from __future__ import division, absolute_import, print_function
import sys
import itertools
import pytest
import numpy as np
from numpy.core._multiarray_tests import solve_diophantine, internal_overlap
from numpy.core import _umath_tests
from numpy.lib.stride_tricks import as_strided
from numpy.compat import long
from numpy.testing import (
assert_, assert_raises, assert_equal, assert_array_equal
)
if sys.version_info[0] >= 3:
xrange = range
ndims = 2
size = 10
shape = tuple([size] * ndims)
MAY_SHARE_BOUNDS = 0
MAY_SHARE_EXACT = -1
def _indices_for_nelems(nelems):
"""Returns slices of length nelems, from start onwards, in direction sign."""
if nelems == 0:
return [size // 2] # int index
res = []
for step in (1, 2):
for sign in (-1, 1):
start = size // 2 - nelems * step * sign // 2
stop = start + nelems * step * sign
res.append(slice(start, stop, step * sign))
return res
def _indices_for_axis():
"""Returns (src, dst) pairs of indices."""
res = []
for nelems in (0, 2, 3):
ind = _indices_for_nelems(nelems)
# no itertools.product available in Py2.4
res.extend([(a, b) for a in ind for b in ind]) # all assignments of size "nelems"
return res
def _indices(ndims):
"""Returns ((axis0_src, axis0_dst), (axis1_src, axis1_dst), ... ) index pairs."""
ind = _indices_for_axis()
# no itertools.product available in Py2.4
res = [[]]
for i in range(ndims):
newres = []
for elem in ind:
for others in res:
newres.append([elem] + others)
res = newres
return res
def _check_assignment(srcidx, dstidx):
"""Check assignment arr[dstidx] = arr[srcidx] works."""
arr = np.arange(np.product(shape)).reshape(shape)
cpy = arr.copy()
cpy[dstidx] = arr[srcidx]
arr[dstidx] = arr[srcidx]
assert_(np.all(arr == cpy),
'assigning arr[%s] = arr[%s]' % (dstidx, srcidx))
def test_overlapping_assignments():
# Test automatically generated assignments which overlap in memory.
inds = _indices(ndims)
for ind in inds:
srcidx = tuple([a[0] for a in ind])
dstidx = tuple([a[1] for a in ind])
_check_assignment(srcidx, dstidx)
@pytest.mark.slow
def test_diophantine_fuzz():
# Fuzz test the diophantine solver
rng = np.random.RandomState(1234)
max_int = np.iinfo(np.intp).max
for ndim in range(10):
feasible_count = 0
infeasible_count = 0
min_count = 500//(ndim + 1)
while min(feasible_count, infeasible_count) < min_count:
# Ensure big and small integer problems
A_max = 1 + rng.randint(0, 11, dtype=np.intp)**6
U_max = rng.randint(0, 11, dtype=np.intp)**6
A_max = min(max_int, A_max)
U_max = min(max_int-1, U_max)
A = tuple(int(rng.randint(1, A_max+1, dtype=np.intp))
for j in range(ndim))
U = tuple(int(rng.randint(0, U_max+2, dtype=np.intp))
for j in range(ndim))
b_ub = min(max_int-2, sum(a*ub for a, ub in zip(A, U)))
b = rng.randint(-1, b_ub+2, dtype=np.intp)
if ndim == 0 and feasible_count < min_count:
b = 0
X = solve_diophantine(A, U, b)
if X is None:
# Check the simplified decision problem agrees
X_simplified = solve_diophantine(A, U, b, simplify=1)
assert_(X_simplified is None, (A, U, b, X_simplified))
# Check no solution exists (provided the problem is
# small enough so that brute force checking doesn't
# take too long)
try:
ranges = tuple(xrange(0, a*ub+1, a) for a, ub in zip(A, U))
except OverflowError:
# xrange on 32-bit Python 2 may overflow
continue
size = 1
for r in ranges:
size *= len(r)
if size < 100000:
assert_(not any(sum(w) == b for w in itertools.product(*ranges)))
infeasible_count += 1
else:
# Check the simplified decision problem agrees
X_simplified = solve_diophantine(A, U, b, simplify=1)
assert_(X_simplified is not None, (A, U, b, X_simplified))
# Check validity
assert_(sum(a*x for a, x in zip(A, X)) == b)
assert_(all(0 <= x <= ub for x, ub in zip(X, U)))
feasible_count += 1
def test_diophantine_overflow():
# Smoke test integer overflow detection
max_intp = np.iinfo(np.intp).max
max_int64 = np.iinfo(np.int64).max
if max_int64 <= max_intp:
# Check that the algorithm works internally in 128-bit;
# solving this problem requires large intermediate numbers
A = (max_int64//2, max_int64//2 - 10)
