ValueError(datashape_message.format("widths"))

        for pos, width, stats in zip(positions, widths, bxpstats):
            # try to find a new label
            datalabels.append(stats.get('label', pos))

            # whisker coords
            whisker_x = np.ones(2) * pos
            whiskerlo_y = np.array([stats['q1'], stats['whislo']])
            whiskerhi_y = np.array([stats['q3'], stats['whishi']])

            # cap coords
            cap_left = pos - width * 0.25
            cap_right = pos + width * 0.25
            cap_x = np.array([cap_left, cap_right])
            cap_lo = np.ones(2) * stats['whislo']
            cap_hi = np.ones(2) * stats['whishi']

            # box and median coords
            box_left = pos - width * 0.5
            box_right = pos + width * 0.5
            med_y = [stats['med'], stats['med']]

            # notched boxes
            if shownotches:
                box_x = [box_left, box_right, box_right, cap_right, box_right,
                         box_right, box_left, box_left, cap_left, box_left,
                         box_left]
                box_y = [stats['q1'], stats['q1'], stats['cilo'],
                         stats['med'], stats['cihi'], stats['q3'],
                         stats['q3'], stats['cihi'], stats['med'],
                         stats['cilo'], stats['q1']]
                med_x = cap_x

            # plain boxes
            else:
                box_x = [box_left, box_right, box_right, box_left, box_left]
                box_y = [stats['q1'], stats['q1'], stats['q3'], stats['q3'],
                         stats['q1']]
                med_x = [box_left, box_right]

            # maybe draw the box:
            if showbox:
                if patch_artist:
                    boxes.extend(dopatch(box_x, box_y, **final_boxprops))
                else:
                    boxes.extend(doplot(box_x, box_y, **final_boxprops))

            # draw the whiskers
            whiskers.extend(doplot(
                whisker_x, whiskerlo_y, **final_whiskerprops
            ))
            whiskers.extend(doplot(
                whisker_x, whiskerhi_y, **final_whiskerprops
            ))

            # maybe draw the caps:
            if showcaps:
                caps.extend(doplot(cap_x, cap_lo, **final_capprops))
                caps.extend(doplot(cap_x, cap_hi, **final_capprops))

            # draw the medians
            medians.extend(doplot(med_x, med_y, **final_medianprops))

            # maybe draw the means
            if showmeans:
                if meanline:
                    means.extend(doplot(
                        [box_left, box_right], [stats['mean'], stats['mean']],
                        **final_meanprops
                    ))
                else:
                    means.extend(doplot(
                        [pos], [stats['mean']], **final_meanprops
                    ))

            # maybe draw the fliers
            if showfliers:
                # fliers coords
                flier_x = np.full(len(stats['fliers']), pos, dtype=np.float64)
                flier_y = stats['fliers']

                fliers.extend(doplot(
                    flier_x, flier_y, **final_flierprops
                ))

        if manage_ticks:
            axis_name = "x" if vert else "y"
            interval = getattr(self.dataLim, f"interval{axis_name}")
            axis = getattr(self, f"{axis_name}axis")
            positions = axis.convert_units(positions)
            # The 0.5 additional padding ensures reasonable-looking boxes
            # even when drawing a single box.  We set the sticky edge to
            # prevent margins expansion, in order to match old behavior (back
            # when separate calls to boxplot() would completely reset the axis
            # limits regardless of what was drawn before).  The sticky edges
            # are attached to the median lines, as they are always present.
            interval[:] = (min(interval[0], min(positions) - .5),
                           max(interval[1], max(positions) + .5))
            for median, position in zip(medians, positions):
                getattr(median.sticky_edges, axis_name).extend(
                    [position - .5, position + .5])
            # Modified from Axis.set_ticks and Axis.set_ticklabels.
            locator = axis.get_major_locator()
            if not isinstance(axis.get_major_locator(),
                              mticker.FixedLocator):
                locator = mticker.FixedLocator([])
                axis.set_major_locator(locator)
            locator.locs = np.array([*locator.locs, *positions])
            formatter = axis.get_major_formatter()
            if not isinstance(axis.get_major_formatter(),
                              mticker.FixedFormatter):
                formatter = mticker.FixedFormatter([])
                axis.set_major_formatter(formatter)
            formatter.seq = [*formatter.seq, *datalabels]

            self.autoscale_view(
                scalex=self._autoscaleXon, scaley=self._autoscaleYon)

        return dict(whiskers=whiskers, caps=caps, boxes=boxes,
                    medians=medians, fliers=fliers, means=means)

    @staticmethod
    def _parse_scatter_color_args(c, edgecolors, kwargs, xshape, yshape,
                                  get_next_color_func):
        """
        Helper function to process color related arguments of `.Axes.scatter`.

        Argument precedence for facecolors:

        - c (if not None)
        - kwargs['facecolors']
        - kwargs['facecolor']
        - kwargs['color'] (==kwcolor)
        - 'b' if in classic mode else the result of ``get_next_color_func()``

        Argument precedence for edgecolors:

        - edgecolors (is an explicit kw argument in scatter())
        - kwargs['edgecolor']
        - kwargs['color'] (==kwcolor)
        - 'face' if not in classic mode else None

        Parameters
        ----------
        c : color or sequence or sequence of color or None
            See argument description of `.Axes.scatter`.
        edgecolors : color or sequence of color or {'face', 'none'} or None
            See argument description of `.Axes.scatter`.
        kwargs : dict
            Additional kwargs. If these keys exist, we pop and process them:
            'facecolors', 'facecolor', 'edgecolor', 'color'
            Note: The dict is modified by this function.
        xshape, yshape : tuple of int
            The shape of the x and y arrays passed to `.Axes.scatter`.
        get_next_color_func : callable
            A callable that returns a color. This color is used as facecolor
            if no other color is provided.

            Note, that this is a function rather than a fixed color value to
            support conditional evaluation of the next color.  As of the
            current implementation obtaining the next color from the
            property cycle advances the cycle. This must only happen if we
            actually use the color, which will only be decided within this
            method.

        Returns
        -------
        c
            The input *c* if it was not *None*, else some color specification
            derived from the other inputs or defaults.
        colors : array(N, 4) or None
            The facecolors as RGBA values or *None* if a colormap is used.
        edgecolors
            The edgecolor specification.

        """
        xsize = functools.reduce(operator.mul, xshape, 1)
        ysize = functools.reduce(operator.mul, yshape, 1)

        facecolors = kwargs.pop('facecolors', None)
        facecolors = kwargs.pop('facecolor', facecolors)
        edgecolors = kwargs.pop('edgecolor', edgecolors)

        kwcolor = kwargs.pop('color', None)

        if kwcolor is not None and c is not None:
            raise ValueError("Supply a 'c' argument or a 'color'"
                             " kwarg but not both; they differ but"
                             " their functionalities overlap.")

        if kwcolor is not None:
            try:
                mcolors.to_rgba_array(kwcolor)
            except ValueError:
                raise ValueError("'color' kwarg must be an mpl color"
                                 " spec or sequence of color specs.\n"
                                 "For a sequence of values to be color-mapped,"
                                 " use the 'c' argument instead.")
            if edgecolors is None:
                edgecolors = kwcolor
            if facecolors is None:
                facecolors = kwcolor

        if edgecolors is None and not rcParams['_internal.classic_mode']:
            edgecolors = rcParams['scatter.edgecolors']

        c_was_none = c is None
        if c is None:
            c = (facecolors if facecolors is not None
                 else "b" if rcParams['_internal.classic_mode']
                 else get_next_color_func())

        # After this block, c_array will be None unless
        # c is an array for mapping.  The potential ambiguity
        # with a sequence of 3 or 4 numbers is resolved in
        # favor of mapping, not rgb or rgba.
        # Convenience vars to track shape mismatch *and* conversion failures.
        valid_shape = True  # will be put to the test!
        n_elem = -1  # used only for (some) exceptions

        if (c_was_none or
                kwcolor is not None or
                isinstance(c, str) or
                (isinstance(c, collections.abc.Iterable) and
                     len(c) > 0 and
                     isinstance(cbook.safe_first_element(c), str))):
            c_array = None
        else:
            try:  # First, does 'c' look suitable for value-mapping?
                c_array = np.asanyarray(c, dtype=float)
                n_elem = c_array.shape[0]
                if c_array.shape in [xshape, yshape]:
                    c = np.ma.ravel(c_array)
                else:
                    if c_array.shape in ((3,), (4,)):
                        _log.warning(
                            "'c' argument looks like a single numeric RGB or "
                            "RGBA sequence, which should be avoided as value-"
                            "mapping will have precedence in case its length "
                            "matches with 'x' & 'y'.  Please use a 2-D array "
                            "with a single row if you really want to specify "
                            "the same RGB or RGBA value for all points.")
                    # Wrong size; it must not be intended for mapping.
                    valid_shape = False
                    c_array = None
            except ValueError:
                # Failed to make a floating-point array; c must be color specs.
                c_array = None
        if c_array is None:
            try:  # Then is 'c' acceptable as PathCollection facecolors?
                colors = mcolors.to_rgba_array(c)
                n_elem = colors.shape[0]
                if colors.shape[0] not in (0, 1, xsize, ysize):
                    # NB: remember that a single color is also acceptable.
                    # Besides *colors* will be an empty array if c == 'none'.
                    valid_shape = False
                    raise ValueError
            except ValueError:
                if not valid_shape:  # but at least one conversion succeeded.
                    raise ValueError(
                        "'c' argument has {nc} elements, which is not "
                        "acceptable for use with 'x' with size {xs}, "
                        "'y' with size {ys}."
                            .format(nc=n_elem, xs=xsize, ys=ysize)
                    )
                else:
                    # Both the mapping *and* the RGBA conversion failed: pretty
                    # severe failure => one may appreciate a verbose feedback.
                    raise ValueError(
                        "'c' argument must be a mpl color, a sequence of mpl "
                        "colors or a sequence of numbers, not {}."
                            .format(c)  # note: could be long depending on c
                    )
        else:
            colors = None  # use cmap, norm after collection is created
        return c, colors, edgecolors

    @_preprocess_data(replace_names=["x", "y", "s", "linewidths",
                                     "edgecolors", "c", "facecolor",
                                     "facecolors", "color"],
                      label_namer="y")
    def scatter(self, x, y, s=None, c=None, marker=None, cmap=None, norm=None,
                vmin=None, vmax=None, alpha=None, linewidths=None,
                verts=None, edgecolors=None, *, plotnonfinite=False,
                **kwargs):
        """
        A scatter plot of *y* vs *x* with varying marker size and/or color.

        Parameters
        ----------
        x, y : array_like, shape (n, )
            The data positions.

        s : scalar or array_like, shape (n, ), optional
            The marker size in points**2.
            Default is ``rcParams['lines.markersize'] ** 2``.

        c : color, sequence, or sequence of color, optional
            The marker color. Possible values:

            - A single color format string.
            - A sequence of color specifications of length n.
            - A sequence of n numbers to be mapped to colors using *cmap* and
              *norm*.
            - A 2-D array in which the rows are RGB or RGBA.

            Note that *c* should not be a single numeric RGB or RGBA sequence
            because that is indistinguishable from an array of values to be
            colormapped. If you want to specify the same RGB or RGBA value for
            all points, use a 2-D array with a single row.  Otherwise, value-
            matching will have precedence in case of a size matching with *x*
            and *y*.

            Defaults to ``None``. In that case the marker color is determined
            by the value of ``color``, ``facecolor`` or ``facecolors``. In case
            those are not specified or ``None``, the marker color is determined
            by the next color of the ``Axes``' current "shape and fill" color
            cycle. This cycle defaults to :rc:`axes.prop_cycle`.

        marker : `~matplotlib.markers.MarkerStyle`, optional
            The marker style. *marker* can be either an instance of the class
            or the text shorthand for a particular marker.
            Defaults to ``None``, in which case it takes the value of
            :rc:`scatter.marker` = 'o'.
            See `~matplotlib.markers` for more information about marker styles.

        cmap : `~matplotlib.colors.Colormap`, optional, default: None
            A `.Colormap` instance or registered colormap name. *cmap* is only
            used if *c* is an array of floats. If ``None``, defaults to rc
            ``image.cmap``.

        norm : `~matplotlib.colors.Normalize`, optional, default: None
            A `.Normalize` instance is used to scale luminance data to 0, 1.
            *norm* is only used if *c* is an array of floats. If *None*, use
            the default `.colors.Normalize`.

        vmin, vmax : scalar, optional, default: None
            *vmin* and *vmax* are used in conjunction with *norm* to normalize
            luminance data. If None, the respective min and max of the color
            array is used. *vmin* and *vmax* are ignored if you pass a *norm*
            instance.

        alpha : scalar, optional, default: None
            The alpha blending value, between 0 (transparent) and 1 (opaque).

        linewidths : scalar or array_like, optional, default: None
            The linewidth of the marker edges. Note: The default *edgecolors*
            is 'face'. You may want to change this as well.
            If *None*, defaults to rcParams ``lines.linewidth``.

        edgecolors : {'face', 'none', *None*} or color or sequence of color, \
optional.
            The edge color of the marker. Possible values:

            - 'face': The edge color will always be the same as the face color.
            - 'none': No patch boundary will be drawn.
            - A Matplotlib color or sequence of color.

            Defaults to ``None``, in which case it takes the value of
            :rc:`scatter.edgecolors` = 'face'.

            For non-filled markers, the *edgecolors* kwarg is ignored and
            forced to 'face' internally.

        plotnonfinite : boolean, optional, default: False
            Set to plot points with nonfinite *c*, in conjunction with
            `~matplotlib.colors.Colormap.set_bad`.

        Returns
        -------
        paths : `~matplotlib.collections.PathCollection`

        Other Parameters
        ----------------
        **kwargs : `~matplotlib.collections.Collection` properties

        See Also
        --------
        plot : To plot scatter plots when markers are identical in size and
            color.

        Notes
        -----

        * The `.plot` function will be faster for scatterplots where markers
          don't vary in size or color.

        * Any or all of *x*, *y*, *s*, and *c* may be masked arrays, in which
          case all masks will be combined and only unmasked points will be
          plotted.

        * Fundamentally, scatter works with 1-D arrays; *x*, *y*, *s*, and *c*
          may be input as 2-D arrays, but within scatter they will be
          flattened. The exception is *c*, which will be flattened only if its
          size matches the size of *x* and *y*.

        """
        # Process **kwargs to handle aliases, conflicts with explicit kwargs:

        self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs)
        x = self.convert_xunits(x)
        y = self.convert_yunits(y)

        # np.ma.ravel yields an ndarray, not a masked array,
        # unless its argument is a masked array.
        xshape, yshape = np.shape(x), np.shape(y)
        x = np.ma.ravel(x)
        y = np.ma.ravel(y)
        if x.size != y.size:
            raise ValueError("x and y must be the same size")

        if s is None:
            s = (20 if rcParams['_internal.classic_mode'] else
                 rcParams['lines.markersize'] ** 2.0)
        s = np.ma.ravel(s)  # This doesn't have to match x, y in size.

        c, colors, edgecolors = \
            self._parse_scatter_color_args(
                c, edgecolors, kwargs, xshape, yshape,
                get_next_color_func=self._get_patches_for_fill.get_next_color)

        if plotnonfinite and colors is None:
            c = np.ma.masked_invalid(c)
            x, y, s, edgecolors, linewidths = \
                cbook._combine_masks(x, y, s, edgecolors, linewidths)
        else:
            x, y, s, c, colors, edgecolors, linewidths = \
                cbook._combine_masks(
                    x, y, s, c, colors, edgecolors, linewidths)

        scales = s   # Renamed for readability below.

        # to be API compatible
        if verts is not None:
            cbook.warn_deprecated("3.0", name="'verts'", obj_type="kwarg",
                                  alternative="'marker'")
            if marker is None:
                marker = verts

        # load default marker from rcParams
        if marker is None:
            marker = rcParams['scatter.marker']

        if isinstance(marker, mmarkers.MarkerStyle):
            marker_obj = marker
        else:
            marker_obj = mmarkers.MarkerStyle(marker)

        path = marker_obj.get_path().transformed(
            marker_obj.get_transform())
        if not marker_obj.is_filled():
            edgecolors = 'face'
            linewidths = rcParams['lines.linewidth']

        offsets = np.ma.column_stack([x, y])

        collection = mcoll.PathCollection(
                (path,), scales,
                facecolors=colors,
                edgecolors=edgecolors,
                linewidths=linewidths,
                offsets=offsets,
                transOffset=kwargs.pop('transform', self.transData),
                alpha=alpha
                )
        collection.set_transform(mtransforms.IdentityTransform())
        collection.update(kwargs)

        if colors is None:
            if norm is not None and not isinstance(norm, mcolors.Normalize):
                raise ValueError(
                    "'norm' must be an instance of 'mcolors.Normalize'")
            collection.set_array(c)
            collection.set_cmap(cmap)
            collection.set_norm(norm)

            if vmin is not None or vmax is not None:
                collection.set_clim(vmin, vmax)
            else:
                collection.autoscale_None()

        # Classic mode only:
        # ensure there are margins to allow for the
        # finite size of the symbols.  In v2.x, margins
        # are present by default, so we disable this
        # scatter-specific override.
        if rcParams['_internal.classic_mode']:
            if self._xmargin < 0.05 and x.size > 0:
                self.set_xmargin(0.05)
            if self._ymargin < 0.05 and x.size > 0:
                self.set_ymargin(0.05)

        self.add_collection(collection)
        self.autoscale_view()

        return collection

    @_preprocess_data(replace_names=["x", "y"], label_namer="y")
    @docstring.dedent_interpd
    def hexbin(self, x, y, C=None, gridsize=100, bins=None,
               xscale='linear', yscale='linear', extent=None,
               cmap=None, norm=None, vmin=None, vmax=None,
               alpha=None, linewidths=None, edgecolors='face',
               reduce_C_function=np.mean, mincnt=None, marginals=False,
               **kwargs):
        """
        Make a 2D hexagonal binning plot of points *x*, *y*.

