"""Operator classes for eval.
"""
from datetime import datetime
from distutils.version import LooseVersion
from functools import partial
import operator as op
import numpy as np
from pandas._libs.tslibs import Timestamp
from pandas.core.dtypes.common import is_list_like, is_scalar
from pandas.core.base import StringMixin
import pandas.core.common as com
from pandas.core.computation.common import _ensure_decoded, _result_type_many
from pandas.core.computation.scope import _DEFAULT_GLOBALS
from pandas.io.formats.printing import pprint_thing, pprint_thing_encoded
_reductions = "sum", "prod"
_unary_math_ops = (
"sin",
"cos",
"exp",
"log",
"expm1",
"log1p",
"sqrt",
"sinh",
"cosh",
"tanh",
"arcsin",
"arccos",
"arctan",
"arccosh",
"arcsinh",
"arctanh",
"abs",
"log10",
"floor",
"ceil",
)
_binary_math_ops = ("arctan2",)
_mathops = _unary_math_ops + _binary_math_ops
_LOCAL_TAG = "__pd_eval_local_"
class UndefinedVariableError(NameError):
"""NameError subclass for local variables."""
def __init__(self, name, is_local):
if is_local:
msg = "local variable {0!r} is not defined"
else:
msg = "name {0!r} is not defined"
super().__init__(msg.format(name))
class Term(StringMixin):
def __new__(cls, name, env, side=None, encoding=None):
klass = Constant if not isinstance(name, str) else cls
supr_new = super(Term, klass).__new__
return supr_new(klass)
def __init__(self, name, env, side=None, encoding=None):
self._name = name
self.env = env
self.side = side
tname = str(name)
self.is_local = tname.startswith(_LOCAL_TAG) or tname in _DEFAULT_GLOBALS
self._value = self._resolve_name()
self.encoding = encoding
@property
def local_name(self):
return self.name.replace(_LOCAL_TAG, "")
def __str__(self):
return pprint_thing(self.name)
def __call__(self, *args, **kwargs):
return self.value
def evaluate(self, *args, **kwargs):
return self
def _resolve_name(self):
res = self.env.resolve(self.local_name, is_local=self.is_local)
self.update(res)
if hasattr(res, "ndim") and res.ndim > 2:
raise NotImplementedError(
"N-dimensional objects, where N > 2," " are not supported with eval"
)
return res
def update(self, value):
"""
search order for local (i.e., @variable) variables:
scope, key_variable
[('locals', 'local_name'),
('globals', 'local_name'),
('locals', 'key'),
('globals', 'key')]
"""
key = self.name
# if it's a variable name (otherwise a constant)
if isinstance(key, str):
self.env.swapkey(self.local_name, key, new_value=value)
self.value = value
@property
def is_scalar(self):
return is_scalar(self._value)
@property
def type(self):
try:
# potentially very slow for large, mixed dtype frames
return self._value.values.dtype
except AttributeError:
try:
# ndarray
return self._value.dtype
except AttributeError:
# scalar
return type(self._value)
return_type = type
@property
def raw(self):
return pprint_thing(
"{0}(name={1!r}, type={2})"
"".format(self.__class__.__name__, self.name, self.type)
)
@property
def is_datetime(self):
try:
t = self.type.type
except AttributeError:
t = self.type
return issubclass(t, (datetime, np.datetime64))
@property
def value(self):
return self._value
@value.setter
def value(self, new_value):
self._value = new_value
@property
def name(self):
return self._name
@property
def ndim(self):
return self._value.ndim
class Constant(Term):
def __init__(self, value, env, side=None, encoding=None):
super().__init__(value, env, side=side, encoding=encoding)
def _resolve_name(self):
return self._name
@property
def name(self):
return self.value
def __str__(self):
# in python 2 str() of float
# can truncate shorter than repr()
return repr(self.name)
_bool_op_map = {"not": "~", "and": "&", "or": "|"}
class Op(StringMixin):
"""Hold an operator of arbitrary arity
"""
def __init__(self, op, operands, *args, **kwargs):
self.op = _bool_op_map.get(op, op)
self.operands = operands
self.encoding = kwargs.get("encoding", None)
def __iter__(self):
return iter(self.operands)
def __str__(self):
"""Print a generic n-ary operator and its operands using infix
notation"""
# recurse over the operands
parened = ("({0})".format(pprint_thing(opr)) for opr in self.operands)
return pprint_thing(" {0} ".format(self.op).join(parened))
@property
def return_type(self):
# clobber types to bool if the op is a boolean operator
if self.op in (_cmp_ops_syms + _bool_ops_syms):
return np.bool_
return _result_type_many(*(term.type for term in com.flatten(self)))
@property
def has_invalid_return_type(self):
types = self.operand_types
obj_dtype_set = frozenset([np.dtype("object")])
return self.return_type == object and types - obj_dtype_set
@property
def operand_types(self):
return frozenset(term.type for term in com.flatten(self))
@property
def is_scalar(self):
return all(operand.is_scalar for operand in self.operands)
@property
def is_datetime(self):
try:
t = self.return_type.type
except AttributeError:
t = self.return_type
return issubclass(t, (datetime, np.datetime64))
def _in(x, y):
"""Compute the vectorized membership of ``x in y`` if possible, otherwise
use Python.
