Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

aaronreidsmith / matplotlib   python

Repository URL to install this package:

Version: 3.1.2 

/ path.py

r"""
A module for dealing with the polylines used throughout Matplotlib.

The primary class for polyline handling in Matplotlib is `Path`.  Almost all
vector drawing makes use of `Path`\s somewhere in the drawing pipeline.

Whilst a `Path` instance itself cannot be drawn, some `.Artist` subclasses,
such as `.PathPatch` and `.PathCollection`, can be used for convenient `Path`
visualisation.
"""

from functools import lru_cache
from weakref import WeakValueDictionary

import numpy as np

from . import _path, cbook, rcParams
from .cbook import _to_unmasked_float_array, simple_linear_interpolation


class Path(object):
    """
    :class:`Path` represents a series of possibly disconnected,
    possibly closed, line and curve segments.

    The underlying storage is made up of two parallel numpy arrays:
      - *vertices*: an Nx2 float array of vertices
      - *codes*: an N-length uint8 array of vertex types

    These two arrays always have the same length in the first
    dimension.  For example, to represent a cubic curve, you must
    provide three vertices as well as three codes ``CURVE3``.

    The code types are:

       - ``STOP``   :  1 vertex (ignored)
           A marker for the end of the entire path (currently not
           required and ignored)

       - ``MOVETO`` :  1 vertex
            Pick up the pen and move to the given vertex.

       - ``LINETO`` :  1 vertex
            Draw a line from the current position to the given vertex.

       - ``CURVE3`` :  1 control point, 1 endpoint
          Draw a quadratic Bezier curve from the current position,
          with the given control point, to the given end point.

       - ``CURVE4`` :  2 control points, 1 endpoint
          Draw a cubic Bezier curve from the current position, with
          the given control points, to the given end point.

       - ``CLOSEPOLY`` : 1 vertex (ignored)
          Draw a line segment to the start point of the current
          polyline.

    Users of Path objects should not access the vertices and codes
    arrays directly.  Instead, they should use :meth:`iter_segments`
    or :meth:`cleaned` to get the vertex/code pairs.  This is important,
    since many :class:`Path` objects, as an optimization, do not store a
    *codes* at all, but have a default one provided for them by
    :meth:`iter_segments`.

    Some behavior of Path objects can be controlled by rcParams. See
    the rcParams whose keys contain 'path.'.

    .. note::

        The vertices and codes arrays should be treated as
        immutable -- there are a number of optimizations and assumptions
        made up front in the constructor that will not change when the
        data changes.

    """

    code_type = np.uint8

    # Path codes
    STOP = code_type(0)         # 1 vertex
    MOVETO = code_type(1)       # 1 vertex
    LINETO = code_type(2)       # 1 vertex
    CURVE3 = code_type(3)       # 2 vertices
    CURVE4 = code_type(4)       # 3 vertices
    CLOSEPOLY = code_type(79)   # 1 vertex

    #: A dictionary mapping Path codes to the number of vertices that the
    #: code expects.
    NUM_VERTICES_FOR_CODE = {STOP: 1,
                             MOVETO: 1,
                             LINETO: 1,
                             CURVE3: 2,
                             CURVE4: 3,
                             CLOSEPOLY: 1}

    def __init__(self, vertices, codes=None, _interpolation_steps=1,
                 closed=False, readonly=False):
        """
        Create a new path with the given vertices and codes.

        Parameters
        ----------
        vertices : array_like
            The ``(n, 2)`` float array, masked array or sequence of pairs
            representing the vertices of the path.

            If *vertices* contains masked values, they will be converted
            to NaNs which are then handled correctly by the Agg
            PathIterator and other consumers of path data, such as
            :meth:`iter_segments`.
        codes : {None, array_like}, optional
            n-length array integers representing the codes of the path.
            If not None, codes must be the same length as vertices.
            If None, *vertices* will be treated as a series of line segments.
        _interpolation_steps : int, optional
            Used as a hint to certain projections, such as Polar, that this
            path should be linearly interpolated immediately before drawing.
            This attribute is primarily an implementation detail and is not
            intended for public use.
        closed : bool, optional
            If *codes* is None and closed is True, vertices will be treated as
            line segments of a closed polygon.
        readonly : bool, optional
            Makes the path behave in an immutable way and sets the vertices
            and codes as read-only arrays.
        """
        vertices = _to_unmasked_float_array(vertices)
        if vertices.ndim != 2 or vertices.shape[1] != 2:
            raise ValueError(
                "'vertices' must be a 2D list or array with shape Nx2")