        If *C* is *None*, the value of the hexagon is determined by the number
        of points in the hexagon. Otherwise, *C* specifies values at the
        coordinate (x[i], y[i]). For each hexagon, these values are reduced
        using *reduce_C_function*.

        Parameters
        ----------
        x, y : array-like
            The data positions. *x* and *y* must be of the same length.

        C : array-like, optional
            If given, these values are accumulated in the bins. Otherwise,
            every point has a value of 1. Must be of the same length as *x*
            and *y*.

        gridsize : int or (int, int), default: 100
            If a single int, the number of hexagons in the *x*-direction.
            The number of hexagons in the *y*-direction is chosen such that
            the hexagons are approximately regular.

            Alternatively, if a tuple (*nx*, *ny*), the number of hexagons
            in the *x*-direction and the *y*-direction.

        bins : 'log' or int or sequence, default: *None*
            Discretization of the hexagon values.

            - If *None*, no binning is applied; the color of each hexagon
              directly corresponds to its count value.
            - If 'log', use a logarithmic scale for the color map.
              Internally, :math:`log_{10}(i+1)` is used to determine the
              hexagon color. This is equivalent to ``norm=LogNorm()``.
            - If an integer, divide the counts in the specified number
              of bins, and color the hexagons accordingly.
            - If a sequence of values, the values of the lower bound of
              the bins to be used.

        xscale : {'linear', 'log'}, default: 'linear'
            Use a linear or log10 scale on the horizontal axis.

        yscale : {'linear', 'log'}, default: 'linear'
            Use a linear or log10 scale on the vertical axis.

        mincnt : int > 0, default: *None*
            If not *None*, only display cells with more than *mincnt*
            number of points in the cell.

        marginals : bool, default: *False*
            If marginals is *True*, plot the marginal density as
            colormapped rectangles along the bottom of the x-axis and
            left of the y-axis.

        extent : float, default: *None*
            The limits of the bins. The default assigns the limits
            based on *gridsize*, *x*, *y*, *xscale* and *yscale*.

            If *xscale* or *yscale* is set to 'log', the limits are
            expected to be the exponent for a power of 10. E.g. for
            x-limits of 1 and 50 in 'linear' scale and y-limits
            of 10 and 1000 in 'log' scale, enter (1, 50, 1, 3).

            Order of scalars is (left, right, bottom, top).

        Other Parameters
        ----------------
        cmap : str or `~matplotlib.colors.Colormap`, optional
            The Colormap instance or registered colormap name used to map
            the bin values to colors. Defaults to :rc:`image.cmap`.

        norm : `~matplotlib.colors.Normalize`, optional
            The Normalize instance scales the bin values to the canonical
            colormap range [0, 1] for mapping to colors. By default, the data
            range is mapped to the colorbar range using linear scaling.

        vmin, vmax : float, optional, default: None
            The colorbar range. If *None*, suitable min/max values are
            automatically chosen by the `~.Normalize` instance (defaults to
            the respective min/max values of the bins in case of the default
            linear scaling). This is ignored if *norm* is given.

        alpha : float between 0 and 1, optional
            The alpha blending value, between 0 (transparent) and 1 (opaque).

        linewidths : float, default: *None*
            If *None*, defaults to 1.0.

        edgecolors : {'face', 'none', *None*} or color, default: 'face'
            The color of the hexagon edges. Possible values are:

            - 'face': Draw the edges in the same color as the fill color.
            - 'none': No edges are drawn. This can sometimes lead to unsightly
              unpainted pixels between the hexagons.
            - *None*: Draw outlines in the default color.
            - An explicit matplotlib color.

        reduce_C_function : callable, default is `numpy.mean`
            The function to aggregate *C* within the bins. It is ignored if
            *C* is not given. This must have the signature::

                def reduce_C_function(C: array) -> float

            Commonly used functions are:

            - `numpy.mean`: average of the points
            - `numpy.sum`: integral of the point values
            - `numpy.max`: value taken from the largest point

        **kwargs : `~matplotlib.collections.PolyCollection` properties
            All other keyword arguments are passed on to `.PolyCollection`:

            %(PolyCollection)s

        Returns
        -------
        polycollection : `~matplotlib.collections.PolyCollection`
            A `.PolyCollection` defining the hexagonal bins.

            - `.PolyCollection.get_offset` contains a Mx2 array containing
              the x, y positions of the M hexagon centers.
            - `.PolyCollection.get_array` contains the values of the M
              hexagons.

            If *marginals* is *True*, horizontal
            bar and vertical bar (both PolyCollections) will be attached
            to the return collection as attributes *hbar* and *vbar*.

        """
        self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs)

        x, y, C = cbook.delete_masked_points(x, y, C)

        # Set the size of the hexagon grid
        if np.iterable(gridsize):
            nx, ny = gridsize
        else:
            nx = gridsize
            ny = int(nx / math.sqrt(3))
        # Count the number of data in each hexagon
        x = np.array(x, float)
        y = np.array(y, float)
        if xscale == 'log':
            if np.any(x <= 0.0):
                raise ValueError("x contains non-positive values, so can not"
                                 " be log-scaled")
            x = np.log10(x)
        if yscale == 'log':
            if np.any(y <= 0.0):
                raise ValueError("y contains non-positive values, so can not"
                                 " be log-scaled")
            y = np.log10(y)
        if extent is not None:
            xmin, xmax, ymin, ymax = extent
        else:
            xmin, xmax = (np.min(x), np.max(x)) if len(x) else (0, 1)
            ymin, ymax = (np.min(y), np.max(y)) if len(y) else (0, 1)

            # to avoid issues with singular data, expand the min/max pairs
            xmin, xmax = mtransforms.nonsingular(xmin, xmax, expander=0.1)
            ymin, ymax = mtransforms.nonsingular(ymin, ymax, expander=0.1)

        # In the x-direction, the hexagons exactly cover the region from
        # xmin to xmax. Need some padding to avoid roundoff errors.
        padding = 1.e-9 * (xmax - xmin)
        xmin -= padding
        xmax += padding
        sx = (xmax - xmin) / nx
        sy = (ymax - ymin) / ny

        if marginals:
            xorig = x.copy()
            yorig = y.copy()

        x = (x - xmin) / sx
        y = (y - ymin) / sy
        ix1 = np.round(x).astype(int)
        iy1 = np.round(y).astype(int)
        ix2 = np.floor(x).astype(int)
        iy2 = np.floor(y).astype(int)

        nx1 = nx + 1
        ny1 = ny + 1
        nx2 = nx
        ny2 = ny
        n = nx1 * ny1 + nx2 * ny2

        d1 = (x - ix1) ** 2 + 3.0 * (y - iy1) ** 2
        d2 = (x - ix2 - 0.5) ** 2 + 3.0 * (y - iy2 - 0.5) ** 2
        bdist = (d1 < d2)
        if C is None:
            lattice1 = np.zeros((nx1, ny1))
            lattice2 = np.zeros((nx2, ny2))

            cond1 = (0 <= ix1) * (ix1 < nx1) * (0 <= iy1) * (iy1 < ny1)
            cond2 = (0 <= ix2) * (ix2 < nx2) * (0 <= iy2) * (iy2 < ny2)

            cond1 *= bdist
            cond2 *= np.logical_not(bdist)
            ix1, iy1 = ix1[cond1], iy1[cond1]
            ix2, iy2 = ix2[cond2], iy2[cond2]

            for ix, iy in zip(ix1, iy1):
                lattice1[ix, iy] += 1
            for ix, iy in zip(ix2, iy2):
                lattice2[ix, iy] += 1

            # threshold
            if mincnt is not None:
                lattice1[lattice1 < mincnt] = np.nan
                lattice2[lattice2 < mincnt] = np.nan
            accum = np.hstack((lattice1.ravel(),
                               lattice2.ravel()))
            good_idxs = ~np.isnan(accum)

        else:
            if mincnt is None:
                mincnt = 0

            # create accumulation arrays
            lattice1 = np.empty((nx1, ny1), dtype=object)
            for i in range(nx1):
                for j in range(ny1):
                    lattice1[i, j] = []
            lattice2 = np.empty((nx2, ny2), dtype=object)
            for i in range(nx2):
                for j in range(ny2):
                    lattice2[i, j] = []

            for i in range(len(x)):
                if bdist[i]:
                    if 0 <= ix1[i] < nx1 and 0 <= iy1[i] < ny1:
                        lattice1[ix1[i], iy1[i]].append(C[i])
                else:
                    if 0 <= ix2[i] < nx2 and 0 <= iy2[i] < ny2:
                        lattice2[ix2[i], iy2[i]].append(C[i])

            for i in range(nx1):
                for j in range(ny1):
                    vals = lattice1[i, j]
                    if len(vals) > mincnt:
                        lattice1[i, j] = reduce_C_function(vals)
                    else:
                        lattice1[i, j] = np.nan
            for i in range(nx2):
                for j in range(ny2):
                    vals = lattice2[i, j]
                    if len(vals) > mincnt:
                        lattice2[i, j] = reduce_C_function(vals)
                    else:
                        lattice2[i, j] = np.nan

            accum = np.hstack((lattice1.astype(float).ravel(),
                               lattice2.astype(float).ravel()))
            good_idxs = ~np.isnan(accum)

        offsets = np.zeros((n, 2), float)
        offsets[:nx1 * ny1, 0] = np.repeat(np.arange(nx1), ny1)
        offsets[:nx1 * ny1, 1] = np.tile(np.arange(ny1), nx1)
        offsets[nx1 * ny1:, 0] = np.repeat(np.arange(nx2) + 0.5, ny2)
        offsets[nx1 * ny1:, 1] = np.tile(np.arange(ny2), nx2) + 0.5
        offsets[:, 0] *= sx
        offsets[:, 1] *= sy
        offsets[:, 0] += xmin
        offsets[:, 1] += ymin
        # remove accumulation bins with no data
        offsets = offsets[good_idxs, :]
        accum = accum[good_idxs]

        polygon = np.zeros((6, 2), float)
        polygon[:, 0] = sx * np.array([0.5, 0.5, 0.0, -0.5, -0.5, 0.0])
        polygon[:, 1] = sy * np.array([-0.5, 0.5, 1.0, 0.5, -0.5, -1.0]) / 3.0

        if linewidths is None:
            linewidths = [1.0]

        if xscale == 'log' or yscale == 'log':
            polygons = np.expand_dims(polygon, 0) + np.expand_dims(offsets, 1)
            if xscale == 'log':
                polygons[:, :, 0] = 10.0 ** polygons[:, :, 0]
                xmin = 10.0 ** xmin
                xmax = 10.0 ** xmax
                self.set_xscale(xscale)
            if yscale == 'log':
                polygons[:, :, 1] = 10.0 ** polygons[:, :, 1]
                ymin = 10.0 ** ymin
                ymax = 10.0 ** ymax
                self.set_yscale(yscale)
            collection = mcoll.PolyCollection(
                polygons,
                edgecolors=edgecolors,
                linewidths=linewidths,
                )
        else:
            collection = mcoll.PolyCollection(
                [polygon],
                edgecolors=edgecolors,
                linewidths=linewidths,
                offsets=offsets,
                transOffset=mtransforms.IdentityTransform(),
                offset_position="data"
                )

        # Check for valid norm
        if norm is not None and not isinstance(norm, mcolors.Normalize):
            msg = "'norm' must be an instance of 'mcolors.Normalize'"
            raise ValueError(msg)

        # Set normalizer if bins is 'log'
        if bins == 'log':
            if norm is not None:
                cbook._warn_external("Only one of 'bins' and 'norm' "
                                     "arguments can be supplied, ignoring "
                                     "bins={}".format(bins))
            else:
                norm = mcolors.LogNorm()
            bins = None

        if isinstance(norm, mcolors.LogNorm):
            if (accum == 0).any():
                # make sure we have no zeros
                accum += 1

        # autoscale the norm with curren accum values if it hasn't
        # been set
        if norm is not None:
            if norm.vmin is None and norm.vmax is None:
                norm.autoscale(accum)

        if bins is not None:
            if not np.iterable(bins):
                minimum, maximum = min(accum), max(accum)
                bins -= 1  # one less edge than bins
                bins = minimum + (maximum - minimum) * np.arange(bins) / bins
            bins = np.sort(bins)
            accum = bins.searchsorted(accum)

        collection.set_array(accum)
        collection.set_cmap(cmap)
        collection.set_norm(norm)
        collection.set_alpha(alpha)
        collection.update(kwargs)

        if vmin is not None or vmax is not None:
            collection.set_clim(vmin, vmax)
        else:
            collection.autoscale_None()

        corners = ((xmin, ymin), (xmax, ymax))
        self.update_datalim(corners)
        collection.sticky_edges.x[:] = [xmin, xmax]
        collection.sticky_edges.y[:] = [ymin, ymax]
        self.autoscale_view(tight=True)

        # add the collection last
        self.add_collection(collection, autolim=False)
        if not marginals:
            return collection

        if C is None:
            C = np.ones(len(x))

        def coarse_bin(x, y, coarse):
            ind = coarse.searchsorted(x).clip(0, len(coarse) - 1)
            mus = np.zeros(len(coarse))
            for i in range(len(coarse)):
                yi = y[ind == i]
                if len(yi) > 0:
                    mu = reduce_C_function(yi)
                else:
                    mu = np.nan
                mus[i] = mu
            return mus

        coarse = np.linspace(xmin, xmax, gridsize)

        xcoarse = coarse_bin(xorig, C, coarse)
        valid = ~np.isnan(xcoarse)
        verts, values = [], []
        for i, val in enumerate(xcoarse):
            thismin = coarse[i]
            if i < len(coarse) - 1:
                thismax = coarse[i + 1]
            else:
                thismax = thismin + np.diff(coarse)[-1]

            if not valid[i]:
                continue

            verts.append([(thismin, 0),
                          (thismin, 0.05),
                          (thismax, 0.05),
                          (thismax, 0)])
            values.append(val)

        values = np.array(values)
        trans = self.get_xaxis_transform(which='grid')

        hbar = mcoll.PolyCollection(verts, transform=trans, edgecolors='face')

        hbar.set_array(values)
        hbar.set_cmap(cmap)
        hbar.set_norm(norm)
        hbar.set_alpha(alpha)
        hbar.update(kwargs)
        self.add_collection(hbar, autolim=False)

        coarse = np.linspace(ymin, ymax, gridsize)
        ycoarse = coarse_bin(yorig, C, coarse)
        valid = ~np.isnan(ycoarse)
        verts, values = [], []
        for i, val in enumerate(ycoarse):
            thismin = coarse[i]
            if i < len(coarse) - 1:
                thismax = coarse[i + 1]
            else:
                thismax = thismin + np.diff(coarse)[-1]
            if not valid[i]:
                continue
            verts.append([(0, thismin), (0.0, thismax),
                          (0.05, thismax), (0.05, thismin)])
            values.append(val)

        values = np.array(values)

        trans = self.get_yaxis_transform(which='grid')

        vbar = mcoll.PolyCollection(verts, transform=trans, edgecolors='face')
        vbar.set_array(values)
        vbar.set_cmap(cmap)
        vbar.set_norm(norm)
        vbar.set_alpha(alpha)
        vbar.update(kwargs)
        self.add_collection(vbar, autolim=False)

        collection.hbar = hbar
        collection.vbar = vbar

        def on_changed(collection):
            hbar.set_cmap(collection.get_cmap())
            hbar.set_clim(collection.get_clim())
            vbar.set_cmap(collection.get_cmap())
            vbar.set_clim(collection.get_clim())

        collection.callbacksSM.connect('changed', on_changed)

        return collection

    @docstring.dedent_interpd
    def arrow(self, x, y, dx, dy, **kwargs):
        """
        Add an arrow to the axes.

        This draws an arrow from ``(x, y)`` to ``(x+dx, y+dy)``.

        Parameters
        ----------
        x, y : float
            The x and y coordinates of the arrow base.
        dx, dy : float
            The length of the arrow along x and y direction.

        Returns
        -------
        arrow : `.FancyArrow`
            The created `.FancyArrow` object.