"""
try:
return x.isin(y)
except AttributeError:
if is_list_like(x):
try:
return y.isin(x)
except AttributeError:
pass
return x in y
def _not_in(x, y):
"""Compute the vectorized membership of ``x not in y`` if possible,
otherwise use Python.
"""
try:
return ~x.isin(y)
except AttributeError:
if is_list_like(x):
try:
return ~y.isin(x)
except AttributeError:
pass
return x not in y
_cmp_ops_syms = ">", "<", ">=", "<=", "==", "!=", "in", "not in"
_cmp_ops_funcs = op.gt, op.lt, op.ge, op.le, op.eq, op.ne, _in, _not_in
_cmp_ops_dict = dict(zip(_cmp_ops_syms, _cmp_ops_funcs))
_bool_ops_syms = "&", "|", "and", "or"
_bool_ops_funcs = op.and_, op.or_, op.and_, op.or_
_bool_ops_dict = dict(zip(_bool_ops_syms, _bool_ops_funcs))
_arith_ops_syms = "+", "-", "*", "/", "**", "//", "%"
_arith_ops_funcs = (op.add, op.sub, op.mul, op.truediv, op.pow, op.floordiv, op.mod)
_arith_ops_dict = dict(zip(_arith_ops_syms, _arith_ops_funcs))
_special_case_arith_ops_syms = "**", "//", "%"
_special_case_arith_ops_funcs = op.pow, op.floordiv, op.mod
_special_case_arith_ops_dict = dict(
zip(_special_case_arith_ops_syms, _special_case_arith_ops_funcs)
)
_binary_ops_dict = {}
for d in (_cmp_ops_dict, _bool_ops_dict, _arith_ops_dict):
_binary_ops_dict.update(d)
def _cast_inplace(terms, acceptable_dtypes, dtype):
"""Cast an expression inplace.
Parameters
----------
terms : Op
The expression that should cast.
acceptable_dtypes : list of acceptable numpy.dtype
Will not cast if term's dtype in this list.
.. versionadded:: 0.19.0
dtype : str or numpy.dtype
The dtype to cast to.
"""
dt = np.dtype(dtype)
for term in terms:
if term.type in acceptable_dtypes:
continue
try:
new_value = term.value.astype(dt)
except AttributeError:
new_value = dt.type(term.value)
term.update(new_value)
def is_term(obj):
return isinstance(obj, Term)
class BinOp(Op):
"""Hold a binary operator and its operands
Parameters
----------
op : str
left : Term or Op
right : Term or Op
"""
def __init__(self, op, lhs, rhs, **kwargs):
super().__init__(op, (lhs, rhs))
self.lhs = lhs
self.rhs = rhs
self._disallow_scalar_only_bool_ops()
self.convert_values()
try:
self.func = _binary_ops_dict[op]
except KeyError:
# has to be made a list for python3
keys = list(_binary_ops_dict.keys())
raise ValueError(
"Invalid binary operator {0!r}, valid"
" operators are {1}".format(op, keys)
)
def __call__(self, env):
"""Recursively evaluate an expression in Python space.
