Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

aaronreidsmith / numpy   python

Repository URL to install this package:

Version: 1.17.4 

/ core / tests / test_umath_accuracy.py

import numpy as np
import platform
from os import path
import sys
import pytest
from ctypes import *
from numpy.testing import assert_array_max_ulp

runtest = sys.platform.startswith('linux') and (platform.machine() == 'x86_64')
platform_skip = pytest.mark.skipif(not runtest,
                                   reason="""
                                   stick to x86_64 and linux platforms.
                                   test seems to fail on some of ARM and power
                                   architectures.
                                   """)

# convert string to hex function taken from:
# https://stackoverflow.com/questions/1592158/convert-hex-to-float #
def convert(s):
    i = int(s, 16)                   # convert from hex to a Python int
    cp = pointer(c_int(i))           # make this into a c integer
    fp = cast(cp, POINTER(c_float))  # cast the int pointer to a float pointer
    return fp.contents.value         # dereference the pointer, get the float

str_to_float = np.vectorize(convert)
files = ['umath-validation-set-exp',
         'umath-validation-set-log',
         'umath-validation-set-sin',
         'umath-validation-set-cos']

class TestAccuracy(object):
    @pytest.mark.xfail(reason="Fails for MacPython/numpy-wheels builds")
    def test_validate_transcendentals(self):
        with np.errstate(all='ignore'):
            for filename in files:
                data_dir = path.join(path.dirname(__file__), 'data')
                filepath = path.join(data_dir, filename)
                file_without_comments = (r for r in open(filepath) if not r[0] in ('$', '#'))
                data = np.genfromtxt(file_without_comments,
                                     dtype=('|S39','|S39','|S39',np.int),
                                     names=('type','input','output','ulperr'),
                                     delimiter=',',
                                     skip_header=1)
                npfunc = getattr(np, filename.split('-')[3])
                for datatype in np.unique(data['type']):
                    data_subset = data[data['type'] == datatype]
                    inval  = np.array(str_to_float(data_subset['input'].astype(str)), dtype=eval(datatype))
                    outval = np.array(str_to_float(data_subset['output'].astype(str)), dtype=eval(datatype))
                    perm = np.random.permutation(len(inval))
                    inval = inval[perm]
                    outval = outval[perm]
                    maxulperr = data_subset['ulperr'].max()
                    assert_array_max_ulp(npfunc(inval), outval, maxulperr)