"""
Misc tools for implementing data structures
Note: pandas.core.common is *not* part of the public API.
"""
import collections
from collections import OrderedDict, abc
from datetime import datetime, timedelta
from functools import partial
import inspect
from typing import Any, Iterable, Union
import numpy as np
from pandas._libs import lib, tslibs
from pandas.compat import PY36
from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike
from pandas.core.dtypes.common import (
is_array_like,
is_bool_dtype,
is_extension_array_dtype,
is_integer,
)
from pandas.core.dtypes.generic import ABCIndex, ABCIndexClass, ABCSeries
from pandas.core.dtypes.inference import _iterable_not_string
from pandas.core.dtypes.missing import isna, isnull, notnull # noqa
class SettingWithCopyError(ValueError):
pass
class SettingWithCopyWarning(Warning):
pass
def flatten(l):
"""
Flatten an arbitrarily nested sequence.
Parameters
----------
l : sequence
The non string sequence to flatten
Notes
-----
This doesn't consider strings sequences.
Returns
-------
flattened : generator
"""
for el in l:
if _iterable_not_string(el):
for s in flatten(el):
yield s
else:
yield el
def consensus_name_attr(objs):
name = objs[0].name
for obj in objs[1:]:
try:
if obj.name != name:
name = None
except ValueError:
name = None
return name
def maybe_box(indexer, values, obj, key):
# if we have multiples coming back, box em
if isinstance(values, np.ndarray):
return obj[indexer.get_loc(key)]
# return the value
return values
def maybe_box_datetimelike(value):
# turn a datetime like into a Timestamp/timedelta as needed
if isinstance(value, (np.datetime64, datetime)):
value = tslibs.Timestamp(value)
elif isinstance(value, (np.timedelta64, timedelta)):
value = tslibs.Timedelta(value)
return value
values_from_object = lib.values_from_object
def is_bool_indexer(key: Any) -> bool:
"""
Check whether `key` is a valid boolean indexer.
Parameters
----------
key : Any
Only list-likes may be considered boolean indexers.
All other types are not considered a boolean indexer.
For array-like input, boolean ndarrays or ExtensionArrays
with ``_is_boolean`` set are considered boolean indexers.
Returns
-------
bool
Raises
------
ValueError
When the array is an object-dtype ndarray or ExtensionArray
and contains missing values.
"""
na_msg = "cannot index with vector containing NA / NaN values"
if isinstance(key, (ABCSeries, np.ndarray, ABCIndex)) or (
is_array_like(key) and is_extension_array_dtype(key.dtype)
):
if key.dtype == np.object_:
key = np.asarray(values_from_object(key))
if not lib.is_bool_array(key):
if isna(key).any():
raise ValueError(na_msg)
return False
return True
elif is_bool_dtype(key.dtype):
# an ndarray with bool-dtype by definition has no missing values.
# So we only need to check for NAs in ExtensionArrays
if is_extension_array_dtype(key.dtype):
if np.any(key.isna()):
raise ValueError(na_msg)
return True
elif isinstance(key, list):
try:
arr = np.asarray(key)
return arr.dtype == np.bool_ and len(arr) == len(key)
except TypeError: # pragma: no cover
return False
return False
def cast_scalar_indexer(val):
"""
To avoid numpy DeprecationWarnings, cast float to integer where valid.
Parameters
----------
val : scalar
Returns
-------
outval : scalar
"""
# assumes lib.is_scalar(val)
if lib.is_float(val) and val == int(val):
return int(val)
return val
def _not_none(*args):
"""
Returns a generator consisting of the arguments that are not None.
"""
return (arg for arg in args if arg is not None)
def _any_none(*args):
"""
Returns a boolean indicating if any argument is None.
"""
for arg in args:
if arg is None:
return True
return False
def _all_none(*args):
"""
Returns a boolean indicating if all arguments are None.
"""
for arg in args:
if arg is not None:
return False
return True
def _any_not_none(*args):
"""
Returns a boolean indicating if any argument is not None.
"""
for arg in args:
if arg is not None:
return True
return False
def _all_not_none(*args):
"""
Returns a boolean indicating if all arguments are not None.
"""
for arg in args:
if arg is None:
return False
return True
def count_not_none(*args):
"""
Returns the count of arguments that are not None.
"""
return sum(x is not None for x in args)
def try_sort(iterable):
listed = list(iterable)
try:
return sorted(listed)
except Exception:
return listed
def dict_keys_to_ordered_list(mapping):
# when pandas drops support for Python < 3.6, this function
# can be replaced by a simple list(mapping.keys())
if PY36 or isinstance(mapping, OrderedDict):
keys = list(mapping.keys())
else:
keys = try_sort(mapping)
return keys
def asarray_tuplesafe(values, dtype=None):
if not (isinstance(values, (list, tuple)) or hasattr(values, "__array__")):
values = list(values)
elif isinstance(values, ABCIndexClass):
return values.values
if isinstance(values, list) and dtype in [np.object_, object]:
return construct_1d_object_array_from_listlike(values)
result = np.asarray(values, dtype=dtype)
if issubclass(result.dtype.type, str):
result = np.asarray(values, dtype=object)
if result.ndim == 2:
# Avoid building an array of arrays:
# TODO: verify whether any path hits this except #18819 (invalid)
values = [tuple(x) for x in values]
result = construct_1d_object_array_from_listlike(values)
return result
def index_labels_to_array(labels, dtype=None):
"""
Transform label or iterable of labels to array, for use in Index.