        if codes is not None:
            codes = np.asarray(codes, self.code_type)
            if codes.ndim != 1 or len(codes) != len(vertices):
                raise ValueError("'codes' must be a 1D list or array with the "
                                 "same length of 'vertices'")
            if len(codes) and codes[0] != self.MOVETO:
                raise ValueError("The first element of 'code' must be equal "
                                 "to 'MOVETO' ({})".format(self.MOVETO))
        elif closed and len(vertices):
            codes = np.empty(len(vertices), dtype=self.code_type)
            codes[0] = self.MOVETO
            codes[1:-1] = self.LINETO
            codes[-1] = self.CLOSEPOLY

        self._vertices = vertices
        self._codes = codes
        self._interpolation_steps = _interpolation_steps
        self._update_values()

        if readonly:
            self._vertices.flags.writeable = False
            if self._codes is not None:
                self._codes.flags.writeable = False
            self._readonly = True
        else:
            self._readonly = False

    @classmethod
    def _fast_from_codes_and_verts(cls, verts, codes, internals_from=None):
        """
        Creates a Path instance without the expense of calling the constructor.

        Parameters
        ----------
        verts : numpy array
        codes : numpy array
        internals_from : Path or None
            If not None, another `Path` from which the attributes
            ``should_simplify``, ``simplify_threshold``, and
            ``interpolation_steps`` will be copied.  Note that ``readonly`` is
            never copied, and always set to ``False`` by this constructor.
        """
        pth = cls.__new__(cls)
        pth._vertices = _to_unmasked_float_array(verts)
        pth._codes = codes
        pth._readonly = False
        if internals_from is not None:
            pth._should_simplify = internals_from._should_simplify
            pth._simplify_threshold = internals_from._simplify_threshold
            pth._interpolation_steps = internals_from._interpolation_steps
        else:
            pth._should_simplify = True
            pth._simplify_threshold = rcParams['path.simplify_threshold']
            pth._interpolation_steps = 1
        return pth

    def _update_values(self):
        self._simplify_threshold = rcParams['path.simplify_threshold']
        self._should_simplify = (
            self._simplify_threshold > 0 and
            rcParams['path.simplify'] and
            len(self._vertices) >= 128 and
            (self._codes is None or np.all(self._codes <= Path.LINETO))
        )

    @property
    def vertices(self):
        """
        The list of vertices in the `Path` as an Nx2 numpy array.
        """
        return self._vertices

    @vertices.setter
    def vertices(self, vertices):
        if self._readonly:
            raise AttributeError("Can't set vertices on a readonly Path")
        self._vertices = vertices
        self._update_values()

    @property
    def codes(self):
        """
        The list of codes in the `Path` as a 1-D numpy array.  Each
        code is one of `STOP`, `MOVETO`, `LINETO`, `CURVE3`, `CURVE4`
        or `CLOSEPOLY`.  For codes that correspond to more than one
        vertex (`CURVE3` and `CURVE4`), that code will be repeated so
        that the length of `self.vertices` and `self.codes` is always
        the same.
        """
        return self._codes

    @codes.setter
    def codes(self, codes):
        if self._readonly:
            raise AttributeError("Can't set codes on a readonly Path")
        self._codes = codes
        self._update_values()

    @property
    def simplify_threshold(self):
        """
        The fraction of a pixel difference below which vertices will
        be simplified out.
        """
        return self._simplify_threshold

    @simplify_threshold.setter
    def simplify_threshold(self, threshold):
        self._simplify_threshold = threshold

    @cbook.deprecated(
        "3.1", alternative="not np.isfinite(self.vertices).all()")
    @property
    def has_nonfinite(self):
        """
        `True` if the vertices array has nonfinite values.
        """
        return not np.isfinite(self._vertices).all()