        Other Parameters
        ----------------
        **kwargs
            Optional kwargs (inherited from `.FancyArrow` patch) control the
            arrow construction and properties:

        %(FancyArrow)s

        Notes
        -----
        The resulting arrow is affected by the axes aspect ratio and limits.
        This may produce an arrow whose head is not square with its stem. To
        create an arrow whose head is square with its stem,
        use :meth:`annotate` for example:

        >>> ax.annotate("", xy=(0.5, 0.5), xytext=(0, 0),
        ...             arrowprops=dict(arrowstyle="->"))

        """
        # Strip away units for the underlying patch since units
        # do not make sense to most patch-like code
        x = self.convert_xunits(x)
        y = self.convert_yunits(y)
        dx = self.convert_xunits(dx)
        dy = self.convert_yunits(dy)

        a = mpatches.FancyArrow(x, y, dx, dy, **kwargs)
        self.add_artist(a)
        return a

    def quiverkey(self, Q, X, Y, U, label, **kw):
        qk = mquiver.QuiverKey(Q, X, Y, U, label, **kw)
        self.add_artist(qk)
        return qk
    quiverkey.__doc__ = mquiver.QuiverKey.quiverkey_doc

    # Handle units for x and y, if they've been passed
    def _quiver_units(self, args, kw):
        if len(args) > 3:
            x, y = args[0:2]
            self._process_unit_info(xdata=x, ydata=y, kwargs=kw)
            x = self.convert_xunits(x)
            y = self.convert_yunits(y)
            return (x, y) + args[2:]
        return args

    # args can by a combination if X, Y, U, V, C and all should be replaced
    @_preprocess_data()
    def quiver(self, *args, **kw):
        # Make sure units are handled for x and y values
        args = self._quiver_units(args, kw)

        q = mquiver.Quiver(self, *args, **kw)

        self.add_collection(q, autolim=True)
        self.autoscale_view()
        return q
    quiver.__doc__ = mquiver.Quiver.quiver_doc

    # args can be some combination of X, Y, U, V, C and all should be replaced
    @_preprocess_data()
    @docstring.dedent_interpd
    def barbs(self, *args, **kw):
        """
        %(barbs_doc)s
        """
        # Make sure units are handled for x and y values
        args = self._quiver_units(args, kw)

        b = mquiver.Barbs(self, *args, **kw)
        self.add_collection(b, autolim=True)
        self.autoscale_view()
        return b

    # Uses a custom implementation of data-kwarg handling in
    # _process_plot_var_args.
    def fill(self, *args, data=None, **kwargs):
        """
        Plot filled polygons.

        Parameters
        ----------
        *args : sequence of x, y, [color]
            Each polygon is defined by the lists of *x* and *y* positions of
            its nodes, optionally followed by a *color* specifier. See
            :mod:`matplotlib.colors` for supported color specifiers. The
            standard color cycle is used for polygons without a color
            specifier.

            You can plot multiple polygons by providing multiple *x*, *y*,
            *[color]* groups.

            For example, each of the following is legal::

                ax.fill(x, y)                    # a polygon with default color
                ax.fill(x, y, "b")               # a blue polygon
                ax.fill(x, y, x2, y2)            # two polygons
                ax.fill(x, y, "b", x2, y2, "r")  # a blue and a red polygon

        data : indexable object, optional
            An object with labelled data. If given, provide the label names to
            plot in *x* and *y*, e.g.::

                ax.fill("time", "signal",
                        data={"time": [0, 1, 2], "signal": [0, 1, 0]})

        Returns
        -------
        a list of :class:`~matplotlib.patches.Polygon`

        Other Parameters
        ----------------
        **kwargs : :class:`~matplotlib.patches.Polygon` properties

        Notes
        -----
        Use :meth:`fill_between` if you would like to fill the region between
        two curves.
        """
        # For compatibility(!), get aliases from Line2D rather than Patch.
        kwargs = cbook.normalize_kwargs(kwargs, mlines.Line2D._alias_map)

        patches = []
        for poly in self._get_patches_for_fill(*args, data=data, **kwargs):
            self.add_patch(poly)
            patches.append(poly)
        self.autoscale_view()
        return patches

    @_preprocess_data(replace_names=["x", "y1", "y2", "where"])
    @docstring.dedent_interpd
    def fill_between(self, x, y1, y2=0, where=None, interpolate=False,
                     step=None, **kwargs):
        """
        Fill the area between two horizontal curves.

        The curves are defined by the points (*x*, *y1*) and (*x*, *y2*). This
        creates one or multiple polygons describing the filled area.

        You may exclude some horizontal sections from filling using *where*.

        By default, the edges connect the given points directly. Use *step* if
        the filling should be a step function, i.e. constant in between *x*.


        Parameters
        ----------
        x : array (length N)
            The x coordinates of the nodes defining the curves.

        y1 : array (length N) or scalar
            The y coordinates of the nodes defining the first curve.

        y2 : array (length N) or scalar, optional, default: 0
            The y coordinates of the nodes defining the second curve.

        where : array of bool (length N), optional, default: None
            Define *where* to exclude some horizontal regions from being
            filled. The filled regions are defined by the coordinates
            ``x[where]``.  More precisely, fill between ``x[i]`` and ``x[i+1]``
            if ``where[i] and where[i+1]``.  Note that this definition implies
            that an isolated *True* value between two *False* values in
            *where* will not result in filling.  Both sides of the *True*
            position remain unfilled due to the adjacent *False* values.

        interpolate : bool, optional
            This option is only relevant if *where* is used and the two curves
            are crossing each other.

            Semantically, *where* is often used for *y1* > *y2* or similar.
            By default, the nodes of the polygon defining the filled region
            will only be placed at the positions in the *x* array.  Such a
            polygon cannot describe the above semantics close to the
            intersection.  The x-sections containing the intersection are
            simply clipped.

            Setting *interpolate* to *True* will calculate the actual
            intersection point and extend the filled region up to this point.

        step : {'pre', 'post', 'mid'}, optional
            Define *step* if the filling should be a step function,
            i.e. constant in between *x*. The value determines where the
            step will occur:

            - 'pre': The y value is continued constantly to the left from
              every *x* position, i.e. the interval ``(x[i-1], x[i]]`` has the
              value ``y[i]``.
            - 'post': The y value is continued constantly to the right from
              every *x* position, i.e. the interval ``[x[i], x[i+1])`` has the
              value ``y[i]``.
            - 'mid': Steps occur half-way between the *x* positions.

        Other Parameters
        ----------------
        **kwargs
            All other keyword arguments are passed on to `.PolyCollection`.
            They control the `.Polygon` properties:

            %(PolyCollection)s

        Returns
        -------
        `.PolyCollection`
            A `.PolyCollection` containing the plotted polygons.

        See Also
        --------
        fill_betweenx : Fill between two sets of x-values.

        Notes
        -----
        .. [notes section required to get data note injection right]

        """
        if not rcParams['_internal.classic_mode']:
            kwargs = cbook.normalize_kwargs(
                kwargs, mcoll.Collection._alias_map)
            if not any(c in kwargs for c in ('color', 'facecolor')):
                kwargs['facecolor'] = \
                    self._get_patches_for_fill.get_next_color()

        # Handle united data, such as dates
        self._process_unit_info(xdata=x, ydata=y1, kwargs=kwargs)
        self._process_unit_info(ydata=y2)

        # Convert the arrays so we can work with them
        x = ma.masked_invalid(self.convert_xunits(x))
        y1 = ma.masked_invalid(self.convert_yunits(y1))
        y2 = ma.masked_invalid(self.convert_yunits(y2))

        for name, array in [('x', x), ('y1', y1), ('y2', y2)]:
            if array.ndim > 1:
                raise ValueError('Input passed into argument "%r"' % name +
                                 'is not 1-dimensional.')

        if where is None:
            where = True
        where = where & ~functools.reduce(np.logical_or,
                                          map(np.ma.getmask, [x, y1, y2]))

        x, y1, y2 = np.broadcast_arrays(np.atleast_1d(x), y1, y2)

        polys = []
        for ind0, ind1 in cbook.contiguous_regions(where):
            xslice = x[ind0:ind1]
            y1slice = y1[ind0:ind1]
            y2slice = y2[ind0:ind1]
            if step is not None:
                step_func = cbook.STEP_LOOKUP_MAP["steps-" + step]
                xslice, y1slice, y2slice = step_func(xslice, y1slice, y2slice)

            if not len(xslice):
                continue

            N = len(xslice)
            X = np.zeros((2 * N + 2, 2), float)

            if interpolate:
                def get_interp_point(ind):
                    im1 = max(ind - 1, 0)
                    x_values = x[im1:ind + 1]
                    diff_values = y1[im1:ind + 1] - y2[im1:ind + 1]
                    y1_values = y1[im1:ind + 1]

                    if len(diff_values) == 2:
                        if np.ma.is_masked(diff_values[1]):
                            return x[im1], y1[im1]
                        elif np.ma.is_masked(diff_values[0]):
                            return x[ind], y1[ind]

                    diff_order = diff_values.argsort()
                    diff_root_x = np.interp(
                        0, diff_values[diff_order], x_values[diff_order])
                    x_order = x_values.argsort()
                    diff_root_y = np.interp(diff_root_x, x_values[x_order],
                                            y1_values[x_order])
                    return diff_root_x, diff_root_y

                start = get_interp_point(ind0)
                end = get_interp_point(ind1)
            else:
                # the purpose of the next two lines is for when y2 is a
                # scalar like 0 and we want the fill to go all the way
                # down to 0 even if none of the y1 sample points do
                start = xslice[0], y2slice[0]
                end = xslice[-1], y2slice[-1]

            X[0] = start
            X[N + 1] = end

            X[1:N + 1, 0] = xslice
            X[1:N + 1, 1] = y1slice
            X[N + 2:, 0] = xslice[::-1]
            X[N + 2:, 1] = y2slice[::-1]

            polys.append(X)

        collection = mcoll.PolyCollection(polys, **kwargs)

        # now update the datalim and autoscale
        XY1 = np.array([x[where], y1[where]]).T
        XY2 = np.array([x[where], y2[where]]).T
        self.dataLim.update_from_data_xy(XY1, self.ignore_existing_data_limits,
                                         updatex=True, updatey=True)
        self.ignore_existing_data_limits = False
        self.dataLim.update_from_data_xy(XY2, self.ignore_existing_data_limits,
                                         updatex=False, updatey=True)
        self.add_collection(collection, autolim=False)
        self.autoscale_view()
        return collection

    @_preprocess_data(replace_names=["y", "x1", "x2", "where"])
    @docstring.dedent_interpd
    def fill_betweenx(self, y, x1, x2=0, where=None,
                      step=None, interpolate=False, **kwargs):
        """
        Fill the area between two vertical curves.

        The curves are defined by the points (*x1*, *y*) and (*x2*, *y*). This
        creates one or multiple polygons describing the filled area.

        You may exclude some vertical sections from filling using *where*.

        By default, the edges connect the given points directly. Use *step* if
        the filling should be a step function, i.e. constant in between *y*.


        Parameters
        ----------
        y : array (length N)
            The y coordinates of the nodes defining the curves.

        x1 : array (length N) or scalar
            The x coordinates of the nodes defining the first curve.

        x2 : array (length N) or scalar, optional, default: 0
            The x coordinates of the nodes defining the second curve.

        where : array of bool (length N), optional, default: None
            Define *where* to exclude some vertical regions from being
            filled. The filled regions are defined by the coordinates
            ``y[where]``.  More precisely, fill between ``y[i]`` and ``y[i+1]``
            if ``where[i] and where[i+1]``.  Note that this definition implies
            that an isolated *True* value between two *False* values in
            *where* will not result in filling.  Both sides of the *True*
            position remain unfilled due to the adjacent *False* values.

        interpolate : bool, optional
            This option is only relevant if *where* is used and the two curves
            are crossing each other.

            Semantically, *where* is often used for *x1* > *x2* or similar.
            By default, the nodes of the polygon defining the filled region
            will only be placed at the positions in the *y* array.  Such a
            polygon cannot describe the above semantics close to the
            intersection.  The y-sections containing the intersection are
            simply clipped.

            Setting *interpolate* to *True* will calculate the actual
            intersection point and extend the filled region up to this point.

        step : {'pre', 'post', 'mid'}, optional
            Define *step* if the filling should be a step function,
            i.e. constant in between *y*. The value determines where the
            step will occur:

            - 'pre': The y value is continued constantly to the left from
              every *x* position, i.e. the interval ``(x[i-1], x[i]]`` has the
              value ``y[i]``.
            - 'post': The y value is continued constantly to the right from
              every *x* position, i.e. the interval ``[x[i], x[i+1])`` has the
              value ``y[i]``.
            - 'mid': Steps occur half-way between the *x* positions.

        Other Parameters
        ----------------
        **kwargs
            All other keyword arguments are passed on to `.PolyCollection`.
            They control the `.Polygon` properties:

            %(PolyCollection)s

        Returns
        -------
        `.PolyCollection`
            A `.PolyCollection` containing the plotted polygons.

        See Also
        --------
        fill_between : Fill between two sets of y-values.

        Notes
        -----
        .. [notes section required to get data note injection right]

        """
        if not rcParams['_internal.classic_mode']:
            kwargs = cbook.normalize_kwargs(
                kwargs, mcoll.Collection._alias_map)
            if not any(c in kwargs for c in ('color', 'facecolor')):
                kwargs['facecolor'] = \
                    self._get_patches_for_fill.get_next_color()

        # Handle united data, such as dates
        self._process_unit_info(ydata=y, xdata=x1, kwargs=kwargs)
        self._process_unit_info(xdata=x2)

        # Convert the arrays so we can work with them
        y = ma.masked_invalid(self.convert_yunits(y))
        x1 = ma.masked_invalid(self.convert_xunits(x1))
        x2 = ma.masked_invalid(self.convert_xunits(x2))

        for name, array in [('y', y), ('x1', x1), ('x2', x2)]:
            if array.ndim > 1:
                raise ValueError('Input passed into argument "%r"' % name +
                                 'is not 1-dimensional.')

        if where is None:
            where = True
        where = where & ~functools.reduce(np.logical_or,
                                          map(np.ma.getmask, [y, x1, x2]))

        y, x1, x2 = np.broadcast_arrays(np.atleast_1d(y), x1, x2)

        polys = []
        for ind0, ind1 in cbook.contiguous_regions(where):
            yslice = y[ind0:ind1]
            x1slice = x1[ind0:ind1]
            x2slice = x2[ind0:ind1]
            if step is not None:
                step_func = cbook.STEP_LOOKUP_MAP["steps-" + step]
                yslice, x1slice, x2slice = step_func(yslice, x1slice, x2slice)

            if not len(yslice):
                continue

            N = len(yslice)
            Y = np.zeros((2 * N + 2, 2), float)
            if interpolate:
                def get_interp_point(ind):
                    im1 = max(ind - 1, 0)
                    y_values = y[im1:ind + 1]
                    diff_values = x1[im1:ind + 1] - x2[im1:ind + 1]
                    x1_values = x1[im1:ind + 1]

                    if len(diff_values) == 2:
                        if np.ma.is_masked(diff_values[1]):
                            return x1[im1], y[im1]
                        elif np.ma.is_masked(diff_values[0]):
                            return x1[ind], y[ind]

                    diff_order = diff_values.argsort()
                    diff_root_y = np.interp(
                        0, diff_values[diff_order], y_values[diff_order])
                    y_order = y_values.argsort()
                    diff_root_x = np.interp(diff_root_y, y_values[y_order],
                                            x1_values[y_order])
                    return diff_root_x, diff_root_y

                start = get_interp_point(ind0)
                end = get_interp_point(ind1)
            else:
                # the purpose of the next two lines is for when x2 is a
                # scalar like 0 and we want the fill to go all the way
                # down to 0 even if none of the x1 sample points do
                start = x2slice[0], yslice[0]
                end = x2slice[-1], yslice[-1]

            Y[0] = start
            Y[N + 1] = end

            Y[1:N + 1, 0] = x1slice
            Y[1:N + 1, 1] = yslice
            Y[N + 2:, 0] = x2slice[::-1]
            Y[N + 2:, 1] = yslice[::-1]

            polys.append(Y)

        collection = mcoll.PolyCollection(polys, **kwargs)

        # now update the datalim and autoscale
        X1Y = np.array([x1[where], y[where]]).T
        X2Y = np.array([x2[where], y[where]]).T
        self.dataLim.update_from_data_xy(X1Y, self.ignore_existing_data_limits,
                                         updatex=True, updatey=True)
        self.ignore_existing_data_limits = False
        self.dataLim.update_from_data_xy(X2Y, self.ignore_existing_data_limits,
                                         updatex=True, updatey=False)
        self.add_collection(collection, autolim=False)
        self.autoscale_view()
        return collection

    #### plotting z(x,y): imshow, pcolor and relatives, contour
    @_preprocess_data()
    @cbook._delete_parameter("3.1", "shape")
    @cbook._delete_parameter("3.1", "imlim")
    def imshow(self, X, cmap=None, norm=None, aspect=None,
               interpolation=None, alpha=None, vmin=None, vmax=None,
               origin=None, extent=None, shape=None, filternorm=1,
               filterrad=4.0, imlim=None, resample=None, url=None, **kwargs):
        """
        Display an image, i.e. data on a 2D regular raster.

        Parameters
        ----------
        X : array-like or PIL image
            The image data. Supported array shapes are:

            - (M, N): an image with scalar data. The data is visualized
              using a colormap.
            - (M, N, 3): an image with RGB values (0-1 float or 0-255 int).
            - (M, N, 4): an image with RGBA values (0-1 float or 0-255 int),
              i.e. including transparency.

            The first two dimensions (M, N) define the rows and columns of
            the image.

            Out-of-range RGB(A) values are clipped.

        cmap : str or `~matplotlib.colors.Colormap`, optional
            The Colormap instance or registered colormap name used to map
            scalar data to colors. This parameter is ignored for RGB(A) data.
            Defaults to :rc:`image.cmap`.

        norm : `~matplotlib.colors.Normalize`, optional
            The `Normalize` instance used to scale scalar data to the [0, 1]
            range before mapping to colors using *cmap*. By default, a linear
            scaling mapping the lowest value to 0 and the highest to 1 is used.
            This parameter is ignored for RGB(A) data.

        aspect : {'equal', 'auto'} or float, optional
            Controls the aspect ratio of the axes. The aspect is of particular
            relevance for images since it may distort the image, i.e. pixel
            will not be square.

            This parameter is a shortcut for explicitly calling
            `.Axes.set_aspect`. See there for further details.

            - 'equal': Ensures an aspect ratio of 1. Pixels will be square
              (unless pixel sizes are explicitly made non-square in data
              coordinates using *extent*).
            - 'auto': The axes is kept fixed and the aspect is adjusted so
              that the data fit in the axes. In general, this will result in
              non-square pixels.

