# -*- coding: utf-8 -*-
""" Test printing of scalar types.
"""
from __future__ import division, absolute_import, print_function
import code, sys
import platform
import pytest
from tempfile import TemporaryFile
import numpy as np
from numpy.testing import assert_, assert_equal, suppress_warnings
class TestRealScalars(object):
def test_str(self):
svals = [0.0, -0.0, 1, -1, np.inf, -np.inf, np.nan]
styps = [np.float16, np.float32, np.float64, np.longdouble]
wanted = [
['0.0', '0.0', '0.0', '0.0' ],
['-0.0', '-0.0', '-0.0', '-0.0'],
['1.0', '1.0', '1.0', '1.0' ],
['-1.0', '-1.0', '-1.0', '-1.0'],
['inf', 'inf', 'inf', 'inf' ],
['-inf', '-inf', '-inf', '-inf'],
['nan', 'nan', 'nan', 'nan']]
for wants, val in zip(wanted, svals):
for want, styp in zip(wants, styps):
msg = 'for str({}({}))'.format(np.dtype(styp).name, repr(val))
assert_equal(str(styp(val)), want, err_msg=msg)
def test_scalar_cutoffs(self):
# test that both the str and repr of np.float64 behaves
# like python floats in python3. Note that in python2
# the str has truncated digits, but we do not do this
def check(v):
# we compare str to repr, to avoid python2 truncation behavior
assert_equal(str(np.float64(v)), repr(v))
assert_equal(repr(np.float64(v)), repr(v))
# check we use the same number of significant digits
check(1.12345678901234567890)
check(0.0112345678901234567890)
# check switch from scientific output to positional and back
check(1e-5)
check(1e-4)
check(1e15)
check(1e16)
def test_py2_float_print(self):
# gh-10753
# In python2, the python float type implements an obsolete method
# tp_print, which overrides tp_repr and tp_str when using "print" to
# output to a "real file" (ie, not a StringIO). Make sure we don't
# inherit it.
x = np.double(0.1999999999999)
with TemporaryFile('r+t') as f:
print(x, file=f)
f.seek(0)
output = f.read()
assert_equal(output, str(x) + '\n')
# In python2 the value float('0.1999999999999') prints with reduced
# precision as '0.2', but we want numpy's np.double('0.1999999999999')
# to print the unique value, '0.1999999999999'.
# gh-11031
# Only in the python2 interactive shell and when stdout is a "real"
# file, the output of the last command is printed to stdout without
# Py_PRINT_RAW (unlike the print statement) so `>>> x` and `>>> print
# x` are potentially different. Make sure they are the same. The only
# way I found to get prompt-like output is using an actual prompt from
# the 'code' module. Again, must use tempfile to get a "real" file.
# dummy user-input which enters one line and then ctrl-Ds.
def userinput():
yield 'np.sqrt(2)'
raise EOFError
gen = userinput()
input_func = lambda prompt="": next(gen)
with TemporaryFile('r+t') as fo, TemporaryFile('r+t') as fe:
orig_stdout, orig_stderr = sys.stdout, sys.stderr
sys.stdout, sys.stderr = fo, fe
# py2 code.interact sends irrelevant internal DeprecationWarnings
with suppress_warnings() as sup:
sup.filter(DeprecationWarning)
code.interact(local={'np': np}, readfunc=input_func, banner='')
sys.stdout, sys.stderr = orig_stdout, orig_stderr
fo.seek(0)
capture = fo.read().strip()
assert_equal(capture, repr(np.sqrt(2)))
def test_dragon4(self):
# these tests are adapted from Ryan Juckett's dragon4 implementation,
# see dragon4.c for details.
fpos32 = lambda x, **k: np.format_float_positional(np.float32(x), **k)
fsci32 = lambda x, **k: np.format_float_scientific(np.float32(x), **k)
fpos64 = lambda x, **k: np.format_float_positional(np.float64(x), **k)
fsci64 = lambda x, **k: np.format_float_scientific(np.float64(x), **k)
preckwd = lambda prec: {'unique': False, 'precision': prec}
assert_equal(fpos32('1.0'), "1.")
assert_equal(fsci32('1.0'), "1.e+00")
assert_equal(fpos32('10.234'), "10.234")
assert_equal(fpos32('-10.234'), "-10.234")
assert_equal(fsci32('10.234'), "1.0234e+01")
assert_equal(fsci32('-10.234'), "-1.0234e+01")
assert_equal(fpos32('1000.0'), "1000.")
assert_equal(fpos32('1.0', precision=0), "1.")
assert_equal(fsci32('1.0', precision=0), "1.e+00")
assert_equal(fpos32('10.234', precision=0), "10.")
assert_equal(fpos32('-10.234', precision=0), "-10.")