    @property
    def should_simplify(self):
        """
        `True` if the vertices array should be simplified.
        """
        return self._should_simplify

    @should_simplify.setter
    def should_simplify(self, should_simplify):
        self._should_simplify = should_simplify

    @property
    def readonly(self):
        """
        `True` if the `Path` is read-only.
        """
        return self._readonly

    def __copy__(self):
        """
        Returns a shallow copy of the `Path`, which will share the
        vertices and codes with the source `Path`.
        """
        import copy
        return copy.copy(self)

    copy = __copy__

    def __deepcopy__(self, memo=None):
        """
        Returns a deepcopy of the `Path`.  The `Path` will not be
        readonly, even if the source `Path` is.
        """
        try:
            codes = self.codes.copy()
        except AttributeError:
            codes = None
        return self.__class__(
            self.vertices.copy(), codes,
            _interpolation_steps=self._interpolation_steps)

    deepcopy = __deepcopy__

    @classmethod
    def make_compound_path_from_polys(cls, XY):
        """
        Make a compound path object to draw a number
        of polygons with equal numbers of sides XY is a (numpolys x
        numsides x 2) numpy array of vertices.  Return object is a
        :class:`Path`

        .. plot:: gallery/misc/histogram_path.py

        """

        # for each poly: 1 for the MOVETO, (numsides-1) for the LINETO, 1 for
        # the CLOSEPOLY; the vert for the closepoly is ignored but we still
        # need it to keep the codes aligned with the vertices
        numpolys, numsides, two = XY.shape
        if two != 2:
            raise ValueError("The third dimension of 'XY' must be 2")
        stride = numsides + 1
        nverts = numpolys * stride
        verts = np.zeros((nverts, 2))
        codes = np.full(nverts, cls.LINETO, dtype=cls.code_type)
        codes[0::stride] = cls.MOVETO
        codes[numsides::stride] = cls.CLOSEPOLY
        for i in range(numsides):
            verts[i::stride] = XY[:, i]

        return cls(verts, codes)

    @classmethod
    def make_compound_path(cls, *args):
        """Make a compound path from a list of Path objects."""
        # Handle an empty list in args (i.e. no args).
        if not args:
            return Path(np.empty([0, 2], dtype=np.float32))

        lengths = [len(x) for x in args]
        total_length = sum(lengths)

        vertices = np.vstack([x.vertices for x in args])
        vertices.reshape((total_length, 2))

        codes = np.empty(total_length, dtype=cls.code_type)
        i = 0
        for path in args:
            if path.codes is None:
                codes[i] = cls.MOVETO
                codes[i + 1:i + len(path.vertices)] = cls.LINETO
            else:
                codes[i:i + len(path.codes)] = path.codes
            i += len(path.vertices)

        return cls(vertices, codes)

    def __repr__(self):
        return "Path(%r, %r)" % (self.vertices, self.codes)

    def __len__(self):
        return len(self.vertices)

    def iter_segments(self, transform=None, remove_nans=True, clip=None,
                      snap=False, stroke_width=1.0, simplify=None,
                      curves=True, sketch=None):
        """
        Iterates over all of the curve segments in the path.  Each iteration
        returns a 2-tuple ``(vertices, code)``, where ``vertices`` is a
        sequence of 1-3 coordinate pairs, and ``code`` is a `Path` code.

        Additionally, this method can provide a number of standard cleanups and
        conversions to the path.

        Parameters
        ----------
        transform : None or :class:`~matplotlib.transforms.Transform`
            If not None, the given affine transformation will be applied to the
            path.
        remove_nans : bool, optional
            Whether to remove all NaNs from the path and skip over them using
            MOVETO commands.
        clip : None or (float, float, float, float), optional
            If not None, must be a four-tuple (x1, y1, x2, y2)
            defining a rectangle in which to clip the path.
        snap : None or bool, optional
            If True, snap all nodes to pixels; if False, don't snap them.
            If None, perform snapping if the path contains only segments
            parallel to the x or y axes, and no more than 1024 of them.
        stroke_width : float, optional
            The width of the stroke being drawn (used for path snapping).
        simplify : None or bool, optional
            Whether to simplify the path by removing vertices
            that do not affect its appearance.  If None, use the
            :attr:`should_simplify` attribute.  See also :rc:`path.simplify`
            and :rc:`path.simplify_threshold`.
        curves : bool, optional
            If True, curve segments will be returned as curve segments.
            If False, all curves will be converted to line segments.
        sketch : None or sequence, optional
            If not None, must be a 3-tuple of the form
            (scale, length, randomness), representing the sketch parameters.
        """
        if not len(self):
            return