            If not given, use :rc:`image.aspect` (default: 'equal').

        interpolation : str, optional
            The interpolation method used. If *None*
            :rc:`image.interpolation` is used, which defaults to 'nearest'.

            Supported values are 'none', 'nearest', 'bilinear', 'bicubic',
            'spline16', 'spline36', 'hanning', 'hamming', 'hermite', 'kaiser',
            'quadric', 'catrom', 'gaussian', 'bessel', 'mitchell', 'sinc',
            'lanczos'.

            If *interpolation* is 'none', then no interpolation is performed
            on the Agg, ps, pdf and svg backends. Other backends will fall back
            to 'nearest'. Note that most SVG renders perform interpolation at
            rendering and that the default interpolation method they implement
            may differ.

            See
            :doc:`/gallery/images_contours_and_fields/interpolation_methods`
            for an overview of the supported interpolation methods.

            Some interpolation methods require an additional radius parameter,
            which can be set by *filterrad*. Additionally, the antigrain image
            resize filter is controlled by the parameter *filternorm*.

        alpha : scalar, optional
            The alpha blending value, between 0 (transparent) and 1 (opaque).
            This parameter is ignored for RGBA input data.

        vmin, vmax : scalar, optional
            When using scalar data and no explicit *norm*, *vmin* and *vmax*
            define the data range that the colormap covers. By default,
            the colormap covers the complete value range of the supplied
            data. *vmin*, *vmax* are ignored if the *norm* parameter is used.

        origin : {'upper', 'lower'}, optional
            Place the [0,0] index of the array in the upper left or lower left
            corner of the axes. The convention 'upper' is typically used for
            matrices and images.
            If not given, :rc:`image.origin` is used, defaulting to 'upper'.

            Note that the vertical axes points upward for 'lower'
            but downward for 'upper'.

            See the :doc:`/tutorials/intermediate/imshow_extent` tutorial for
            examples and a more detailed description.

        extent : scalars (left, right, bottom, top), optional
            The bounding box in data coordinates that the image will fill.
            The image is stretched individually along x and y to fill the box.

            The default extent is determined by the following conditions.
            Pixels have unit size in data coordinates. Their centers are on
            integer coordinates, and their center coordinates range from 0 to
            columns-1 horizontally and from 0 to rows-1 vertically.

            Note that the direction of the vertical axis and thus the default
            values for top and bottom depend on *origin*:

            - For ``origin == 'upper'`` the default is
              ``(-0.5, numcols-0.5, numrows-0.5, -0.5)``.
            - For ``origin == 'lower'`` the default is
              ``(-0.5, numcols-0.5, -0.5, numrows-0.5)``.

            See the :doc:`/tutorials/intermediate/imshow_extent` tutorial for
            examples and a more detailed description.

        filternorm : bool, optional, default: True
            A parameter for the antigrain image resize filter (see the
            antigrain documentation).  If *filternorm* is set, the filter
            normalizes integer values and corrects the rounding errors. It
            doesn't do anything with the source floating point values, it
            corrects only integers according to the rule of 1.0 which means
            that any sum of pixel weights must be equal to 1.0.  So, the
            filter function must produce a graph of the proper shape.

        filterrad : float > 0, optional, default: 4.0
            The filter radius for filters that have a radius parameter, i.e.
            when interpolation is one of: 'sinc', 'lanczos' or 'blackman'.

        resample : bool, optional
            When *True*, use a full resampling method.  When *False*, only
            resample when the output image is larger than the input image.

        url : str, optional
            Set the url of the created `.AxesImage`. See `.Artist.set_url`.

        Returns
        -------
        image : `~matplotlib.image.AxesImage`

        Other Parameters
        ----------------
        **kwargs : `~matplotlib.artist.Artist` properties
            These parameters are passed on to the constructor of the
            `.AxesImage` artist.

        See also
        --------
        matshow : Plot a matrix or an array as an image.

        Notes
        -----
        Unless *extent* is used, pixel centers will be located at integer
        coordinates. In other words: the origin will coincide with the center
        of pixel (0, 0).

        There are two common representations for RGB images with an alpha
        channel:

        -   Straight (unassociated) alpha: R, G, and B channels represent the
            color of the pixel, disregarding its opacity.
        -   Premultiplied (associated) alpha: R, G, and B channels represent
            the color of the pixel, adjusted for its opacity by multiplication.

        `~matplotlib.pyplot.imshow` expects RGB images adopting the straight
        (unassociated) alpha representation.
        """
        if norm is not None and not isinstance(norm, mcolors.Normalize):
            raise ValueError(
                "'norm' must be an instance of 'mcolors.Normalize'")
        if aspect is None:
            aspect = rcParams['image.aspect']
        self.set_aspect(aspect)
        im = mimage.AxesImage(self, cmap, norm, interpolation, origin, extent,
                              filternorm=filternorm, filterrad=filterrad,
                              resample=resample, **kwargs)

        im.set_data(X)
        im.set_alpha(alpha)
        if im.get_clip_path() is None:
            # image does not already have clipping set, clip to axes patch
            im.set_clip_path(self.patch)
        if vmin is not None or vmax is not None:
            im.set_clim(vmin, vmax)
        else:
            im.autoscale_None()
        im.set_url(url)

        # update ax.dataLim, and, if autoscaling, set viewLim
        # to tightly fit the image, regardless of dataLim.
        im.set_extent(im.get_extent())

        self.add_image(im)
        return im

    @staticmethod
    def _pcolorargs(funcname, *args, allmatch=False):
        # If allmatch is True, then the incoming X, Y, C must have matching
        # dimensions, taking into account that X and Y can be 1-D rather than
        # 2-D.  This perfect match is required for Gouraud shading.  For flat
        # shading, X and Y specify boundaries, so we need one more boundary
        # than color in each direction.  For convenience, and consistent with
        # Matlab, we discard the last row and/or column of C if necessary to
        # meet this condition.  This is done if allmatch is False.

        if len(args) == 1:
            C = np.asanyarray(args[0])
            numRows, numCols = C.shape
            if allmatch:
                X, Y = np.meshgrid(np.arange(numCols), np.arange(numRows))
            else:
                X, Y = np.meshgrid(np.arange(numCols + 1),
                                   np.arange(numRows + 1))
            C = cbook.safe_masked_invalid(C)
            return X, Y, C

        if len(args) == 3:
            # Check x and y for bad data...
            C = np.asanyarray(args[2])
            X, Y = [cbook.safe_masked_invalid(a) for a in args[:2]]
            if funcname == 'pcolormesh':
                if np.ma.is_masked(X) or np.ma.is_masked(Y):
                    raise ValueError(
                        'x and y arguments to pcolormesh cannot have '
                        'non-finite values or be of type '
                        'numpy.ma.core.MaskedArray with masked values')
                # safe_masked_invalid() returns an ndarray for dtypes other
                # than floating point.
                if isinstance(X, np.ma.core.MaskedArray):
                    X = X.data  # strip mask as downstream doesn't like it...
                if isinstance(Y, np.ma.core.MaskedArray):
                    Y = Y.data
            numRows, numCols = C.shape
        else:
            raise TypeError(
                'Illegal arguments to %s; see help(%s)' % (funcname, funcname))

        Nx = X.shape[-1]
        Ny = Y.shape[0]
        if X.ndim != 2 or X.shape[0] == 1:
            x = X.reshape(1, Nx)
            X = x.repeat(Ny, axis=0)
        if Y.ndim != 2 or Y.shape[1] == 1:
            y = Y.reshape(Ny, 1)
            Y = y.repeat(Nx, axis=1)
        if X.shape != Y.shape:
            raise TypeError(
                'Incompatible X, Y inputs to %s; see help(%s)' % (
                funcname, funcname))
        if allmatch:
            if (Nx, Ny) != (numCols, numRows):
                raise TypeError('Dimensions of C %s are incompatible with'
                                ' X (%d) and/or Y (%d); see help(%s)' % (
                                    C.shape, Nx, Ny, funcname))
        else:
            if not (numCols in (Nx, Nx - 1) and numRows in (Ny, Ny - 1)):
                raise TypeError('Dimensions of C %s are incompatible with'
                                ' X (%d) and/or Y (%d); see help(%s)' % (
                                    C.shape, Nx, Ny, funcname))
            C = C[:Ny - 1, :Nx - 1]
        C = cbook.safe_masked_invalid(C)
        return X, Y, C

    @_preprocess_data()
    @docstring.dedent_interpd
    def pcolor(self, *args, alpha=None, norm=None, cmap=None, vmin=None,
               vmax=None, **kwargs):
        r"""
        Create a pseudocolor plot with a non-regular rectangular grid.

        Call signature::

            pcolor([X, Y,] C, **kwargs)

        *X* and *Y* can be used to specify the corners of the quadrilaterals.

        .. hint::

            ``pcolor()`` can be very slow for large arrays. In most
            cases you should use the similar but much faster
            `~.Axes.pcolormesh` instead. See there for a discussion of the
            differences.

        Parameters
        ----------
        C : array_like
            A scalar 2-D array. The values will be color-mapped.

        X, Y : array_like, optional
            The coordinates of the quadrilateral corners. The quadrilateral
            for ``C[i,j]`` has corners at::

                (X[i+1, j], Y[i+1, j])          (X[i+1, j+1], Y[i+1, j+1])
                                      +--------+
                                      | C[i,j] |
                                      +--------+
                    (X[i, j], Y[i, j])          (X[i, j+1], Y[i, j+1]),

            Note that the column index corresponds to the
            x-coordinate, and the row index corresponds to y. For
            details, see the :ref:`Notes <axes-pcolor-grid-orientation>`
            section below.

            The dimensions of *X* and *Y* should be one greater than those of
            *C*. Alternatively, *X*, *Y* and *C* may have equal dimensions, in
            which case the last row and column of *C* will be ignored.

            If *X* and/or *Y* are 1-D arrays or column vectors they will be
            expanded as needed into the appropriate 2-D arrays, making a
            rectangular grid.

        cmap : str or `~matplotlib.colors.Colormap`, optional
            A Colormap instance or registered colormap name. The colormap
            maps the *C* values to colors. Defaults to :rc:`image.cmap`.

        norm : `~matplotlib.colors.Normalize`, optional
            The Normalize instance scales the data values to the canonical
            colormap range [0, 1] for mapping to colors. By default, the data
            range is mapped to the colorbar range using linear scaling.

        vmin, vmax : scalar, optional, default: None
            The colorbar range. If *None*, suitable min/max values are
            automatically chosen by the `~.Normalize` instance (defaults to
            the respective min/max values of *C* in case of the default linear
            scaling).

        edgecolors : {'none', None, 'face', color, color sequence}, optional
            The color of the edges. Defaults to 'none'. Possible values:

            - 'none' or '': No edge.
            - *None*: :rc:`patch.edgecolor` will be used. Note that currently
              :rc:`patch.force_edgecolor` has to be True for this to work.
            - 'face': Use the adjacent face color.
            - An mpl color or sequence of colors will set the edge color.

            The singular form *edgecolor* works as an alias.

        alpha : scalar, optional, default: None
            The alpha blending value of the face color, between 0 (transparent)
            and 1 (opaque). Note: The edgecolor is currently not affected by
            this.

        snap : bool, optional, default: False
            Whether to snap the mesh to pixel boundaries.

        Returns
        -------
        collection : `matplotlib.collections.Collection`

        Other Parameters
        ----------------
        antialiaseds : bool, optional, default: False
            The default *antialiaseds* is False if the default
            *edgecolors*\ ="none" is used.  This eliminates artificial lines
            at patch boundaries, and works regardless of the value of alpha.
            If *edgecolors* is not "none", then the default *antialiaseds*
            is taken from :rc:`patch.antialiased`, which defaults to True.
            Stroking the edges may be preferred if *alpha* is 1, but will
            cause artifacts otherwise.

        **kwargs
            Additionally, the following arguments are allowed. They are passed
            along to the `~matplotlib.collections.PolyCollection` constructor:

        %(PolyCollection)s

        See Also
        --------
        pcolormesh : for an explanation of the differences between
            pcolor and pcolormesh.
        imshow : If *X* and *Y* are each equidistant, `~.Axes.imshow` can be a
            faster alternative.

        Notes
        -----

        **Masked arrays**

        *X*, *Y* and *C* may be masked arrays. If either ``C[i, j]``, or one
        of the vertices surrounding ``C[i,j]`` (*X* or *Y* at
        ``[i, j], [i+1, j], [i, j+1], [i+1, j+1]``) is masked, nothing is
        plotted.

        .. _axes-pcolor-grid-orientation:

        **Grid orientation**

        The grid orientation follows the standard matrix convention: An array
        *C* with shape (nrows, ncolumns) is plotted with the column number as
        *X* and the row number as *Y*.

        **Handling of pcolor() end-cases**

        ``pcolor()`` displays all columns of *C* if *X* and *Y* are not
        specified, or if *X* and *Y* have one more column than *C*.
        If *X* and *Y* have the same number of columns as *C* then the last
        column of *C* is dropped. Similarly for the rows.

        Note: This behavior is different from MATLAB's ``pcolor()``, which
        always discards the last row and column of *C*.
        """
        X, Y, C = self._pcolorargs('pcolor', *args, allmatch=False)
        Ny, Nx = X.shape

        # unit conversion allows e.g. datetime objects as axis values
        self._process_unit_info(xdata=X, ydata=Y, kwargs=kwargs)
        X = self.convert_xunits(X)
        Y = self.convert_yunits(Y)

        # convert to MA, if necessary.
        C = ma.asarray(C)
        X = ma.asarray(X)
        Y = ma.asarray(Y)

        mask = ma.getmaskarray(X) + ma.getmaskarray(Y)
        xymask = (mask[0:-1, 0:-1] + mask[1:, 1:] +
                  mask[0:-1, 1:] + mask[1:, 0:-1])
        # don't plot if C or any of the surrounding vertices are masked.
        mask = ma.getmaskarray(C) + xymask

        unmask = ~mask
        X1 = ma.filled(X[:-1, :-1])[unmask]
        Y1 = ma.filled(Y[:-1, :-1])[unmask]
        X2 = ma.filled(X[1:, :-1])[unmask]
        Y2 = ma.filled(Y[1:, :-1])[unmask]
        X3 = ma.filled(X[1:, 1:])[unmask]
        Y3 = ma.filled(Y[1:, 1:])[unmask]
        X4 = ma.filled(X[:-1, 1:])[unmask]
        Y4 = ma.filled(Y[:-1, 1:])[unmask]
        npoly = len(X1)

        xy = np.stack([X1, Y1, X2, Y2, X3, Y3, X4, Y4, X1, Y1], axis=-1)
        verts = xy.reshape((npoly, 5, 2))

        C = ma.filled(C[:Ny - 1, :Nx - 1])[unmask]

        linewidths = (0.25,)
        if 'linewidth' in kwargs:
            kwargs['linewidths'] = kwargs.pop('linewidth')
        kwargs.setdefault('linewidths', linewidths)

        if 'edgecolor' in kwargs:
            kwargs['edgecolors'] = kwargs.pop('edgecolor')
        ec = kwargs.setdefault('edgecolors', 'none')

        # aa setting will default via collections to patch.antialiased
        # unless the boundary is not stroked, in which case the
        # default will be False; with unstroked boundaries, aa
        # makes artifacts that are often disturbing.
        if 'antialiased' in kwargs:
            kwargs['antialiaseds'] = kwargs.pop('antialiased')
        if 'antialiaseds' not in kwargs and cbook._str_lower_equal(ec, "none"):
            kwargs['antialiaseds'] = False

        kwargs.setdefault('snap', False)

        collection = mcoll.PolyCollection(verts, **kwargs)

        collection.set_alpha(alpha)
        collection.set_array(C)
        if norm is not None and not isinstance(norm, mcolors.Normalize):
            raise ValueError(
                "'norm' must be an instance of 'mcolors.Normalize'")
        collection.set_cmap(cmap)
        collection.set_norm(norm)
        collection.set_clim(vmin, vmax)
        collection.autoscale_None()
        self.grid(False)

        x = X.compressed()
        y = Y.compressed()

        # Transform from native to data coordinates?
        t = collection._transform
        if (not isinstance(t, mtransforms.Transform) and
            hasattr(t, '_as_mpl_transform')):
            t = t._as_mpl_transform(self.axes)

        if t and any(t.contains_branch_seperately(self.transData)):
            trans_to_data = t - self.transData
            pts = np.vstack([x, y]).T.astype(float)
            transformed_pts = trans_to_data.transform(pts)
            x = transformed_pts[..., 0]
            y = transformed_pts[..., 1]

        self.add_collection(collection, autolim=False)

        minx = np.min(x)
        maxx = np.max(x)
        miny = np.min(y)
        maxy = np.max(y)
        collection.sticky_edges.x[:] = [minx, maxx]
        collection.sticky_edges.y[:] = [miny, maxy]
        corners = (minx, miny), (maxx, maxy)
        self.update_datalim(corners)
        self.autoscale_view()
        return collection

    @_preprocess_data()
    @docstring.dedent_interpd
    def pcolormesh(self, *args, alpha=None, norm=None, cmap=None, vmin=None,
                   vmax=None, shading='flat', antialiased=False, **kwargs):
        """
        Create a pseudocolor plot with a non-regular rectangular grid.

        Call signature::

            pcolor([X, Y,] C, **kwargs)

        *X* and *Y* can be used to specify the corners of the quadrilaterals.

        .. note::

           ``pcolormesh()`` is similar to :func:`~Axes.pcolor`. It's much
           faster and preferred in most cases. For a detailed discussion on
           the differences see
           :ref:`Differences between pcolor() and pcolormesh()
           <differences-pcolor-pcolormesh>`.