assert_equal(fsci32('10.234', precision=0), "1.e+01")
assert_equal(fsci32('-10.234', precision=0), "-1.e+01")
assert_equal(fpos32('10.234', precision=2), "10.23")
assert_equal(fsci32('-10.234', precision=2), "-1.02e+01")
assert_equal(fsci64('9.9999999999999995e-08', **preckwd(16)),
'9.9999999999999995e-08')
assert_equal(fsci64('9.8813129168249309e-324', **preckwd(16)),
'9.8813129168249309e-324')
assert_equal(fsci64('9.9999999999999694e-311', **preckwd(16)),
'9.9999999999999694e-311')
# test rounding
# 3.1415927410 is closest float32 to np.pi
assert_equal(fpos32('3.14159265358979323846', **preckwd(10)),
"3.1415927410")
assert_equal(fsci32('3.14159265358979323846', **preckwd(10)),
"3.1415927410e+00")
assert_equal(fpos64('3.14159265358979323846', **preckwd(10)),
"3.1415926536")
assert_equal(fsci64('3.14159265358979323846', **preckwd(10)),
"3.1415926536e+00")
# 299792448 is closest float32 to 299792458
assert_equal(fpos32('299792458.0', **preckwd(5)), "299792448.00000")
assert_equal(fsci32('299792458.0', **preckwd(5)), "2.99792e+08")
assert_equal(fpos64('299792458.0', **preckwd(5)), "299792458.00000")
assert_equal(fsci64('299792458.0', **preckwd(5)), "2.99792e+08")
assert_equal(fpos32('3.14159265358979323846', **preckwd(25)),
"3.1415927410125732421875000")
assert_equal(fpos64('3.14159265358979323846', **preckwd(50)),
"3.14159265358979311599796346854418516159057617187500")
assert_equal(fpos64('3.14159265358979323846'), "3.141592653589793")
# smallest numbers
assert_equal(fpos32(0.5**(126 + 23), unique=False, precision=149),
"0.00000000000000000000000000000000000000000000140129846432"
"4817070923729583289916131280261941876515771757068283889791"
"08268586060148663818836212158203125")
assert_equal(fpos64(0.5**(1022 + 52), unique=False, precision=1074),
"0.00000000000000000000000000000000000000000000000000000000"
"0000000000000000000000000000000000000000000000000000000000"
"0000000000000000000000000000000000000000000000000000000000"
"0000000000000000000000000000000000000000000000000000000000"
"0000000000000000000000000000000000000000000000000000000000"
"0000000000000000000000000000000000049406564584124654417656"
"8792868221372365059802614324764425585682500675507270208751"
"8652998363616359923797965646954457177309266567103559397963"
"9877479601078187812630071319031140452784581716784898210368"
"8718636056998730723050006387409153564984387312473397273169"
"6151400317153853980741262385655911710266585566867681870395"
"6031062493194527159149245532930545654440112748012970999954"
"1931989409080416563324524757147869014726780159355238611550"
"1348035264934720193790268107107491703332226844753335720832"
"4319360923828934583680601060115061698097530783422773183292"
"4790498252473077637592724787465608477820373446969953364701"
"7972677717585125660551199131504891101451037862738167250955"
"8373897335989936648099411642057026370902792427675445652290"
"87538682506419718265533447265625")
# largest numbers
assert_equal(fpos32(np.finfo(np.float32).max, **preckwd(0)),
"340282346638528859811704183484516925440.")
assert_equal(fpos64(np.finfo(np.float64).max, **preckwd(0)),
"1797693134862315708145274237317043567980705675258449965989"
"1747680315726078002853876058955863276687817154045895351438"
"2464234321326889464182768467546703537516986049910576551282"
"0762454900903893289440758685084551339423045832369032229481"
"6580855933212334827479782620414472316873817718091929988125"
"0404026184124858368.")
# Warning: In unique mode only the integer digits necessary for
# uniqueness are computed, the rest are 0. Should we change this?
assert_equal(fpos32(np.finfo(np.float32).max, precision=0),
"340282350000000000000000000000000000000.")