        cleaned = self.cleaned(transform=transform,
                               remove_nans=remove_nans, clip=clip,
                               snap=snap, stroke_width=stroke_width,
                               simplify=simplify, curves=curves,
                               sketch=sketch)

        # Cache these object lookups for performance in the loop.
        NUM_VERTICES_FOR_CODE = self.NUM_VERTICES_FOR_CODE
        STOP = self.STOP

        vertices = iter(cleaned.vertices)
        codes = iter(cleaned.codes)
        for curr_vertices, code in zip(vertices, codes):
            if code == STOP:
                break
            extra_vertices = NUM_VERTICES_FOR_CODE[code] - 1
            if extra_vertices:
                for i in range(extra_vertices):
                    next(codes)
                    curr_vertices = np.append(curr_vertices, next(vertices))
            yield curr_vertices, code

    def cleaned(self, transform=None, remove_nans=False, clip=None,
                quantize=False, simplify=False, curves=False,
                stroke_width=1.0, snap=False, sketch=None):
        """
        Return a new Path with vertices and codes cleaned according to the
        parameters.

        See Also
        --------
        Path.iter_segments : for details of the keyword arguments.
        """
        vertices, codes = _path.cleanup_path(
            self, transform, remove_nans, clip, snap, stroke_width, simplify,
            curves, sketch)
        pth = Path._fast_from_codes_and_verts(vertices, codes, self)
        if not simplify:
            pth._should_simplify = False
        return pth

    def transformed(self, transform):
        """
        Return a transformed copy of the path.

        See Also
        --------
        matplotlib.transforms.TransformedPath
            A specialized path class that will cache the transformed result and
            automatically update when the transform changes.
        """
        return Path(transform.transform(self.vertices), self.codes,
                    self._interpolation_steps)

    def contains_point(self, point, transform=None, radius=0.0):
        """
        Returns whether the (closed) path contains the given point.

        If *transform* is not ``None``, the path will be transformed before
        performing the test.

        *radius* allows the path to be made slightly larger or smaller.
        """
        if transform is not None:
            transform = transform.frozen()
        # `point_in_path` does not handle nonlinear transforms, so we
        # transform the path ourselves.  If `transform` is affine, letting
        # `point_in_path` handle the transform avoids allocating an extra
        # buffer.
        if transform and not transform.is_affine:
            self = transform.transform_path(self)
            transform = None
        return _path.point_in_path(point[0], point[1], radius, self, transform)

    def contains_points(self, points, transform=None, radius=0.0):
        """
        Returns a bool array which is ``True`` if the (closed) path contains
        the corresponding point.

        If *transform* is not ``None``, the path will be transformed before
        performing the test.

        *radius* allows the path to be made slightly larger or smaller.
        """
        if transform is not None:
            transform = transform.frozen()
        result = _path.points_in_path(points, radius, self, transform)
        return result.astype('bool')

    def contains_path(self, path, transform=None):
        """
        Returns whether this (closed) path completely contains the given path.

        If *transform* is not ``None``, the path will be transformed before
        performing the test.
        """
        if transform is not None:
            transform = transform.frozen()
        return _path.path_in_path(self, None, path, transform)

    def get_extents(self, transform=None):
        """
        Returns the extents (*xmin*, *ymin*, *xmax*, *ymax*) of the
        path.

        Unlike computing the extents on the *vertices* alone, this
        algorithm will take into account the curves and deal with
        control points appropriately.
        """
        from .transforms import Bbox
        path = self
        if transform is not None:
            transform = transform.frozen()
            if not transform.is_affine:
                path = self.transformed(transform)
                transform = None
        return Bbox(_path.get_path_extents(path, transform))

    def intersects_path(self, other, filled=True):
        """
        Returns *True* if this path intersects another given path.