        Parameters
        ----------
        C : array_like
            A scalar 2-D array. The values will be color-mapped.

        X, Y : array_like, optional
            The coordinates of the quadrilateral corners. The quadrilateral
            for ``C[i,j]`` has corners at::

                (X[i+1, j], Y[i+1, j])          (X[i+1, j+1], Y[i+1, j+1])
                                      +--------+
                                      | C[i,j] |
                                      +--------+
                    (X[i, j], Y[i, j])          (X[i, j+1], Y[i, j+1]),

            Note that the column index corresponds to the
            x-coordinate, and the row index corresponds to y. For
            details, see the :ref:`Notes <axes-pcolormesh-grid-orientation>`
            section below.

            The dimensions of *X* and *Y* should be one greater than those of
            *C*. Alternatively, *X*, *Y* and *C* may have equal dimensions, in
            which case the last row and column of *C* will be ignored.

            If *X* and/or *Y* are 1-D arrays or column vectors they will be
            expanded as needed into the appropriate 2-D arrays, making a
            rectangular grid.

        cmap : str or `~matplotlib.colors.Colormap`, optional
            A Colormap instance or registered colormap name. The colormap
            maps the *C* values to colors. Defaults to :rc:`image.cmap`.

        norm : `~matplotlib.colors.Normalize`, optional
            The Normalize instance scales the data values to the canonical
            colormap range [0, 1] for mapping to colors. By default, the data
            range is mapped to the colorbar range using linear scaling.

        vmin, vmax : scalar, optional, default: None
            The colorbar range. If *None*, suitable min/max values are
            automatically chosen by the `~.Normalize` instance (defaults to
            the respective min/max values of *C* in case of the default linear
            scaling).

        edgecolors : {'none', None, 'face', color, color sequence}, optional
            The color of the edges. Defaults to 'none'. Possible values:

            - 'none' or '': No edge.
            - *None*: :rc:`patch.edgecolor` will be used. Note that currently
              :rc:`patch.force_edgecolor` has to be True for this to work.
            - 'face': Use the adjacent face color.
            - An mpl color or sequence of colors will set the edge color.

            The singular form *edgecolor* works as an alias.

        alpha : scalar, optional, default: None
            The alpha blending value, between 0 (transparent) and 1 (opaque).

        shading : {'flat', 'gouraud'}, optional
            The fill style, Possible values:

            - 'flat': A solid color is used for each quad. The color of the
              quad (i, j), (i+1, j), (i, j+1), (i+1, j+1) is given by
              ``C[i,j]``.
            - 'gouraud': Each quad will be Gouraud shaded: The color of the
              corners (i', j') are given by ``C[i',j']``. The color values of
              the area in between is interpolated from the corner values.
              When Gouraud shading is used, *edgecolors* is ignored.

        snap : bool, optional, default: False
            Whether to snap the mesh to pixel boundaries.

        Returns
        -------
        mesh : `matplotlib.collections.QuadMesh`

        Other Parameters
        ----------------
        **kwargs
            Additionally, the following arguments are allowed. They are passed
            along to the `~matplotlib.collections.QuadMesh` constructor:

        %(QuadMesh)s


        See Also
        --------
        pcolor : An alternative implementation with slightly different
            features. For a detailed discussion on the differences see
            :ref:`Differences between pcolor() and pcolormesh()
            <differences-pcolor-pcolormesh>`.
        imshow : If *X* and *Y* are each equidistant, `~.Axes.imshow` can be a
            faster alternative.

        Notes
        -----

        **Masked arrays**

        *C* may be a masked array. If ``C[i, j]`` is masked, the corresponding
        quadrilateral will be transparent. Masking of *X* and *Y* is not
        supported. Use `~.Axes.pcolor` if you need this functionality.

        .. _axes-pcolormesh-grid-orientation:

        **Grid orientation**

        The grid orientation follows the standard matrix convention: An array
        *C* with shape (nrows, ncolumns) is plotted with the column number as
        *X* and the row number as *Y*.

        .. _differences-pcolor-pcolormesh:

        **Differences between pcolor() and pcolormesh()**

        Both methods are used to create a pseudocolor plot of a 2-D array
        using quadrilaterals.

        The main difference lies in the created object and internal data
        handling:
        While `~.Axes.pcolor` returns a `.PolyCollection`, `~.Axes.pcolormesh`
        returns a `.QuadMesh`. The latter is more specialized for the given
        purpose and thus is faster. It should almost always be preferred.

        There is also a slight difference in the handling of masked arrays.
        Both `~.Axes.pcolor` and `~.Axes.pcolormesh` support masked arrays
        for *C*. However, only `~.Axes.pcolor` supports masked arrays for *X*
        and *Y*. The reason lies in the internal handling of the masked values.
        `~.Axes.pcolor` leaves out the respective polygons from the
        PolyCollection. `~.Axes.pcolormesh` sets the facecolor of the masked
        elements to transparent. You can see the difference when using
        edgecolors. While all edges are drawn irrespective of masking in a
        QuadMesh, the edge between two adjacent masked quadrilaterals in
        `~.Axes.pcolor` is not drawn as the corresponding polygons do not
        exist in the PolyCollection.

        Another difference is the support of Gouraud shading in
        `~.Axes.pcolormesh`, which is not available with `~.Axes.pcolor`.

        """
        shading = shading.lower()
        kwargs.setdefault('edgecolors', 'None')

        allmatch = (shading == 'gouraud')

        X, Y, C = self._pcolorargs('pcolormesh', *args, allmatch=allmatch)
        Ny, Nx = X.shape
        X = X.ravel()
        Y = Y.ravel()
        # unit conversion allows e.g. datetime objects as axis values
        self._process_unit_info(xdata=X, ydata=Y, kwargs=kwargs)
        X = self.convert_xunits(X)
        Y = self.convert_yunits(Y)

        # convert to one dimensional arrays
        C = C.ravel()
        coords = np.column_stack((X, Y)).astype(float, copy=False)
        collection = mcoll.QuadMesh(Nx - 1, Ny - 1, coords,
                                    antialiased=antialiased, shading=shading,
                                    **kwargs)
        collection.set_alpha(alpha)
        collection.set_array(C)
        if norm is not None and not isinstance(norm, mcolors.Normalize):
            raise ValueError(
                "'norm' must be an instance of 'mcolors.Normalize'")
        collection.set_cmap(cmap)
        collection.set_norm(norm)
        collection.set_clim(vmin, vmax)
        collection.autoscale_None()

        self.grid(False)

        # Transform from native to data coordinates?
        t = collection._transform
        if (not isinstance(t, mtransforms.Transform) and
            hasattr(t, '_as_mpl_transform')):
            t = t._as_mpl_transform(self.axes)

        if t and any(t.contains_branch_seperately(self.transData)):
            trans_to_data = t - self.transData
            coords = trans_to_data.transform(coords)

        self.add_collection(collection, autolim=False)

        minx, miny = np.min(coords, axis=0)
        maxx, maxy = np.max(coords, axis=0)
        collection.sticky_edges.x[:] = [minx, maxx]
        collection.sticky_edges.y[:] = [miny, maxy]
        corners = (minx, miny), (maxx, maxy)
        self.update_datalim(corners)
        self.autoscale_view()
        return collection

    @_preprocess_data()
    @docstring.dedent_interpd
    def pcolorfast(self, *args, alpha=None, norm=None, cmap=None, vmin=None,
                   vmax=None, **kwargs):
        """
        Create a pseudocolor plot with a non-regular rectangular grid.

        Call signature::

          ax.pcolorfast([X, Y], C, /, **kwargs)

        This method is similar to ~.Axes.pcolor` and `~.Axes.pcolormesh`.
        It's designed to provide the fastest pcolor-type plotting with the
        Agg backend. To achieve this, it uses different algorithms internally
        depending on the complexity of the input grid (regular rectangular,
        non-regular rectangular or arbitrary quadrilateral).

        .. warning::

           This method is experimental. Compared to `~.Axes.pcolor` or
           `~.Axes.pcolormesh` it has some limitations:

           - It supports only flat shading (no outlines)
           - It lacks support for log scaling of the axes.
           - It does not have a have a pyplot wrapper.

        Parameters
        ----------
        C : array-like(M, N)
            A 2D array or masked array. The values will be color-mapped.
            This argument can only be passed positionally.

            C can in some cases be 3D with the last dimension as rgb(a).
            This is available when C qualifies for image or pcolorimage type,
            will throw a TypeError if C is 3D and quadmesh.

        X, Y : tuple or array-like, default: ``(0, N)``, ``(0, M)``
            *X* and *Y* are used to specify the coordinates of the
            quadrilaterals. There are different ways to do this:

            - Use tuples ``X=(xmin, xmax)`` and ``Y=(ymin, ymax)`` to define
              a *uniform rectangular grid*.

              The tuples define the outer edges of the grid. All individual
              quadrilaterals will be of the same size. This is the fastest
              version.

            - Use 1D arrays *X*, *Y* to specify a *non-uniform rectangular
              grid*.

              In this case *X* and *Y* have to be monotonic 1D arrays of length
              *N+1* and *M+1*, specifying the x and y boundaries of the cells.

              The speed is intermediate. Note: The grid is checked, and if
              found to be uniform the fast version is used.

            - Use 2D arrays *X*, *Y* if you need an *arbitrary quadrilateral
              grid* (i.e. if the quadrilaterals are not rectangular).

              In this case *X* and *Y* are 2D arrays with shape (M, N),
              specifying the x and y coordinates of the corners of the colored
              quadrilaterals. See `~.Axes.pcolormesh` for details.

              This is the most general, but the slowest to render.  It may
              produce faster and more compact output using ps, pdf, and
              svg backends, however.

            These arguments can only be passed positionally.

        cmap : str or `~matplotlib.colors.Colormap`, optional
            A Colormap instance or registered colormap name. The colormap
            maps the *C* values to colors. Defaults to :rc:`image.cmap`.

        norm : `~matplotlib.colors.Normalize`, optional
            The Normalize instance scales the data values to the canonical
            colormap range [0, 1] for mapping to colors. By default, the data
            range is mapped to the colorbar range using linear scaling.

        vmin, vmax : scalar, optional, default: None
            The colorbar range. If *None*, suitable min/max values are
            automatically chosen by the `~.Normalize` instance (defaults to
            the respective min/max values of *C* in case of the default linear
            scaling).

        alpha : scalar, optional, default: None
            The alpha blending value, between 0 (transparent) and 1 (opaque).

        snap : bool, optional, default: False
            Whether to snap the mesh to pixel boundaries.

        Returns
        -------
        image : `.AxesImage` or `.PcolorImage` or `.QuadMesh`
            The return type depends on the type of grid:

            - `.AxesImage` for a regular rectangular grid.
            - `.PcolorImage` for a non-regular rectangular grid.
            - `.QuadMesh` for a non-rectangular grid.

        Notes
        -----
        .. [notes section required to get data note injection right]

        """
        if norm is not None and not isinstance(norm, mcolors.Normalize):
            raise ValueError(
                "'norm' must be an instance of 'mcolors.Normalize'")

        C = args[-1]
        nr, nc = np.shape(C)[:2]
        if len(args) == 1:
            style = "image"
            x = [0, nc]
            y = [0, nr]
        elif len(args) == 3:
            x, y = args[:2]
            x = np.asarray(x)
            y = np.asarray(y)
            if x.ndim == 1 and y.ndim == 1:
                if x.size == 2 and y.size == 2:
                    style = "image"
                else:
                    dx = np.diff(x)
                    dy = np.diff(y)
                    if (np.ptp(dx) < 0.01 * np.abs(dx.mean()) and
                        np.ptp(dy) < 0.01 * np.abs(dy.mean())):
                        style = "image"
                    else:
                        style = "pcolorimage"
            elif x.ndim == 2 and y.ndim == 2:
                if C.ndim > 2:
                    raise ValueError(
                        'pcolorfast needs to use quadmesh, '
                        'which is not supported when x and y are 2D and C 3D')
                style = "quadmesh"
            else:
                raise TypeError("arguments do not match valid signatures")
        else:
            raise TypeError("need 1 argument or 3 arguments")

        if style == "quadmesh":

            # convert to one dimensional arrays
            # This should also be moved to the QuadMesh class

            # data point in each cell is value at lower left corner
            C = ma.ravel(C)
            X = x.ravel()
            Y = y.ravel()
            Nx = nc + 1
            Ny = nr + 1

            # The following needs to be cleaned up; the renderer
            # requires separate contiguous arrays for X and Y,
            # but the QuadMesh class requires the 2D array.
            coords = np.empty(((Nx * Ny), 2), np.float64)
            coords[:, 0] = X
            coords[:, 1] = Y

            # The QuadMesh class can also be changed to
            # handle relevant superclass kwargs; the initializer
            # should do much more than it does now.
            collection = mcoll.QuadMesh(nc, nr, coords, 0, edgecolors="None")
            collection.set_alpha(alpha)
            collection.set_array(C)
            collection.set_cmap(cmap)
            collection.set_norm(norm)
            self.add_collection(collection, autolim=False)
            xl, xr, yb, yt = X.min(), X.max(), Y.min(), Y.max()
            ret = collection

        else:  # It's one of the two image styles.
            xl, xr, yb, yt = x[0], x[-1], y[0], y[-1]

            if style == "image":
                im = mimage.AxesImage(self, cmap, norm,
                                      interpolation='nearest',
                                      origin='lower',
                                      extent=(xl, xr, yb, yt),
                                      **kwargs)
                im.set_data(C)
                im.set_alpha(alpha)
            elif style == "pcolorimage":
                im = mimage.PcolorImage(self, x, y, C,
                                        cmap=cmap,
                                        norm=norm,
                                        alpha=alpha,
                                        **kwargs)
                im.set_extent((xl, xr, yb, yt))
            self.add_image(im)
            ret = im

        if vmin is not None or vmax is not None:
            ret.set_clim(vmin, vmax)
        else:
            ret.autoscale_None()
        if ret.get_clip_path() is None:
            # image does not already have clipping set, clip to axes patch
            ret.set_clip_path(self.patch)

        ret.sticky_edges.x[:] = [xl, xr]
        ret.sticky_edges.y[:] = [yb, yt]
        self.update_datalim(np.array([[xl, yb], [xr, yt]]))
        self.autoscale_view(tight=True)
        return ret

    @_preprocess_data()
    def contour(self, *args, **kwargs):
        kwargs['filled'] = False
        contours = mcontour.QuadContourSet(self, *args, **kwargs)
        self.autoscale_view()
        return contours
    contour.__doc__ = mcontour.QuadContourSet._contour_doc

    @_preprocess_data()
    def contourf(self, *args, **kwargs):
        kwargs['filled'] = True
        contours = mcontour.QuadContourSet(self, *args, **kwargs)
        self.autoscale_view()
        return contours
    contourf.__doc__ = mcontour.QuadContourSet._contour_doc

    def clabel(self, CS, *args, **kwargs):
        return CS.clabel(*args, **kwargs)
    clabel.__doc__ = mcontour.ContourSet.clabel.__doc__

    #### Data analysis

    @_preprocess_data(replace_names=["x", 'weights'], label_namer="x")
    def hist(self, x, bins=None, range=None, density=None, weights=None,
             cumulative=False, bottom=None, histtype='bar', align='mid',
             orientation='vertical', rwidth=None, log=False,
             color=None, label=None, stacked=False, normed=None,
             **kwargs):
        """
        Plot a histogram.

        Compute and draw the histogram of *x*.  The return value is a tuple
        (*n*, *bins*, *patches*) or ([*n0*, *n1*, ...], *bins*, [*patches0*,
        *patches1*,...]) if the input contains multiple data.  See the
        documentation of the *weights* parameter to draw a histogram of
        already-binned data.

        Multiple data can be provided via *x* as a list of datasets
        of potentially different length ([*x0*, *x1*, ...]), or as
        a 2-D ndarray in which each column is a dataset.  Note that
        the ndarray form is transposed relative to the list form.

        Masked arrays are not supported at present.

        Parameters
        ----------
        x : (n,) array or sequence of (n,) arrays
            Input values, this takes either a single array or a sequence of
            arrays which are not required to be of the same length.

        bins : int or sequence or str, optional
            If an integer is given, ``bins + 1`` bin edges are calculated and
            returned, consistent with `numpy.histogram`.

            If `bins` is a sequence, gives bin edges, including left edge of
            first bin and right edge of last bin.  In this case, `bins` is
            returned unmodified.

            All but the last (righthand-most) bin is half-open.  In other
            words, if `bins` is::

                [1, 2, 3, 4]

            then the first bin is ``[1, 2)`` (including 1, but excluding 2) and
            the second ``[2, 3)``.  The last bin, however, is ``[3, 4]``, which
            *includes* 4.

            Unequally spaced bins are supported if *bins* is a sequence.

            With Numpy 1.11 or newer, you can alternatively provide a string
            describing a binning strategy, such as 'auto', 'sturges', 'fd',
            'doane', 'scott', 'rice' or 'sqrt', see
            `numpy.histogram`.

            The default is taken from :rc:`hist.bins`.

        range : tuple or None, optional
            The lower and upper range of the bins. Lower and upper outliers
            are ignored. If not provided, *range* is ``(x.min(), x.max())``.
            Range has no effect if *bins* is a sequence.

            If *bins* is a sequence or *range* is specified, autoscaling
            is based on the specified bin range instead of the
            range of x.

            Default is ``None``

        density : bool, optional
            If ``True``, the first element of the return tuple will
            be the counts normalized to form a probability density, i.e.,
            the area (or integral) under the histogram will sum to 1.
            This is achieved by dividing the count by the number of
            observations times the bin width and not dividing by the total
            number of observations. If *stacked* is also ``True``, the sum of
            the histograms is normalized to 1.