U = (max_int64//2, max_int64//2 - 10)
b = 2*(max_int64//2) - 10
assert_equal(solve_diophantine(A, U, b), (1, 1))
def check_may_share_memory_exact(a, b):
got = np.may_share_memory(a, b, max_work=MAY_SHARE_EXACT)
assert_equal(np.may_share_memory(a, b),
np.may_share_memory(a, b, max_work=MAY_SHARE_BOUNDS))
a.fill(0)
b.fill(0)
a.fill(1)
exact = b.any()
err_msg = ""
if got != exact:
err_msg = " " + "\n ".join([
"base_a - base_b = %r" % (a.__array_interface__['data'][0] - b.__array_interface__['data'][0],),
"shape_a = %r" % (a.shape,),
"shape_b = %r" % (b.shape,),
"strides_a = %r" % (a.strides,),
"strides_b = %r" % (b.strides,),
"size_a = %r" % (a.size,),
"size_b = %r" % (b.size,)
])
assert_equal(got, exact, err_msg=err_msg)
def test_may_share_memory_manual():
# Manual test cases for may_share_memory
# Base arrays
xs0 = [
np.zeros([13, 21, 23, 22], dtype=np.int8),
np.zeros([13, 21, 23*2, 22], dtype=np.int8)[:,:,::2,:]
]
# Generate all negative stride combinations
xs = []
for x in xs0:
for ss in itertools.product(*(([slice(None), slice(None, None, -1)],)*4)):
xp = x[ss]
xs.append(xp)
for x in xs:
# The default is a simple extent check
assert_(np.may_share_memory(x[:,0,:], x[:,1,:]))
assert_(np.may_share_memory(x[:,0,:], x[:,1,:], max_work=None))
# Exact checks
check_may_share_memory_exact(x[:,0,:], x[:,1,:])
check_may_share_memory_exact(x[:,::7], x[:,3::3])
try:
xp = x.ravel()
if xp.flags.owndata:
continue
xp = xp.view(np.int16)
except ValueError:
continue
# 0-size arrays cannot overlap
check_may_share_memory_exact(x.ravel()[6:6],
xp.reshape(13, 21, 23, 11)[:,::7])
# Test itemsize is dealt with
check_may_share_memory_exact(x[:,::7],
xp.reshape(13, 21, 23, 11))
check_may_share_memory_exact(x[:,::7],
xp.reshape(13, 21, 23, 11)[:,3::3])
check_may_share_memory_exact(x.ravel()[6:7],
xp.reshape(13, 21, 23, 11)[:,::7])
# Check unit size
x = np.zeros([1], dtype=np.int8)
check_may_share_memory_exact(x, x)
check_may_share_memory_exact(x, x.copy())
def iter_random_view_pairs(x, same_steps=True, equal_size=False):
rng = np.random.RandomState(1234)
if equal_size and same_steps:
raise ValueError()
def random_slice(n, step):
start = rng.randint(0, n+1, dtype=np.intp)
stop = rng.randint(start, n+1, dtype=np.intp)
if rng.randint(0, 2, dtype=np.intp) == 0:
stop, start = start, stop
step *= -1
return slice(start, stop, step)
def random_slice_fixed_size(n, step, size):
start = rng.randint(0, n+1 - size*step)
stop = start + (size-1)*step + 1
if rng.randint(0, 2) == 0:
stop, start = start-1, stop-1
if stop < 0:
stop = None
step *= -1
return slice(start, stop, step)
# First a few regular views
yield x, x
for j in range(1, 7, 3):
yield x[j:], x[:-j]
yield x[...,j:], x[...,:-j]
# An array with zero stride internal overlap
strides = list(x.strides)
strides[0] = 0
xp = as_strided(x, shape=x.shape, strides=strides)
yield x, xp
yield xp, xp
# An array with non-zero stride internal overlap
strides = list(x.strides)
if strides[0] > 1:
strides[0] = 1
xp = as_strided(x, shape=x.shape, strides=strides)
yield x, xp
yield xp, xp
# Then discontiguous views
while True:
steps = tuple(rng.randint(1, 11, dtype=np.intp)
if rng.randint(0, 5, dtype=np.intp) == 0 else 1
for j in range(x.ndim))
s1 = tuple(random_slice(p, s) for p, s in zip(x.shape, steps))
t1 = np.arange(x.ndim)
rng.shuffle(t1)
if equal_size:
t2 = t1
else:
t2 = np.arange(x.ndim)
rng.shuffle(t2)
a = x[s1]
if equal_size:
if a.size == 0:
continue
steps2 = tuple(rng.randint(1, max(2, p//(1+pa)))
if rng.randint(0, 5) == 0 else 1
for p, s, pa in zip(x.shape, s1, a.shape))
s2 = tuple(random_slice_fixed_size(p, s, pa)
for p, s, pa in zip(x.shape, steps2, a.shape))
elif same_steps:
steps2 = steps
else:
steps2 = tuple(rng.randint(1, 11, dtype=np.intp)
if rng.randint(0, 5, dtype=np.intp) == 0 else 1
for j in range(x.ndim))
if not equal_size:
s2 = tuple(random_slice(p, s) for p, s in zip(x.shape, steps2))
a = a.transpose(t1)
b = x[s2].transpose(t2)
yield a, b
Loading ...