        *filled*, when True, treats the paths as if they were filled.
        That is, if one path completely encloses the other,
        :meth:`intersects_path` will return True.
        """
        return _path.path_intersects_path(self, other, filled)

    def intersects_bbox(self, bbox, filled=True):
        """
        Returns *True* if this path intersects a given
        :class:`~matplotlib.transforms.Bbox`.

        *filled*, when True, treats the path as if it was filled.
        That is, if the path completely encloses the bounding box,
        :meth:`intersects_bbox` will return True.

        The bounding box is always considered filled.
        """
        return _path.path_intersects_rectangle(self,
            bbox.x0, bbox.y0, bbox.x1, bbox.y1, filled)

    def interpolated(self, steps):
        """
        Returns a new path resampled to length N x steps.  Does not
        currently handle interpolating curves.
        """
        if steps == 1:
            return self

        vertices = simple_linear_interpolation(self.vertices, steps)
        codes = self.codes
        if codes is not None:
            new_codes = np.full((len(codes) - 1) * steps + 1, Path.LINETO,
                                dtype=self.code_type)
            new_codes[0::steps] = codes
        else:
            new_codes = None
        return Path(vertices, new_codes)

    def to_polygons(self, transform=None, width=0, height=0, closed_only=True):
        """
        Convert this path to a list of polygons or polylines.  Each
        polygon/polyline is an Nx2 array of vertices.  In other words,
        each polygon has no ``MOVETO`` instructions or curves.  This
        is useful for displaying in backends that do not support
        compound paths or Bezier curves.

        If *width* and *height* are both non-zero then the lines will
        be simplified so that vertices outside of (0, 0), (width,
        height) will be clipped.

        If *closed_only* is `True` (default), only closed polygons,
        with the last point being the same as the first point, will be
        returned.  Any unclosed polylines in the path will be
        explicitly closed.  If *closed_only* is `False`, any unclosed
        polygons in the path will be returned as unclosed polygons,
        and the closed polygons will be returned explicitly closed by
        setting the last point to the same as the first point.
        """
        if len(self.vertices) == 0:
            return []

        if transform is not None:
            transform = transform.frozen()

        if self.codes is None and (width == 0 or height == 0):
            vertices = self.vertices
            if closed_only:
                if len(vertices) < 3:
                    return []
                elif np.any(vertices[0] != vertices[-1]):
                    vertices = [*vertices, vertices[0]]

            if transform is None:
                return [vertices]
            else:
                return [transform.transform(vertices)]

        # Deal with the case where there are curves and/or multiple
        # subpaths (using extension code)
        return _path.convert_path_to_polygons(
            self, transform, width, height, closed_only)

    _unit_rectangle = None

    @classmethod
    def unit_rectangle(cls):
        """
        Return a `Path` instance of the unit rectangle from (0, 0) to (1, 1).
        """
        if cls._unit_rectangle is None:
            cls._unit_rectangle = \
                cls([[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 1.0],
                     [0.0, 0.0]],
                    [cls.MOVETO, cls.LINETO, cls.LINETO, cls.LINETO,
                     cls.CLOSEPOLY],
                    readonly=True)
        return cls._unit_rectangle

    _unit_regular_polygons = WeakValueDictionary()

    @classmethod
    def unit_regular_polygon(cls, numVertices):
        """
        Return a :class:`Path` instance for a unit regular polygon with the
        given *numVertices* and radius of 1.0, centered at (0, 0).
        """
        if numVertices <= 16:
            path = cls._unit_regular_polygons.get(numVertices)
        else:
            path = None
        if path is None:
            theta = ((2 * np.pi / numVertices) * np.arange(numVertices + 1)
                     # This initial rotation is to make sure the polygon always
                     # "points-up".
                     + np.pi / 2)
            verts = np.column_stack((np.cos(theta), np.sin(theta)))
            codes = np.empty(numVertices + 1)
            codes[0] = cls.MOVETO
            codes[1:-1] = cls.LINETO
            codes[-1] = cls.CLOSEPOLY
            path = cls(verts, codes, readonly=True)
            if numVertices <= 16:
                cls._unit_regular_polygons[numVertices] = path
        return path