            Default is ``None`` for both *normed* and *density*. If either is
            set, then that value will be used. If neither are set, then the
            args will be treated as ``False``.

            If both *density* and *normed* are set an error is raised.

        weights : (n, ) array_like or None, optional
            An array of weights, of the same shape as *x*.  Each value in *x*
            only contributes its associated weight towards the bin count
            (instead of 1).  If *normed* or *density* is ``True``,
            the weights are normalized, so that the integral of the density
            over the range remains 1.

            Default is ``None``.

            This parameter can be used to draw a histogram of data that has
            already been binned, e.g. using `np.histogram` (by treating each
            bin as a single point with a weight equal to its count) ::

                counts, bins = np.histogram(data)
                plt.hist(bins[:-1], bins, weights=counts)

            (or you may alternatively use `~.bar()`).

        cumulative : bool, optional
            If ``True``, then a histogram is computed where each bin gives the
            counts in that bin plus all bins for smaller values. The last bin
            gives the total number of datapoints. If *normed* or *density*
            is also ``True`` then the histogram is normalized such that the
            last bin equals 1. If *cumulative* evaluates to less than 0
            (e.g., -1), the direction of accumulation is reversed.
            In this case, if *normed* and/or *density* is also ``True``, then
            the histogram is normalized such that the first bin equals 1.

            Default is ``False``

        bottom : array_like, scalar, or None
            Location of the bottom baseline of each bin.  If a scalar,
            the base line for each bin is shifted by the same amount.
            If an array, each bin is shifted independently and the length
            of bottom must match the number of bins.  If None, defaults to 0.

            Default is ``None``

        histtype : {'bar', 'barstacked', 'step',  'stepfilled'}, optional
            The type of histogram to draw.

            - 'bar' is a traditional bar-type histogram.  If multiple data
              are given the bars are arranged side by side.

            - 'barstacked' is a bar-type histogram where multiple
              data are stacked on top of each other.

            - 'step' generates a lineplot that is by default
              unfilled.

            - 'stepfilled' generates a lineplot that is by default
              filled.

            Default is 'bar'

        align : {'left', 'mid', 'right'}, optional
            Controls how the histogram is plotted.

                - 'left': bars are centered on the left bin edges.

                - 'mid': bars are centered between the bin edges.

                - 'right': bars are centered on the right bin edges.

            Default is 'mid'

        orientation : {'horizontal', 'vertical'}, optional
            If 'horizontal', `~matplotlib.pyplot.barh` will be used for
            bar-type histograms and the *bottom* kwarg will be the left edges.

        rwidth : scalar or None, optional
            The relative width of the bars as a fraction of the bin width.  If
            ``None``, automatically compute the width.

            Ignored if *histtype* is 'step' or 'stepfilled'.

            Default is ``None``

        log : bool, optional
            If ``True``, the histogram axis will be set to a log scale. If
            *log* is ``True`` and *x* is a 1D array, empty bins will be
            filtered out and only the non-empty ``(n, bins, patches)``
            will be returned.

            Default is ``False``

        color : color or array_like of colors or None, optional
            Color spec or sequence of color specs, one per dataset.  Default
            (``None``) uses the standard line color sequence.

            Default is ``None``

        label : str or None, optional
            String, or sequence of strings to match multiple datasets.  Bar
            charts yield multiple patches per dataset, but only the first gets
            the label, so that the legend command will work as expected.

            default is ``None``

        stacked : bool, optional
            If ``True``, multiple data are stacked on top of each other If
            ``False`` multiple data are arranged side by side if histtype is
            'bar' or on top of each other if histtype is 'step'

            Default is ``False``

        normed : bool, optional
            Deprecated; use the density keyword argument instead.

        Returns
        -------
        n : array or list of arrays
            The values of the histogram bins. See *density* and *weights* for a
            description of the possible semantics.  If input *x* is an array,
            then this is an array of length *nbins*. If input is a sequence of
            arrays ``[data1, data2,..]``, then this is a list of arrays with
            the values of the histograms for each of the arrays in the same
            order.  The dtype of the array *n* (or of its element arrays) will
            always be float even if no weighting or normalization is used.

        bins : array
            The edges of the bins. Length nbins + 1 (nbins left edges and right
            edge of last bin).  Always a single array even when multiple data
            sets are passed in.

        patches : list or list of lists
            Silent list of individual patches used to create the histogram
            or list of such list if multiple input datasets.

        Other Parameters
        ----------------
        **kwargs : `~matplotlib.patches.Patch` properties

        See also
        --------
        hist2d : 2D histograms

        """
        # Avoid shadowing the builtin.
        bin_range = range
        from builtins import range

        if np.isscalar(x):
            x = [x]

        if bins is None:
            bins = rcParams['hist.bins']

        # Validate string inputs here so we don't have to clutter
        # subsequent code.
        if histtype not in ['bar', 'barstacked', 'step', 'stepfilled']:
            raise ValueError("histtype %s is not recognized" % histtype)

        if align not in ['left', 'mid', 'right']:
            raise ValueError("align kwarg %s is not recognized" % align)

        if orientation not in ['horizontal', 'vertical']:
            raise ValueError(
                "orientation kwarg %s is not recognized" % orientation)

        if histtype == 'barstacked' and not stacked:
            stacked = True

        if density is not None and normed is not None:
            raise ValueError("kwargs 'density' and 'normed' cannot be used "
                             "simultaneously. "
                             "Please only use 'density', since 'normed'"
                             "is deprecated.")
        if normed is not None:
            cbook.warn_deprecated("2.1", name="'normed'", obj_type="kwarg",
                                  alternative="'density'", removal="3.1")

        # basic input validation
        input_empty = np.size(x) == 0
        # Massage 'x' for processing.
        x = cbook._reshape_2D(x, 'x')
        nx = len(x)  # number of datasets

        # Process unit information
        # Unit conversion is done individually on each dataset
        self._process_unit_info(xdata=x[0], kwargs=kwargs)
        x = [self.convert_xunits(xi) for xi in x]

        if bin_range is not None:
            bin_range = self.convert_xunits(bin_range)

        # We need to do to 'weights' what was done to 'x'
        if weights is not None:
            w = cbook._reshape_2D(weights, 'weights')
        else:
            w = [None] * nx

        if len(w) != nx:
            raise ValueError('weights should have the same shape as x')

        for xi, wi in zip(x, w):
            if wi is not None and len(wi) != len(xi):
                raise ValueError(
                    'weights should have the same shape as x')

        if color is None:
            color = [self._get_lines.get_next_color() for i in range(nx)]
        else:
            color = mcolors.to_rgba_array(color)
            if len(color) != nx:
                error_message = (
                    "color kwarg must have one color per data set. %d data "
                    "sets and %d colors were provided" % (nx, len(color)))
                raise ValueError(error_message)

        hist_kwargs = dict()

        # if the bin_range is not given, compute without nan numpy
        # does not do this for us when guessing the range (but will
        # happily ignore nans when computing the histogram).
        if bin_range is None:
            xmin = np.inf
            xmax = -np.inf
            for xi in x:
                if len(xi):
                    # python's min/max ignore nan,
                    # np.minnan returns nan for all nan input
                    xmin = min(xmin, np.nanmin(xi))
                    xmax = max(xmax, np.nanmax(xi))
            # make sure we have seen at least one non-nan and finite
            # value before we reset the bin range
            if not np.isnan([xmin, xmax]).any() and not (xmin > xmax):
                bin_range = (xmin, xmax)

        # If bins are not specified either explicitly or via range,
        # we need to figure out the range required for all datasets,
        # and supply that to np.histogram.
        if not input_empty and len(x) > 1:
            if weights is not None:
                _w = np.concatenate(w)
            else:
                _w = None

            bins = histogram_bin_edges(np.concatenate(x),
                                       bins, bin_range, _w)
        else:
            hist_kwargs['range'] = bin_range

        density = bool(density) or bool(normed)
        if density and not stacked:
            hist_kwargs['density'] = density

        # List to store all the top coordinates of the histograms
        tops = []
        mlast = None
        # Loop through datasets
        for i in range(nx):
            # this will automatically overwrite bins,
            # so that each histogram uses the same bins
            m, bins = np.histogram(x[i], bins, weights=w[i], **hist_kwargs)
            m = m.astype(float)  # causes problems later if it's an int
            if mlast is None:
                mlast = np.zeros(len(bins)-1, m.dtype)
            if stacked:
                m += mlast
                mlast[:] = m
            tops.append(m)

        # If a stacked density plot, normalize so the area of all the stacked
        # histograms together is 1
        if stacked and density:
            db = np.diff(bins)
            for m in tops:
                m[:] = (m / db) / tops[-1].sum()
        if cumulative:
            slc = slice(None)
            if isinstance(cumulative, Number) and cumulative < 0:
                slc = slice(None, None, -1)

            if density:
                tops = [(m * np.diff(bins))[slc].cumsum()[slc] for m in tops]
            else:
                tops = [m[slc].cumsum()[slc] for m in tops]

        patches = []

        # Save autoscale state for later restoration; turn autoscaling
        # off so we can do it all a single time at the end, instead
        # of having it done by bar or fill and then having to be redone.
        _saved_autoscalex = self.get_autoscalex_on()
        _saved_autoscaley = self.get_autoscaley_on()
        self.set_autoscalex_on(False)
        self.set_autoscaley_on(False)

        if histtype.startswith('bar'):

            totwidth = np.diff(bins)

            if rwidth is not None:
                dr = np.clip(rwidth, 0, 1)
            elif (len(tops) > 1 and
                  ((not stacked) or rcParams['_internal.classic_mode'])):
                dr = 0.8
            else:
                dr = 1.0

            if histtype == 'bar' and not stacked:
                width = dr * totwidth / nx
                dw = width
                boffset = -0.5 * dr * totwidth * (1 - 1 / nx)
            elif histtype == 'barstacked' or stacked:
                width = dr * totwidth
                boffset, dw = 0.0, 0.0

            if align == 'mid':
                boffset += 0.5 * totwidth
            elif align == 'right':
                boffset += totwidth

            if orientation == 'horizontal':
                _barfunc = self.barh
                bottom_kwarg = 'left'
            else:  # orientation == 'vertical'
                _barfunc = self.bar
                bottom_kwarg = 'bottom'

            for m, c in zip(tops, color):
                if bottom is None:
                    bottom = np.zeros(len(m))
                if stacked:
                    height = m - bottom
                else:
                    height = m
                patch = _barfunc(bins[:-1]+boffset, height, width,
                                 align='center', log=log,
                                 color=c, **{bottom_kwarg: bottom})
                patches.append(patch)
                if stacked:
                    bottom[:] = m
                boffset += dw

        elif histtype.startswith('step'):
            # these define the perimeter of the polygon
            x = np.zeros(4 * len(bins) - 3)
            y = np.zeros(4 * len(bins) - 3)

            x[0:2*len(bins)-1:2], x[1:2*len(bins)-1:2] = bins, bins[:-1]
            x[2*len(bins)-1:] = x[1:2*len(bins)-1][::-1]

            if bottom is None:
                bottom = np.zeros(len(bins) - 1)

            y[1:2*len(bins)-1:2], y[2:2*len(bins):2] = bottom, bottom
            y[2*len(bins)-1:] = y[1:2*len(bins)-1][::-1]

            if log:
                if orientation == 'horizontal':
                    self.set_xscale('log', nonposx='clip')
                    logbase = self.xaxis._scale.base
                else:  # orientation == 'vertical'
                    self.set_yscale('log', nonposy='clip')
                    logbase = self.yaxis._scale.base

                # Setting a minimum of 0 results in problems for log plots
                if np.min(bottom) > 0:
                    minimum = np.min(bottom)
                elif density or weights is not None:
                    # For data that is normed to form a probability density,
                    # set to minimum data value / logbase
                    # (gives 1 full tick-label unit for the lowest filled bin)
                    ndata = np.array(tops)
                    minimum = (np.min(ndata[ndata > 0])) / logbase
                else:
                    # For non-normed (density = False) data,
                    # set the min to 1 / log base,
                    # again so that there is 1 full tick-label unit
                    # for the lowest bin
                    minimum = 1.0 / logbase

                y[0], y[-1] = minimum, minimum
            else:
                minimum = 0

            if align == 'left':
                x -= 0.5*(bins[1]-bins[0])
            elif align == 'right':
                x += 0.5*(bins[1]-bins[0])

            # If fill kwarg is set, it will be passed to the patch collection,
            # overriding this
            fill = (histtype == 'stepfilled')

            xvals, yvals = [], []
            for m in tops:
                if stacked:
                    # starting point for drawing polygon
                    y[0] = y[1]
                    # top of the previous polygon becomes the bottom
                    y[2*len(bins)-1:] = y[1:2*len(bins)-1][::-1]
                # set the top of this polygon
                y[1:2*len(bins)-1:2], y[2:2*len(bins):2] = (m + bottom,
                                                            m + bottom)
                if log:
                    y[y < minimum] = minimum
                if orientation == 'horizontal':
                    xvals.append(y.copy())
                    yvals.append(x.copy())
                else:
                    xvals.append(x.copy())
                    yvals.append(y.copy())

            # stepfill is closed, step is not
            split = -1 if fill else 2 * len(bins)
            # add patches in reverse order so that when stacking,
            # items lower in the stack are plotted on top of
            # items higher in the stack
            for x, y, c in reversed(list(zip(xvals, yvals, color))):
                patches.append(self.fill(
                    x[:split], y[:split],
                    closed=True if fill else None,
                    facecolor=c,
                    edgecolor=None if fill else c,
                    fill=fill if fill else None))
            for patch_list in patches:
                for patch in patch_list:
                    if orientation == 'vertical':
                        patch.sticky_edges.y.append(minimum)
                    elif orientation == 'horizontal':
                        patch.sticky_edges.x.append(minimum)

            # we return patches, so put it back in the expected order
            patches.reverse()

        self.set_autoscalex_on(_saved_autoscalex)
        self.set_autoscaley_on(_saved_autoscaley)
        self.autoscale_view()

        if label is None:
            labels = [None]
        elif isinstance(label, str):
            labels = [label]
        elif not np.iterable(label):
            labels = [str(label)]
        else:
            labels = [str(lab) for lab in label]

        for patch, lbl in itertools.zip_longest(patches, labels):
            if patch:
                p = patch[0]
                p.update(kwargs)
                if lbl is not None:
                    p.set_label(lbl)

                for p in patch[1:]:
                    p.update(kwargs)
                    p.set_label('_nolegend_')

        if nx == 1:
            return tops[0], bins, cbook.silent_list('Patch', patches[0])
        else:
            return tops, bins, cbook.silent_list('Lists of Patches', patches)

    @_preprocess_data(replace_names=["x", "y", "weights"])
    @cbook._rename_parameter("3.1", "normed", "density")
    def hist2d(self, x, y, bins=10, range=None, density=False, weights=None,
               cmin=None, cmax=None, **kwargs):
        """
        Make a 2D histogram plot.

        Parameters
        ----------
        x, y : array_like, shape (n, )
            Input values

        bins : None or int or [int, int] or array_like or [array, array]

            The bin specification:

                - If int, the number of bins for the two dimensions
                  (nx=ny=bins).

                - If ``[int, int]``, the number of bins in each dimension
                  (nx, ny = bins).

                - If array_like, the bin edges for the two dimensions
                  (x_edges=y_edges=bins).

                - If ``[array, array]``, the bin edges in each dimension
                  (x_edges, y_edges = bins).

            The default value is 10.

        range : array_like shape(2, 2), optional, default: None
             The leftmost and rightmost edges of the bins along each dimension
             (if not specified explicitly in the bins parameters): ``[[xmin,
             xmax], [ymin, ymax]]``. All values outside of this range will be
             considered outliers and not tallied in the histogram.

        density : bool, optional, default: False
             Normalize histogram.  *normed* is a deprecated synonym for this
             parameter.

        weights : array_like, shape (n, ), optional, default: None
            An array of values w_i weighing each sample (x_i, y_i).

        cmin : scalar, optional, default: None
             All bins that has count less than cmin will not be displayed and
             these count values in the return value count histogram will also
             be set to nan upon return

        cmax : scalar, optional, default: None
             All bins that has count more than cmax will not be displayed (set
             to none before passing to imshow) and these count values in the
             return value count histogram will also be set to nan upon return

        Returns
        -------
        h : 2D array
            The bi-dimensional histogram of samples x and y. Values in x are
            histogrammed along the first dimension and values in y are
            histogrammed along the second dimension.
        xedges : 1D array
            The bin edges along the x axis.
        yedges : 1D array
            The bin edges along the y axis.
        image : `~.matplotlib.collections.QuadMesh`

        Other Parameters
        ----------------
        cmap : Colormap or str, optional
            A `.colors.Colormap` instance.  If not set, use rc settings.

        norm : Normalize, optional
            A `.colors.Normalize` instance is used to
            scale luminance data to ``[0, 1]``. If not set, defaults to
            `.colors.Normalize()`.

        vmin/vmax : None or scalar, optional
            Arguments passed to the `~.colors.Normalize` instance.

        alpha : ``0 <= scalar <= 1`` or ``None``, optional
            The alpha blending value.