# test trailing zeros
assert_equal(fpos32('1.0', unique=False, precision=3), "1.000")
assert_equal(fpos64('1.0', unique=False, precision=3), "1.000")
assert_equal(fsci32('1.0', unique=False, precision=3), "1.000e+00")
assert_equal(fsci64('1.0', unique=False, precision=3), "1.000e+00")
assert_equal(fpos32('1.5', unique=False, precision=3), "1.500")
assert_equal(fpos64('1.5', unique=False, precision=3), "1.500")
assert_equal(fsci32('1.5', unique=False, precision=3), "1.500e+00")
assert_equal(fsci64('1.5', unique=False, precision=3), "1.500e+00")
# gh-10713
assert_equal(fpos64('324', unique=False, precision=5, fractional=False), "324.00")
def test_dragon4_interface(self):
tps = [np.float16, np.float32, np.float64]
if hasattr(np, 'float128'):
tps.append(np.float128)
fpos = np.format_float_positional
fsci = np.format_float_scientific
for tp in tps:
# test padding
assert_equal(fpos(tp('1.0'), pad_left=4, pad_right=4), " 1. ")
assert_equal(fpos(tp('-1.0'), pad_left=4, pad_right=4), " -1. ")
assert_equal(fpos(tp('-10.2'),
pad_left=4, pad_right=4), " -10.2 ")
# test exp_digits
assert_equal(fsci(tp('1.23e1'), exp_digits=5), "1.23e+00001")
# test fixed (non-unique) mode
assert_equal(fpos(tp('1.0'), unique=False, precision=4), "1.0000")
assert_equal(fsci(tp('1.0'), unique=False, precision=4),
"1.0000e+00")
# test trimming
# trim of 'k' or '.' only affects non-unique mode, since unique
# mode will not output trailing 0s.
assert_equal(fpos(tp('1.'), unique=False, precision=4, trim='k'),
"1.0000")
assert_equal(fpos(tp('1.'), unique=False, precision=4, trim='.'),
"1.")
assert_equal(fpos(tp('1.2'), unique=False, precision=4, trim='.'),
"1.2" if tp != np.float16 else "1.2002")
assert_equal(fpos(tp('1.'), unique=False, precision=4, trim='0'),
"1.0")
assert_equal(fpos(tp('1.2'), unique=False, precision=4, trim='0'),
"1.2" if tp != np.float16 else "1.2002")
assert_equal(fpos(tp('1.'), trim='0'), "1.0")
assert_equal(fpos(tp('1.'), unique=False, precision=4, trim='-'),
"1")
assert_equal(fpos(tp('1.2'), unique=False, precision=4, trim='-'),
"1.2" if tp != np.float16 else "1.2002")
assert_equal(fpos(tp('1.'), trim='-'), "1")
@pytest.mark.skipif(not platform.machine().startswith("ppc64"),
reason="only applies to ppc float128 values")
def test_ppc64_ibm_double_double128(self):
# check that the precision decreases once we get into the subnormal
# range. Unlike float64, this starts around 1e-292 instead of 1e-308,
# which happens when the first double is normal and the second is
# subnormal.
x = np.float128('2.123123123123123123123123123123123e-286')
got = [str(x/np.float128('2e' + str(i))) for i in range(0,40)]
expected = [
"1.06156156156156156156156156156157e-286",
"1.06156156156156156156156156156158e-287",
"1.06156156156156156156156156156159e-288",
"1.0615615615615615615615615615616e-289",
"1.06156156156156156156156156156157e-290",
"1.06156156156156156156156156156156e-291",
"1.0615615615615615615615615615616e-292",
"1.0615615615615615615615615615615e-293",
"1.061561561561561561561561561562e-294",
"1.06156156156156156156156156155e-295",
"1.0615615615615615615615615616e-296",
"1.06156156156156156156156156e-297",
"1.06156156156156156156156157e-298",
"1.0615615615615615615615616e-299",
"1.06156156156156156156156e-300",
"1.06156156156156156156155e-301",
"1.0615615615615615615616e-302",
"1.061561561561561561562e-303",
"1.06156156156156156156e-304",
"1.0615615615615615618e-305",
"1.06156156156156156e-306",
"1.06156156156156157e-307",
"1.0615615615615616e-308",
"1.06156156156156e-309",
"1.06156156156157e-310",
"1.0615615615616e-311",
"1.06156156156e-312",
"1.06156156154e-313",
"1.0615615616e-314",
"1.06156156e-315",
"1.06156155e-316",
"1.061562e-317",
"1.06156e-318",
"1.06155e-319",
"1.0617e-320",
"1.06e-321",
"1.04e-322",
"1e-323",
"0.0",
"0.0"]
assert_equal(got, expected)
# Note: we follow glibc behavior, but it (or gcc) might not be right.
# In particular we can get two values that print the same but are not
# equal:
a = np.float128('2')/np.float128('3')
b = np.float128(str(a))
assert_equal(str(a), str(b))
assert_(a != b)
def float32_roundtrip(self):
# gh-9360
x = np.float32(1024 - 2**-14)
y = np.float32(1024 - 2**-13)
assert_(repr(x) != repr(y))
assert_equal(np.float32(repr(x)), x)
assert_equal(np.float32(repr(y)), y)
def float64_vs_python(self):
# gh-2643, gh-6136, gh-6908
assert_equal(repr(np.float64(0.1)), repr(0.1))
assert_(repr(np.float64(0.20000000000000004)) != repr(0.2))