    _unit_regular_stars = WeakValueDictionary()

    @classmethod
    def unit_regular_star(cls, numVertices, innerCircle=0.5):
        """
        Return a :class:`Path` for a unit regular star with the given
        numVertices and radius of 1.0, centered at (0, 0).
        """
        if numVertices <= 16:
            path = cls._unit_regular_stars.get((numVertices, innerCircle))
        else:
            path = None
        if path is None:
            ns2 = numVertices * 2
            theta = (2*np.pi/ns2 * np.arange(ns2 + 1))
            # This initial rotation is to make sure the polygon always
            # "points-up"
            theta += np.pi / 2.0
            r = np.ones(ns2 + 1)
            r[1::2] = innerCircle
            verts = np.vstack((r*np.cos(theta), r*np.sin(theta))).transpose()
            codes = np.empty((ns2 + 1,))
            codes[0] = cls.MOVETO
            codes[1:-1] = cls.LINETO
            codes[-1] = cls.CLOSEPOLY
            path = cls(verts, codes, readonly=True)
            if numVertices <= 16:
                cls._unit_regular_stars[(numVertices, innerCircle)] = path
        return path

    @classmethod
    def unit_regular_asterisk(cls, numVertices):
        """
        Return a :class:`Path` for a unit regular asterisk with the given
        numVertices and radius of 1.0, centered at (0, 0).
        """
        return cls.unit_regular_star(numVertices, 0.0)

    _unit_circle = None

    @classmethod
    def unit_circle(cls):
        """
        Return the readonly :class:`Path` of the unit circle.

        For most cases, :func:`Path.circle` will be what you want.
        """
        if cls._unit_circle is None:
            cls._unit_circle = cls.circle(center=(0, 0), radius=1,
                                          readonly=True)
        return cls._unit_circle

    @classmethod
    def circle(cls, center=(0., 0.), radius=1., readonly=False):
        """
        Return a `Path` representing a circle of a given radius and center.

        Parameters
        ----------
        center : pair of floats
            The center of the circle. Default ``(0, 0)``.
        radius : float
            The radius of the circle. Default is 1.
        readonly : bool
            Whether the created path should have the "readonly" argument
            set when creating the Path instance.

        Notes
        -----
        The circle is approximated using 8 cubic Bezier curves, as described in

          Lancaster, Don.  `Approximating a Circle or an Ellipse Using Four
          Bezier Cubic Splines <http://www.tinaja.com/glib/ellipse4.pdf>`_.
        """
        MAGIC = 0.2652031
        SQRTHALF = np.sqrt(0.5)
        MAGIC45 = SQRTHALF * MAGIC

        vertices = np.array([[0.0, -1.0],

                             [MAGIC, -1.0],
                             [SQRTHALF-MAGIC45, -SQRTHALF-MAGIC45],
                             [SQRTHALF, -SQRTHALF],

                             [SQRTHALF+MAGIC45, -SQRTHALF+MAGIC45],
                             [1.0, -MAGIC],
                             [1.0, 0.0],

                             [1.0, MAGIC],
                             [SQRTHALF+MAGIC45, SQRTHALF-MAGIC45],
                             [SQRTHALF, SQRTHALF],

                             [SQRTHALF-MAGIC45, SQRTHALF+MAGIC45],
                             [MAGIC, 1.0],
                             [0.0, 1.0],

                             [-MAGIC, 1.0],
                             [-SQRTHALF+MAGIC45, SQRTHALF+MAGIC45],
                             [-SQRTHALF, SQRTHALF],

                             [-SQRTHALF-MAGIC45, SQRTHALF-MAGIC45],
                             [-1.0, MAGIC],
                             [-1.0, 0.0],

                             [-1.0, -MAGIC],
                             [-SQRTHALF-MAGIC45, -SQRTHALF+MAGIC45],
                             [-SQRTHALF, -SQRTHALF],

                             [-SQRTHALF+MAGIC45, -SQRTHALF-MAGIC45],
                             [-MAGIC, -1.0],
                             [0.0, -1.0],

                             [0.0, -1.0]],
                            dtype=float)

        codes = [cls.CURVE4] * 26
        codes[0] = cls.MOVETO
        codes[-1] = cls.CLOSEPOLY
        return Path(vertices * radius + center, codes, readonly=readonly)

    _unit_circle_righthalf = None

    @classmethod
    def unit_circle_righthalf(cls):
        """
        Return a `Path` of the right half of a unit circle.