        See also
        --------
        hist : 1D histogram plotting

        Notes
        -----
        - Currently ``hist2d`` calculates it's own axis limits, and any limits
          previously set are ignored.
        - Rendering the histogram with a logarithmic color scale is
          accomplished by passing a `.colors.LogNorm` instance to the *norm*
          keyword argument. Likewise, power-law normalization (similar
          in effect to gamma correction) can be accomplished with
          `.colors.PowerNorm`.
        """

        h, xedges, yedges = np.histogram2d(x, y, bins=bins, range=range,
                                           normed=density, weights=weights)

        if cmin is not None:
            h[h < cmin] = None
        if cmax is not None:
            h[h > cmax] = None

        pc = self.pcolormesh(xedges, yedges, h.T, **kwargs)
        self.set_xlim(xedges[0], xedges[-1])
        self.set_ylim(yedges[0], yedges[-1])

        return h, xedges, yedges, pc

    @_preprocess_data(replace_names=["x"])
    @docstring.dedent_interpd
    def psd(self, x, NFFT=None, Fs=None, Fc=None, detrend=None,
            window=None, noverlap=None, pad_to=None,
            sides=None, scale_by_freq=None, return_line=None, **kwargs):
        r"""
        Plot the power spectral density.

        The power spectral density :math:`P_{xx}` by Welch's average
        periodogram method.  The vector *x* is divided into *NFFT* length
        segments.  Each segment is detrended by function *detrend* and
        windowed by function *window*.  *noverlap* gives the length of
        the overlap between segments.  The :math:`|\mathrm{fft}(i)|^2`
        of each segment :math:`i` are averaged to compute :math:`P_{xx}`,
        with a scaling to correct for power loss due to windowing.

        If len(*x*) < *NFFT*, it will be zero padded to *NFFT*.

        Parameters
        ----------
        x : 1-D array or sequence
            Array or sequence containing the data

        %(Spectral)s

        %(PSD)s

        noverlap : int
            The number of points of overlap between segments.
            The default value is 0 (no overlap).

        Fc : int
            The center frequency of *x* (defaults to 0), which offsets
            the x extents of the plot to reflect the frequency range used
            when a signal is acquired and then filtered and downsampled to
            baseband.

        return_line : bool
            Whether to include the line object plotted in the returned values.
            Default is False.

        Returns
        -------
        Pxx : 1-D array
            The values for the power spectrum `P_{xx}` before scaling
            (real valued).

        freqs : 1-D array
            The frequencies corresponding to the elements in *Pxx*.

        line : a :class:`~matplotlib.lines.Line2D` instance
            The line created by this function.
            Only returned if *return_line* is True.

        Other Parameters
        ----------------
        **kwargs
            Keyword arguments control the :class:`~matplotlib.lines.Line2D`
            properties:

        %(_Line2D_docstr)s

        See Also
        --------
        :func:`specgram`
            :func:`specgram` differs in the default overlap; in not returning
            the mean of the segment periodograms; in returning the times of the
            segments; and in plotting a colormap instead of a line.

        :func:`magnitude_spectrum`
            :func:`magnitude_spectrum` plots the magnitude spectrum.

        :func:`csd`
            :func:`csd` plots the spectral density between two signals.

        Notes
        -----
        For plotting, the power is plotted as
        :math:`10\log_{10}(P_{xx})` for decibels, though *Pxx* itself
        is returned.

        References
        ----------
        Bendat & Piersol -- Random Data: Analysis and Measurement Procedures,
        John Wiley & Sons (1986)
        """
        if Fc is None:
            Fc = 0

        pxx, freqs = mlab.psd(x=x, NFFT=NFFT, Fs=Fs, detrend=detrend,
                              window=window, noverlap=noverlap, pad_to=pad_to,
                              sides=sides, scale_by_freq=scale_by_freq)
        freqs += Fc

        if scale_by_freq in (None, True):
            psd_units = 'dB/Hz'
        else:
            psd_units = 'dB'

        line = self.plot(freqs, 10 * np.log10(pxx), **kwargs)
        self.set_xlabel('Frequency')
        self.set_ylabel('Power Spectral Density (%s)' % psd_units)
        self.grid(True)
        vmin, vmax = self.viewLim.intervaly
        intv = vmax - vmin
        logi = int(np.log10(intv))
        if logi == 0:
            logi = .1
        step = 10 * logi
        ticks = np.arange(math.floor(vmin), math.ceil(vmax) + 1, step)
        self.set_yticks(ticks)

        if return_line is None or not return_line:
            return pxx, freqs
        else:
            return pxx, freqs, line

    @_preprocess_data(replace_names=["x", "y"], label_namer="y")
    @docstring.dedent_interpd
    def csd(self, x, y, NFFT=None, Fs=None, Fc=None, detrend=None,
            window=None, noverlap=None, pad_to=None,
            sides=None, scale_by_freq=None, return_line=None, **kwargs):
        """
        Plot the cross-spectral density.

        The cross spectral density :math:`P_{xy}` by Welch's average
        periodogram method.  The vectors *x* and *y* are divided into
        *NFFT* length segments.  Each segment is detrended by function
        *detrend* and windowed by function *window*.  *noverlap* gives
        the length of the overlap between segments.  The product of
        the direct FFTs of *x* and *y* are averaged over each segment
        to compute :math:`P_{xy}`, with a scaling to correct for power
        loss due to windowing.

        If len(*x*) < *NFFT* or len(*y*) < *NFFT*, they will be zero
        padded to *NFFT*.

        Parameters
        ----------
        x, y : 1-D arrays or sequences
            Arrays or sequences containing the data.

        %(Spectral)s

        %(PSD)s

        noverlap : int
            The number of points of overlap between segments.
            The default value is 0 (no overlap).

        Fc : int
            The center frequency of *x* (defaults to 0), which offsets
            the x extents of the plot to reflect the frequency range used
            when a signal is acquired and then filtered and downsampled to
            baseband.

        return_line : bool
            Whether to include the line object plotted in the returned values.
            Default is False.

        Returns
        -------
        Pxy : 1-D array
            The values for the cross spectrum `P_{xy}` before scaling
            (complex valued).

        freqs : 1-D array
            The frequencies corresponding to the elements in *Pxy*.

        line : a :class:`~matplotlib.lines.Line2D` instance
            The line created by this function.
            Only returned if *return_line* is True.

        Other Parameters
        ----------------
        **kwargs
            Keyword arguments control the :class:`~matplotlib.lines.Line2D`
            properties:

        %(_Line2D_docstr)s

        See Also
        --------
        :func:`psd`
            :func:`psd` is the equivalent to setting y=x.

        Notes
        -----
        For plotting, the power is plotted as
        :math:`10\\log_{10}(P_{xy})` for decibels, though `P_{xy}` itself
        is returned.

        References
        ----------
        Bendat & Piersol -- Random Data: Analysis and Measurement Procedures,
        John Wiley & Sons (1986)
        """
        if Fc is None:
            Fc = 0

        pxy, freqs = mlab.csd(x=x, y=y, NFFT=NFFT, Fs=Fs, detrend=detrend,
                              window=window, noverlap=noverlap, pad_to=pad_to,
                              sides=sides, scale_by_freq=scale_by_freq)
        # pxy is complex
        freqs += Fc

        line = self.plot(freqs, 10 * np.log10(np.abs(pxy)), **kwargs)
        self.set_xlabel('Frequency')
        self.set_ylabel('Cross Spectrum Magnitude (dB)')
        self.grid(True)
        vmin, vmax = self.viewLim.intervaly

        intv = vmax - vmin
        step = 10 * int(np.log10(intv))

        ticks = np.arange(math.floor(vmin), math.ceil(vmax) + 1, step)
        self.set_yticks(ticks)

        if return_line is None or not return_line:
            return pxy, freqs
        else:
            return pxy, freqs, line

    @_preprocess_data(replace_names=["x"])
    @docstring.dedent_interpd
    def magnitude_spectrum(self, x, Fs=None, Fc=None, window=None,
                           pad_to=None, sides=None, scale=None,
                           **kwargs):
        """
        Plot the magnitude spectrum.

        Compute the magnitude spectrum of *x*.  Data is padded to a
        length of *pad_to* and the windowing function *window* is applied to
        the signal.

        Parameters
        ----------
        x : 1-D array or sequence
            Array or sequence containing the data.

        %(Spectral)s

        %(Single_Spectrum)s

        scale : {'default', 'linear', 'dB'}
            The scaling of the values in the *spec*.  'linear' is no scaling.
            'dB' returns the values in dB scale, i.e., the dB amplitude
            (20 * log10). 'default' is 'linear'.

        Fc : int
            The center frequency of *x* (defaults to 0), which offsets
            the x extents of the plot to reflect the frequency range used
            when a signal is acquired and then filtered and downsampled to
            baseband.

        Returns
        -------
        spectrum : 1-D array
            The values for the magnitude spectrum before scaling (real valued).

        freqs : 1-D array
            The frequencies corresponding to the elements in *spectrum*.

        line : a :class:`~matplotlib.lines.Line2D` instance
            The line created by this function.

        Other Parameters
        ----------------
        **kwargs
            Keyword arguments control the :class:`~matplotlib.lines.Line2D`
            properties:

        %(_Line2D_docstr)s

        See Also
        --------
        :func:`psd`
            :func:`psd` plots the power spectral density.`.

        :func:`angle_spectrum`
            :func:`angle_spectrum` plots the angles of the corresponding
            frequencies.

        :func:`phase_spectrum`
            :func:`phase_spectrum` plots the phase (unwrapped angle) of the
            corresponding frequencies.

        :func:`specgram`
            :func:`specgram` can plot the magnitude spectrum of segments within
            the signal in a colormap.

        """
        if Fc is None:
            Fc = 0

        if scale is None or scale == 'default':
            scale = 'linear'

        spec, freqs = mlab.magnitude_spectrum(x=x, Fs=Fs, window=window,
                                              pad_to=pad_to, sides=sides)
        freqs += Fc

        if scale == 'linear':
            Z = spec
            yunits = 'energy'
        elif scale == 'dB':
            Z = 20. * np.log10(spec)
            yunits = 'dB'
        else:
            raise ValueError('Unknown scale %s', scale)

        lines = self.plot(freqs, Z, **kwargs)
        self.set_xlabel('Frequency')
        self.set_ylabel('Magnitude (%s)' % yunits)

        return spec, freqs, lines[0]

    @_preprocess_data(replace_names=["x"])
    @docstring.dedent_interpd
    def angle_spectrum(self, x, Fs=None, Fc=None, window=None,
                       pad_to=None, sides=None, **kwargs):
        """
        Plot the angle spectrum.

        Compute the angle spectrum (wrapped phase spectrum) of *x*.
        Data is padded to a length of *pad_to* and the windowing function
        *window* is applied to the signal.

        Parameters
        ----------
        x : 1-D array or sequence
            Array or sequence containing the data.

        %(Spectral)s

        %(Single_Spectrum)s

        Fc : int
            The center frequency of *x* (defaults to 0), which offsets
            the x extents of the plot to reflect the frequency range used
            when a signal is acquired and then filtered and downsampled to
            baseband.

        Returns
        -------
        spectrum : 1-D array
            The values for the angle spectrum in radians (real valued).

        freqs : 1-D array
            The frequencies corresponding to the elements in *spectrum*.

        line : a :class:`~matplotlib.lines.Line2D` instance
            The line created by this function.

        Other Parameters
        ----------------
        **kwargs
            Keyword arguments control the :class:`~matplotlib.lines.Line2D`
            properties:

        %(_Line2D_docstr)s

        See Also
        --------
        :func:`magnitude_spectrum`
            :func:`angle_spectrum` plots the magnitudes of the corresponding
            frequencies.

        :func:`phase_spectrum`
            :func:`phase_spectrum` plots the unwrapped version of this
            function.

        :func:`specgram`
            :func:`specgram` can plot the angle spectrum of segments within the
            signal in a colormap.

        """
        if Fc is None:
            Fc = 0

        spec, freqs = mlab.angle_spectrum(x=x, Fs=Fs, window=window,
                                          pad_to=pad_to, sides=sides)
        freqs += Fc

        lines = self.plot(freqs, spec, **kwargs)
        self.set_xlabel('Frequency')
        self.set_ylabel('Angle (radians)')

        return spec, freqs, lines[0]

    @_preprocess_data(replace_names=["x"])
    @docstring.dedent_interpd
    def phase_spectrum(self, x, Fs=None, Fc=None, window=None,
                       pad_to=None, sides=None, **kwargs):
        """
        Plot the phase spectrum.

        Compute the phase spectrum (unwrapped angle spectrum) of *x*.
        Data is padded to a length of *pad_to* and the windowing function
        *window* is applied to the signal.

        Parameters
        ----------
        x : 1-D array or sequence
            Array or sequence containing the data

        %(Spectral)s

        %(Single_Spectrum)s

        Fc : int
            The center frequency of *x* (defaults to 0), which offsets
            the x extents of the plot to reflect the frequency range used
            when a signal is acquired and then filtered and downsampled to
            baseband.

        Returns
        -------
        spectrum : 1-D array
            The values for the phase spectrum in radians (real valued).

        freqs : 1-D array
            The frequencies corresponding to the elements in *spectrum*.

        line : a :class:`~matplotlib.lines.Line2D` instance
            The line created by this function.

        Other Parameters
        ----------------
        **kwargs
            Keyword arguments control the :class:`~matplotlib.lines.Line2D`
            properties:

        %(_Line2D_docstr)s

        See Also
        --------
        :func:`magnitude_spectrum`
            :func:`magnitude_spectrum` plots the magnitudes of the
            corresponding frequencies.

        :func:`angle_spectrum`
            :func:`angle_spectrum` plots the wrapped version of this function.

        :func:`specgram`
            :func:`specgram` can plot the phase spectrum of segments within the
            signal in a colormap.

        """
        if Fc is None:
            Fc = 0

        spec, freqs = mlab.phase_spectrum(x=x, Fs=Fs, window=window,
                                          pad_to=pad_to, sides=sides)
        freqs += Fc

        lines = self.plot(freqs, spec, **kwargs)
        self.set_xlabel('Frequency')
        self.set_ylabel('Phase (radians)')

        return spec, freqs, lines[0]

    @_preprocess_data(replace_names=["x", "y"])
    @docstring.dedent_interpd
    def cohere(self, x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
               window=mlab.window_hanning, noverlap=0, pad_to=None,
               sides='default', scale_by_freq=None, **kwargs):
        """
        Plot the coherence between *x* and *y*.

        Plot the coherence between *x* and *y*.  Coherence is the
        normalized cross spectral density:

        .. math::

          C_{xy} = \\frac{|P_{xy}|^2}{P_{xx}P_{yy}}

        Parameters
        ----------
        %(Spectral)s

        %(PSD)s

        noverlap : int
            The number of points of overlap between blocks.  The
            default value is 0 (no overlap).

        Fc : int
            The center frequency of *x* (defaults to 0), which offsets
            the x extents of the plot to reflect the frequency range used
            when a signal is acquired and then filtered and downsampled to
            baseband.


        Returns
        -------
        Cxy : 1-D array
            The coherence vector.

        freqs : 1-D array
            The frequencies for the elements in *Cxy*.

        Other Parameters
        ----------------
        **kwargs
            Keyword arguments control the :class:`~matplotlib.lines.Line2D`
            properties:

        %(_Line2D_docstr)s

        References
        ----------
        Bendat & Piersol -- Random Data: Analysis and Measurement Procedures,
        John Wiley & Sons (1986)
        """
        cxy, freqs = mlab.cohere(x=x, y=y, NFFT=NFFT, Fs=Fs, detrend=detrend,
                                 window=window, noverlap=noverlap,
                                 scale_by_freq=scale_by_freq)
        freqs += Fc

        self.plot(freqs, cxy, **kwargs)
        self.set_xlabel('Frequency')
        self.set_ylabel('Coherence')
        self.grid(True)

        return cxy, freqs

    @_preprocess_data(replace_names=["x"])
    @docstring.dedent_interpd
    def specgram(self, x, NFFT=None, Fs=None, Fc=None, detrend=None,
                 window=None, noverlap=None,
                 cmap=None, xextent=None, pad_to=None, sides=None,
                 scale_by_freq=None, mode=None, scale=None,
                 vmin=None, vmax=None, **kwargs):
        """
        Plot a spectrogram.

        Compute and plot a spectrogram of data in *x*.  Data are split into
        *NFFT* length segments and the spectrum of each section is
        computed.  The windowing function *window* is applied to each
        segment, and the amount of overlap of each segment is
        specified with *noverlap*. The spectrogram is plotted as a colormap
        (using imshow).

        Parameters
        ----------
        x : 1-D array or sequence
            Array or sequence containing the data.

        %(Spectral)s

        %(PSD)s

        mode : {'default', 'psd', 'magnitude', 'angle', 'phase'}
            What sort of spectrum to use.  Default is 'psd', which takes the
            power spectral density.  'magnitude' returns the magnitude
            spectrum.  'angle' returns the phase spectrum without unwrapping.
            'phase' returns the phase spectrum with unwrapping.

        noverlap : int
            The number of points of overlap between blocks.  The
            default value is 128.

        scale : {'default', 'linear', 'dB'}
            The scaling of the values in the *spec*.  'linear' is no scaling.
            'dB' returns the values in dB scale.  When *mode* is 'psd',
            this is dB power (10 * log10).  Otherwise this is dB amplitude
            (20 * log10). 'default' is 'dB' if *mode* is 'psd' or
            'magnitude' and 'linear' otherwise.  This must be 'linear'
            if *mode* is 'angle' or 'phase'.

        Fc : int
            The center frequency of *x* (defaults to 0), which offsets
            the x extents of the plot to reflect the frequency range used
            when a signal is acquired and then filtered and downsampled to
            baseband.

        cmap
            A :class:`matplotlib.colors.Colormap` instance; if *None*, use
            default determined by rc

        xextent : *None* or (xmin, xmax)
            The image extent along the x-axis. The default sets *xmin* to the
            left border of the first bin (*spectrum* column) and *xmax* to the
            right border of the last bin. Note that for *noverlap>0* the width
            of the bins is smaller than those of the segments.