Parameters
----------
dtype : dtype
If specified, use as dtype of the resulting array, otherwise infer.
Returns
-------
array
"""
if isinstance(labels, (str, tuple)):
labels = [labels]
if not isinstance(labels, (list, np.ndarray)):
try:
labels = list(labels)
except TypeError: # non-iterable
labels = [labels]
labels = asarray_tuplesafe(labels, dtype=dtype)
return labels
def maybe_make_list(obj):
if obj is not None and not isinstance(obj, (tuple, list)):
return [obj]
return obj
def maybe_iterable_to_list(obj: Union[Iterable, Any]) -> Union[list, Any]:
"""
If obj is Iterable but not list-like, consume into list.
"""
if isinstance(obj, abc.Iterable) and not isinstance(obj, abc.Sized):
return list(obj)
return obj
def is_null_slice(obj):
"""
We have a null slice.
"""
return (
isinstance(obj, slice)
and obj.start is None
and obj.stop is None
and obj.step is None
)
def is_true_slices(l):
"""
Find non-trivial slices in "l": return a list of booleans with same length.
"""
return [isinstance(k, slice) and not is_null_slice(k) for k in l]
# TODO: used only once in indexing; belongs elsewhere?
def is_full_slice(obj, l):
"""
We have a full length slice.
"""
return (
isinstance(obj, slice) and obj.start == 0 and obj.stop == l and obj.step is None
)
def get_callable_name(obj):
# typical case has name
if hasattr(obj, "__name__"):
return getattr(obj, "__name__")
# some objects don't; could recurse
if isinstance(obj, partial):
return get_callable_name(obj.func)
# fall back to class name
if hasattr(obj, "__call__"):
return obj.__class__.__name__
# everything failed (probably because the argument
# wasn't actually callable); we return None
# instead of the empty string in this case to allow
# distinguishing between no name and a name of ''
return None
def apply_if_callable(maybe_callable, obj, **kwargs):
"""
Evaluate possibly callable input using obj and kwargs if it is callable,
otherwise return as it is.
Parameters
----------
maybe_callable : possibly a callable
obj : NDFrame
**kwargs
"""
if callable(maybe_callable):
return maybe_callable(obj, **kwargs)
return maybe_callable
def dict_compat(d):
"""
Helper function to convert datetimelike-keyed dicts
to Timestamp-keyed dict.
Parameters
----------
d: dict like object
Returns
-------
dict
"""
return {maybe_box_datetimelike(key): value for key, value in d.items()}
def standardize_mapping(into):
"""
Helper function to standardize a supplied mapping.
.. versionadded:: 0.21.0
Parameters
----------
into : instance or subclass of collections.abc.Mapping
Must be a class, an initialized collections.defaultdict,
or an instance of a collections.abc.Mapping subclass.
Returns
-------
mapping : a collections.abc.Mapping subclass or other constructor
a callable object that can accept an iterator to create
the desired Mapping.
See Also
--------
DataFrame.to_dict
Series.to_dict
"""
if not inspect.isclass(into):
if isinstance(into, collections.defaultdict):
return partial(collections.defaultdict, into.default_factory)
into = type(into)
if not issubclass(into, abc.Mapping):
raise TypeError("unsupported type: {into}".format(into=into))
elif into == collections.defaultdict:
raise TypeError("to_dict() only accepts initialized defaultdicts")
return into
def random_state(state=None):
"""
Helper function for processing random_state arguments.
Parameters
----------
state : int, np.random.RandomState, None.
If receives an int, passes to np.random.RandomState() as seed.
If receives an np.random.RandomState object, just returns object.
If receives `None`, returns np.random.
If receives anything else, raises an informative ValueError.
Default None.
Returns
-------
np.random.RandomState
"""
if is_integer(state):
return np.random.RandomState(state)
elif isinstance(state, np.random.RandomState):
return state
elif state is None:
return np.random
else:
raise ValueError(
"random_state must be an integer, a numpy " "RandomState, or None"
)
def _pipe(obj, func, *args, **kwargs):
"""
Apply a function ``func`` to object ``obj`` either by passing obj as the
first argument to the function or, in the case that the func is a tuple,
interpret the first element of the tuple as a function and pass the obj to
that function as a keyword argument whose key is the value of the second
element of the tuple.
Parameters
----------
func : callable or tuple of (callable, string)
Function to apply to this object or, alternatively, a
``(callable, data_keyword)`` tuple where ``data_keyword`` is a
string indicating the keyword of `callable`` that expects the
object.
args : iterable, optional
positional arguments passed into ``func``.
kwargs : dict, optional
a dictionary of keyword arguments passed into ``func``.
Returns
-------
object : the return type of ``func``.
"""
if isinstance(func, tuple):
func, target = func
if target in kwargs:
msg = "%s is both the pipe target and a keyword argument" % target
raise ValueError(msg)
kwargs[target] = obj
return func(*args, **kwargs)
else:
return func(obj, *args, **kwargs)
def _get_rename_function(mapper):
"""
Returns a function that will map names/labels, dependent if mapper
is a dict, Series or just a function.
"""
if isinstance(mapper, (abc.Mapping, ABCSeries)):
def f(x):
if x in mapper:
return mapper[x]
else:
return x
else:
f = mapper
return f