        See `Path.circle` for the reference on the approximation used.
        """
        if cls._unit_circle_righthalf is None:
            MAGIC = 0.2652031
            SQRTHALF = np.sqrt(0.5)
            MAGIC45 = SQRTHALF * MAGIC

            vertices = np.array(
                [[0.0, -1.0],

                 [MAGIC, -1.0],
                 [SQRTHALF-MAGIC45, -SQRTHALF-MAGIC45],
                 [SQRTHALF, -SQRTHALF],

                 [SQRTHALF+MAGIC45, -SQRTHALF+MAGIC45],
                 [1.0, -MAGIC],
                 [1.0, 0.0],

                 [1.0, MAGIC],
                 [SQRTHALF+MAGIC45, SQRTHALF-MAGIC45],
                 [SQRTHALF, SQRTHALF],

                 [SQRTHALF-MAGIC45, SQRTHALF+MAGIC45],
                 [MAGIC, 1.0],
                 [0.0, 1.0],

                 [0.0, -1.0]],

                float)

            codes = np.full(14, cls.CURVE4, dtype=cls.code_type)
            codes[0] = cls.MOVETO
            codes[-1] = cls.CLOSEPOLY

            cls._unit_circle_righthalf = cls(vertices, codes, readonly=True)
        return cls._unit_circle_righthalf

    @classmethod
    def arc(cls, theta1, theta2, n=None, is_wedge=False):
        """
        Return the unit circle arc from angles *theta1* to *theta2* (in
        degrees).

        *theta2* is unwrapped to produce the shortest arc within 360 degrees.
        That is, if *theta2* > *theta1* + 360, the arc will be from *theta1* to
        *theta2* - 360 and not a full circle plus some extra overlap.

        If *n* is provided, it is the number of spline segments to make.
        If *n* is not provided, the number of spline segments is
        determined based on the delta between *theta1* and *theta2*.

           Masionobe, L.  2003.  `Drawing an elliptical arc using
           polylines, quadratic or cubic Bezier curves
           <http://www.spaceroots.org/documents/ellipse/index.html>`_.
        """
        halfpi = np.pi * 0.5

        eta1 = theta1
        eta2 = theta2 - 360 * np.floor((theta2 - theta1) / 360)
        # Ensure 2pi range is not flattened to 0 due to floating-point errors,
        # but don't try to expand existing 0 range.
        if theta2 != theta1 and eta2 <= eta1:
            eta2 += 360
        eta1, eta2 = np.deg2rad([eta1, eta2])

        # number of curve segments to make
        if n is None:
            n = int(2 ** np.ceil((eta2 - eta1) / halfpi))
        if n < 1:
            raise ValueError("n must be >= 1 or None")

        deta = (eta2 - eta1) / n
        t = np.tan(0.5 * deta)
        alpha = np.sin(deta) * (np.sqrt(4.0 + 3.0 * t * t) - 1) / 3.0

        steps = np.linspace(eta1, eta2, n + 1, True)
        cos_eta = np.cos(steps)
        sin_eta = np.sin(steps)

        xA = cos_eta[:-1]
        yA = sin_eta[:-1]
        xA_dot = -yA
        yA_dot = xA

        xB = cos_eta[1:]
        yB = sin_eta[1:]
        xB_dot = -yB
        yB_dot = xB

        if is_wedge:
            length = n * 3 + 4
            vertices = np.zeros((length, 2), float)
            codes = np.full(length, cls.CURVE4, dtype=cls.code_type)
            vertices[1] = [xA[0], yA[0]]
            codes[0:2] = [cls.MOVETO, cls.LINETO]
            codes[-2:] = [cls.LINETO, cls.CLOSEPOLY]
            vertex_offset = 2
            end = length - 2
        else:
            length = n * 3 + 1
            vertices = np.empty((length, 2), float)
            codes = np.full(length, cls.CURVE4, dtype=cls.code_type)
            vertices[0] = [xA[0], yA[0]]
            codes[0] = cls.MOVETO
            vertex_offset = 1
            end = length