        **kwargs
            Additional kwargs are passed on to imshow which makes the
            specgram image.

        Returns
        -------
        spectrum : 2-D array
            Columns are the periodograms of successive segments.

        freqs : 1-D array
            The frequencies corresponding to the rows in *spectrum*.

        t : 1-D array
            The times corresponding to midpoints of segments (i.e., the columns
            in *spectrum*).

        im : instance of class :class:`~matplotlib.image.AxesImage`
            The image created by imshow containing the spectrogram

        See Also
        --------
        :func:`psd`
            :func:`psd` differs in the default overlap; in returning the mean
            of the segment periodograms; in not returning times; and in
            generating a line plot instead of colormap.

        :func:`magnitude_spectrum`
            A single spectrum, similar to having a single segment when *mode*
            is 'magnitude'. Plots a line instead of a colormap.

        :func:`angle_spectrum`
            A single spectrum, similar to having a single segment when *mode*
            is 'angle'. Plots a line instead of a colormap.

        :func:`phase_spectrum`
            A single spectrum, similar to having a single segment when *mode*
            is 'phase'. Plots a line instead of a colormap.

        Notes
        -----
        The parameters *detrend* and *scale_by_freq* do only apply when *mode*
        is set to 'psd'.
        """
        if NFFT is None:
            NFFT = 256  # same default as in mlab.specgram()
        if Fc is None:
            Fc = 0  # same default as in mlab._spectral_helper()
        if noverlap is None:
            noverlap = 128  # same default as in mlab.specgram()

        if mode == 'complex':
            raise ValueError('Cannot plot a complex specgram')

        if scale is None or scale == 'default':
            if mode in ['angle', 'phase']:
                scale = 'linear'
            else:
                scale = 'dB'
        elif mode in ['angle', 'phase'] and scale == 'dB':
            raise ValueError('Cannot use dB scale with angle or phase mode')

        spec, freqs, t = mlab.specgram(x=x, NFFT=NFFT, Fs=Fs,
                                       detrend=detrend, window=window,
                                       noverlap=noverlap, pad_to=pad_to,
                                       sides=sides,
                                       scale_by_freq=scale_by_freq,
                                       mode=mode)

        if scale == 'linear':
            Z = spec
        elif scale == 'dB':
            if mode is None or mode == 'default' or mode == 'psd':
                Z = 10. * np.log10(spec)
            else:
                Z = 20. * np.log10(spec)
        else:
            raise ValueError('Unknown scale %s', scale)

        Z = np.flipud(Z)

        if xextent is None:
            # padding is needed for first and last segment:
            pad_xextent = (NFFT-noverlap) / Fs / 2
            xextent = np.min(t) - pad_xextent, np.max(t) + pad_xextent
        xmin, xmax = xextent
        freqs += Fc
        extent = xmin, xmax, freqs[0], freqs[-1]
        im = self.imshow(Z, cmap, extent=extent, vmin=vmin, vmax=vmax,
                         **kwargs)
        self.axis('auto')

        return spec, freqs, t, im

    @docstring.dedent_interpd
    def spy(self, Z, precision=0, marker=None, markersize=None,
            aspect='equal', origin="upper", **kwargs):
        """
        Plot the sparsity pattern of a 2D array.

        This visualizes the non-zero values of the array.

        Two plotting styles are available: image and marker. Both
        are available for full arrays, but only the marker style
        works for `scipy.sparse.spmatrix` instances.

        **Image style**

        If *marker* and *markersize* are *None*, `~.Axes.imshow` is used. Any
        extra remaining kwargs are passed to this method.

        **Marker style**

        If *Z* is a `scipy.sparse.spmatrix` or *marker* or *markersize* are
        *None*, a `~matplotlib.lines.Line2D` object will be returned with
        the value of marker determining the marker type, and any
        remaining kwargs passed to `~.Axes.plot`.

        Parameters
        ----------
        Z : array-like (M, N)
            The array to be plotted.

        precision : float or 'present', optional, default: 0
            If *precision* is 0, any non-zero value will be plotted. Otherwise,
            values of :math:`|Z| > precision` will be plotted.

            For :class:`scipy.sparse.spmatrix` instances, you can also
            pass 'present'. In this case any value present in the array
            will be plotted, even if it is identically zero.

        origin : {'upper', 'lower'}, optional
            Place the [0,0] index of the array in the upper left or lower left
            corner of the axes. The convention 'upper' is typically used for
            matrices and images.
            If not given, :rc:`image.origin` is used, defaulting to 'upper'.


        aspect : {'equal', 'auto', None} or float, optional
            Controls the aspect ratio of the axes. The aspect is of particular
            relevance for images since it may distort the image, i.e. pixel
            will not be square.

            This parameter is a shortcut for explicitly calling
            `.Axes.set_aspect`. See there for further details.

            - 'equal': Ensures an aspect ratio of 1. Pixels will be square.
            - 'auto': The axes is kept fixed and the aspect is adjusted so
              that the data fit in the axes. In general, this will result in
              non-square pixels.
            - *None*: Use :rc:`image.aspect` (default: 'equal').

            Default: 'equal'

        Returns
        -------
        ret : `~matplotlib.image.AxesImage` or `.Line2D`
            The return type depends on the plotting style (see above).

        Other Parameters
        ----------------
        **kwargs
            The supported additional parameters depend on the plotting style.

            For the image style, you can pass the following additional
            parameters of `~.Axes.imshow`:

            - *cmap*
            - *alpha*
            - *url*
            - any `.Artist` properties (passed on to the `.AxesImage`)

            For the marker style, you can pass any `.Line2D` property except
            for *linestyle*:

        %(_Line2D_docstr)s
        """
        if marker is None and markersize is None and hasattr(Z, 'tocoo'):
            marker = 's'
        if marker is None and markersize is None:
            Z = np.asarray(Z)
            mask = np.abs(Z) > precision

            if 'cmap' not in kwargs:
                kwargs['cmap'] = mcolors.ListedColormap(['w', 'k'],
                                                        name='binary')
            if 'interpolation' in kwargs:
                raise TypeError(
                    "spy() got an unexpected keyword argument 'interpolation'")
            ret = self.imshow(mask, interpolation='nearest', aspect=aspect,
                              origin=origin, **kwargs)
        else:
            if hasattr(Z, 'tocoo'):
                c = Z.tocoo()
                if precision == 'present':
                    y = c.row
                    x = c.col
                else:
                    nonzero = np.abs(c.data) > precision
                    y = c.row[nonzero]
                    x = c.col[nonzero]
            else:
                Z = np.asarray(Z)
                nonzero = np.abs(Z) > precision
                y, x = np.nonzero(nonzero)
            if marker is None:
                marker = 's'
            if markersize is None:
                markersize = 10
            if 'linestyle' in kwargs:
                raise TypeError(
                    "spy() got an unexpected keyword argument 'linestyle'")
            marks = mlines.Line2D(x, y, linestyle='None',
                         marker=marker, markersize=markersize, **kwargs)
            self.add_line(marks)
            nr, nc = Z.shape
            self.set_xlim(-0.5, nc - 0.5)
            self.set_ylim(nr - 0.5, -0.5)
            self.set_aspect(aspect)
            ret = marks
        self.title.set_y(1.05)
        self.xaxis.tick_top()
        self.xaxis.set_ticks_position('both')
        self.xaxis.set_major_locator(mticker.MaxNLocator(nbins=9,
                                                 steps=[1, 2, 5, 10],
                                                 integer=True))
        self.yaxis.set_major_locator(mticker.MaxNLocator(nbins=9,
                                                 steps=[1, 2, 5, 10],
                                                 integer=True))
        return ret

    def matshow(self, Z, **kwargs):
        """
        Plot the values of a 2D matrix or array as color-coded image.

        The matrix will be shown the way it would be printed, with the first
        row at the top.  Row and column numbering is zero-based.

        Parameters
        ----------
        Z : array-like(M, N)
            The matrix to be displayed.

        Returns
        -------
        image : `~matplotlib.image.AxesImage`

        Other Parameters
        ----------------
        **kwargs : `~matplotlib.axes.Axes.imshow` arguments

        See Also
        --------
        imshow : More general function to plot data on a 2D regular raster.

        Notes
        -----
        This is just a convenience function wrapping `.imshow` to set useful
        defaults for a displaying a matrix. In particular:

        - Set ``origin='upper'``.
        - Set ``interpolation='nearest'``.
        - Set ``aspect='equal'``.
        - Ticks are placed to the left and above.
        - Ticks are formatted to show integer indices.

        """
        Z = np.asanyarray(Z)
        kw = {'origin': 'upper',
              'interpolation': 'nearest',
              'aspect': 'equal',          # (already the imshow default)
              **kwargs}
        im = self.imshow(Z, **kw)
        self.title.set_y(1.05)
        self.xaxis.tick_top()
        self.xaxis.set_ticks_position('both')
        self.xaxis.set_major_locator(mticker.MaxNLocator(nbins=9,
                                                 steps=[1, 2, 5, 10],
                                                 integer=True))
        self.yaxis.set_major_locator(mticker.MaxNLocator(nbins=9,
                                                 steps=[1, 2, 5, 10],
                                                 integer=True))
        return im

    @_preprocess_data(replace_names=["dataset"])
    def violinplot(self, dataset, positions=None, vert=True, widths=0.5,
                   showmeans=False, showextrema=True, showmedians=False,
                   points=100, bw_method=None):
        """
        Make a violin plot.

        Make a violin plot for each column of *dataset* or each vector in
        sequence *dataset*.  Each filled area extends to represent the
        entire data range, with optional lines at the mean, the median,
        the minimum, and the maximum.

        Parameters
        ----------
        dataset : Array or a sequence of vectors.
          The input data.

        positions : array-like, default = [1, 2, ..., n]
          Sets the positions of the violins. The ticks and limits are
          automatically set to match the positions.

        vert : bool, default = True.
          If true, creates a vertical violin plot.
          Otherwise, creates a horizontal violin plot.

        widths : array-like, default = 0.5
          Either a scalar or a vector that sets the maximal width of
          each violin. The default is 0.5, which uses about half of the
          available horizontal space.

        showmeans : bool, default = False
          If `True`, will toggle rendering of the means.

        showextrema : bool, default = True
          If `True`, will toggle rendering of the extrema.

        showmedians : bool, default = False
          If `True`, will toggle rendering of the medians.

        points : scalar, default = 100
          Defines the number of points to evaluate each of the
          gaussian kernel density estimations at.

        bw_method : str, scalar or callable, optional
          The method used to calculate the estimator bandwidth.  This can be
          'scott', 'silverman', a scalar constant or a callable.  If a
          scalar, this will be used directly as `kde.factor`.  If a
          callable, it should take a `GaussianKDE` instance as its only
          parameter and return a scalar. If None (default), 'scott' is used.

        Returns
        -------

        result : dict
          A dictionary mapping each component of the violinplot to a
          list of the corresponding collection instances created. The
          dictionary has the following keys:

            - ``bodies``: A list of the
              :class:`matplotlib.collections.PolyCollection` instances
              containing the filled area of each violin.

            - ``cmeans``: A
              :class:`matplotlib.collections.LineCollection` instance
              created to identify the mean values of each of the
              violin's distribution.

            - ``cmins``: A
              :class:`matplotlib.collections.LineCollection` instance
              created to identify the bottom of each violin's
              distribution.

            - ``cmaxes``: A
              :class:`matplotlib.collections.LineCollection` instance
              created to identify the top of each violin's
              distribution.

            - ``cbars``: A
              :class:`matplotlib.collections.LineCollection` instance
              created to identify the centers of each violin's
              distribution.

            - ``cmedians``: A
              :class:`matplotlib.collections.LineCollection` instance
              created to identify the median values of each of the
              violin's distribution.

        """

        def _kde_method(X, coords):
            # fallback gracefully if the vector contains only one value
            if np.all(X[0] == X):
                return (X[0] == coords).astype(float)
            kde = mlab.GaussianKDE(X, bw_method)
            return kde.evaluate(coords)

        vpstats = cbook.violin_stats(dataset, _kde_method, points=points)
        return self.violin(vpstats, positions=positions, vert=vert,
                           widths=widths, showmeans=showmeans,
                           showextrema=showextrema, showmedians=showmedians)

    def violin(self, vpstats, positions=None, vert=True, widths=0.5,
               showmeans=False, showextrema=True, showmedians=False):
        """Drawing function for violin plots.

        Draw a violin plot for each column of `vpstats`. Each filled area
        extends to represent the entire data range, with optional lines at the
        mean, the median, the minimum, and the maximum.

        Parameters
        ----------

        vpstats : list of dicts
          A list of dictionaries containing stats for each violin plot.
          Required keys are:

          - ``coords``: A list of scalars containing the coordinates that
            the violin's kernel density estimate were evaluated at.

          - ``vals``: A list of scalars containing the values of the
            kernel density estimate at each of the coordinates given
            in *coords*.

          - ``mean``: The mean value for this violin's dataset.

          - ``median``: The median value for this violin's dataset.

          - ``min``: The minimum value for this violin's dataset.

          - ``max``: The maximum value for this violin's dataset.

        positions : array-like, default = [1, 2, ..., n]
          Sets the positions of the violins. The ticks and limits are
          automatically set to match the positions.

        vert : bool, default = True.
          If true, plots the violins vertically.
          Otherwise, plots the violins horizontally.

        widths : array-like, default = 0.5
          Either a scalar or a vector that sets the maximal width of
          each violin. The default is 0.5, which uses about half of the
          available horizontal space.

        showmeans : bool, default = False
          If true, will toggle rendering of the means.

        showextrema : bool, default = True
          If true, will toggle rendering of the extrema.

        showmedians : bool, default = False
          If true, will toggle rendering of the medians.

        Returns
        -------
        result : dict
          A dictionary mapping each component of the violinplot to a
          list of the corresponding collection instances created. The
          dictionary has the following keys:

            - ``bodies``: A list of the
              :class:`matplotlib.collections.PolyCollection` instances
              containing the filled area of each violin.

            - ``cmeans``: A
              :class:`matplotlib.collections.LineCollection` instance
              created to identify the mean values of each of the
              violin's distribution.

            - ``cmins``: A
              :class:`matplotlib.collections.LineCollection` instance
              created to identify the bottom of each violin's
              distribution.

            - ``cmaxes``: A
              :class:`matplotlib.collections.LineCollection` instance
              created to identify the top of each violin's
              distribution.

            - ``cbars``: A
              :class:`matplotlib.collections.LineCollection` instance
              created to identify the centers of each violin's
              distribution.

            - ``cmedians``: A
              :class:`matplotlib.collections.LineCollection` instance
              created to identify the median values of each of the
              violin's distribution.

        """

        # Statistical quantities to be plotted on the violins
        means = []
        mins = []
        maxes = []
        medians = []

        # Collections to be returned
        artists = {}

        N = len(vpstats)
        datashape_message = ("List of violinplot statistics and `{0}` "
                             "values must have the same length")

        # Validate positions
        if positions is None:
            positions = range(1, N + 1)
        elif len(positions) != N:
            raise ValueError(datashape_message.format("positions"))

        # Validate widths
        if np.isscalar(widths):
            widths = [widths] * N
        elif len(widths) != N:
            raise ValueError(datashape_message.format("widths"))

        # Calculate ranges for statistics lines
        pmins = -0.25 * np.array(widths) + positions
        pmaxes = 0.25 * np.array(widths) + positions

        # Check whether we are rendering vertically or horizontally
        if vert:
            fill = self.fill_betweenx
            perp_lines = self.hlines
            par_lines = self.vlines
        else:
            fill = self.fill_between
            perp_lines = self.vlines
            par_lines = self.hlines

        if rcParams['_internal.classic_mode']:
            fillcolor = 'y'
            edgecolor = 'r'
        else:
            fillcolor = edgecolor = self._get_lines.get_next_color()

        # Render violins
        bodies = []
        for stats, pos, width in zip(vpstats, positions, widths):
            # The 0.5 factor reflects the fact that we plot from v-p to
            # v+p
            vals = np.array(stats['vals'])
            vals = 0.5 * width * vals / vals.max()
            bodies += [fill(stats['coords'],
                            -vals + pos,
                            vals + pos,
                            facecolor=fillcolor,
                            alpha=0.3)]
            means.append(stats['mean'])
            mins.append(stats['min'])
            maxes.append(stats['max'])
            medians.append(stats['median'])
        artists['bodies'] = bodies

        # Render means
        if showmeans:
            artists['cmeans'] = perp_lines(means, pmins, pmaxes,
                                           colors=edgecolor)

        # Render extrema
        if showextrema:
            artists['cmaxes'] = perp_lines(maxes, pmins, pmaxes,
                                           colors=edgecolor)
            artists['cmins'] = perp_lines(mins, pmins, pmaxes,
                                          colors=edgecolor)
            artists['cbars'] = par_lines(positions, mins, maxes,
                                         colors=edgecolor)

        # Render medians
        if showmedians:
            artists['cmedians'] = perp_lines(medians,
                                             pmins,
                                             pmaxes,
                                             colors=edgecolor)

        return artists

    # Methods that are entirely implemented in other modules.

    table = mtable.table

    # args can by either Y or y1,y2,... and all should be replaced
    stackplot = _preprocess_data()(mstack.stackplot)

    streamplot = _preprocess_data(
        replace_names=["x", "y", "u", "v", "start_points"])(mstream.streamplot)

    tricontour = mtri.tricontour
    tricontourf = mtri.tricontourf
    tripcolor = mtri.tripcolor
    triplot = mtri.triplot