        vertices[vertex_offset:end:3, 0] = xA + alpha * xA_dot
        vertices[vertex_offset:end:3, 1] = yA + alpha * yA_dot
        vertices[vertex_offset+1:end:3, 0] = xB - alpha * xB_dot
        vertices[vertex_offset+1:end:3, 1] = yB - alpha * yB_dot
        vertices[vertex_offset+2:end:3, 0] = xB
        vertices[vertex_offset+2:end:3, 1] = yB

        return cls(vertices, codes, readonly=True)

    @classmethod
    def wedge(cls, theta1, theta2, n=None):
        """
        Return the unit circle wedge from angles *theta1* to *theta2* (in
        degrees).

        *theta2* is unwrapped to produce the shortest wedge within 360 degrees.
        That is, if *theta2* > *theta1* + 360, the wedge will be from *theta1*
        to *theta2* - 360 and not a full circle plus some extra overlap.

        If *n* is provided, it is the number of spline segments to make.
        If *n* is not provided, the number of spline segments is
        determined based on the delta between *theta1* and *theta2*.

        See `Path.arc` for the reference on the approximation used.
        """
        return cls.arc(theta1, theta2, n, True)

    @staticmethod
    @lru_cache(8)
    def hatch(hatchpattern, density=6):
        """
        Given a hatch specifier, *hatchpattern*, generates a Path that
        can be used in a repeated hatching pattern.  *density* is the
        number of lines per unit square.
        """
        from matplotlib.hatch import get_path
        return (get_path(hatchpattern, density)
                if hatchpattern is not None else None)

    def clip_to_bbox(self, bbox, inside=True):
        """
        Clip the path to the given bounding box.

        The path must be made up of one or more closed polygons.  This
        algorithm will not behave correctly for unclosed paths.

        If *inside* is `True`, clip to the inside of the box, otherwise
        to the outside of the box.
        """
        # Use make_compound_path_from_polys
        verts = _path.clip_path_to_rect(self, bbox, inside)
        paths = [Path(poly) for poly in verts]
        return self.make_compound_path(*paths)


def get_path_collection_extents(
        master_transform, paths, transforms, offsets, offset_transform):
    r"""
    Given a sequence of `Path`\s, `~.Transform`\s objects, and offsets, as
    found in a `~.PathCollection`, returns the bounding box that encapsulates
    all of them.

    Parameters
    ----------
    master_transform : `~.Transform`
        Global transformation applied to all paths.
    paths : list of `Path`
    transform : list of `~.Affine2D`
    offsets : (N, 2) array-like
    offset_transform : `~.Affine2D`
        Transform applied to the offsets before offsetting the path.

    Notes
    -----
    The way that *paths*, *transforms* and *offsets* are combined
    follows the same method as for collections:  Each is iterated over
    independently, so if you have 3 paths, 2 transforms and 1 offset,
    their combinations are as follows:

        (A, A, A), (B, B, A), (C, A, A)
    """
    from .transforms import Bbox
    if len(paths) == 0:
        raise ValueError("No paths provided")
    return Bbox.from_extents(*_path.get_path_collection_extents(
        master_transform, paths, np.atleast_3d(transforms),
        offsets, offset_transform))


@cbook.deprecated("3.1", alternative="get_paths_collection_extents")
def get_paths_extents(paths, transforms=[]):
    """
    Given a sequence of :class:`Path` objects and optional
    :class:`~matplotlib.transforms.Transform` objects, returns the
    bounding box that encapsulates all of them.

    *paths* is a sequence of :class:`Path` instances.

    *transforms* is an optional sequence of
    :class:`~matplotlib.transforms.Affine2D` instances to apply to
    each path.
    """
    from .transforms import Bbox, Affine2D
    if len(paths) == 0:
        raise ValueError("No paths provided")
    return Bbox.from_extents(*_path.get_path_collection_extents(
        Affine2D(), paths, transforms, [], Affine2D()))