Parameters
----------
env : Scope
Returns
-------
object
The result of an evaluated expression.
"""
# handle truediv
if self.op == "/" and env.scope["truediv"]:
self.func = op.truediv
# recurse over the left/right nodes
left = self.lhs(env)
right = self.rhs(env)
return self.func(left, right)
def evaluate(self, env, engine, parser, term_type, eval_in_python):
"""Evaluate a binary operation *before* being passed to the engine.
Parameters
----------
env : Scope
engine : str
parser : str
term_type : type
eval_in_python : list
Returns
-------
term_type
The "pre-evaluated" expression as an instance of ``term_type``
"""
if engine == "python":
res = self(env)
else:
# recurse over the left/right nodes
left = self.lhs.evaluate(
env,
engine=engine,
parser=parser,
term_type=term_type,
eval_in_python=eval_in_python,
)
right = self.rhs.evaluate(
env,
engine=engine,
parser=parser,
term_type=term_type,
eval_in_python=eval_in_python,
)
# base cases
if self.op in eval_in_python:
res = self.func(left.value, right.value)
else:
from pandas.core.computation.eval import eval
res = eval(self, local_dict=env, engine=engine, parser=parser)
name = env.add_tmp(res)
return term_type(name, env=env)
def convert_values(self):
"""Convert datetimes to a comparable value in an expression.
"""
def stringify(value):
if self.encoding is not None:
encoder = partial(pprint_thing_encoded, encoding=self.encoding)
else:
encoder = pprint_thing
return encoder(value)
lhs, rhs = self.lhs, self.rhs
if is_term(lhs) and lhs.is_datetime and is_term(rhs) and rhs.is_scalar:
v = rhs.value
if isinstance(v, (int, float)):
v = stringify(v)
v = Timestamp(_ensure_decoded(v))
if v.tz is not None:
v = v.tz_convert("UTC")
self.rhs.update(v)
if is_term(rhs) and rhs.is_datetime and is_term(lhs) and lhs.is_scalar:
v = lhs.value
if isinstance(v, (int, float)):
v = stringify(v)
v = Timestamp(_ensure_decoded(v))
if v.tz is not None:
v = v.tz_convert("UTC")
self.lhs.update(v)
def _disallow_scalar_only_bool_ops(self):
if (
(self.lhs.is_scalar or self.rhs.is_scalar)
and self.op in _bool_ops_dict
and (
not (
issubclass(self.rhs.return_type, (bool, np.bool_))
and issubclass(self.lhs.return_type, (bool, np.bool_))
)
)
):
raise NotImplementedError("cannot evaluate scalar only bool ops")
def isnumeric(dtype):
return issubclass(np.dtype(dtype).type, np.number)
class Div(BinOp):
"""Div operator to special case casting.
Parameters
----------
lhs, rhs : Term or Op
The Terms or Ops in the ``/`` expression.
truediv : bool
Whether or not to use true division. With Python 3 this happens
regardless of the value of ``truediv``.
"""
def __init__(self, lhs, rhs, truediv, *args, **kwargs):
super().__init__("/", lhs, rhs, *args, **kwargs)
if not isnumeric(lhs.return_type) or not isnumeric(rhs.return_type):
raise TypeError(
"unsupported operand type(s) for {0}:"
" '{1}' and '{2}'".format(self.op, lhs.return_type, rhs.return_type)
)
# do not upcast float32s to float64 un-necessarily
acceptable_dtypes = [np.float32, np.float_]
_cast_inplace(com.flatten(self), acceptable_dtypes, np.float_)
_unary_ops_syms = "+", "-", "~", "not"
_unary_ops_funcs = op.pos, op.neg, op.invert, op.invert
_unary_ops_dict = dict(zip(_unary_ops_syms, _unary_ops_funcs))
class UnaryOp(Op):
"""Hold a unary operator and its operands
Parameters
----------
op : str
The token used to represent the operator.
operand : Term or Op
The Term or Op operand to the operator.
Raises
------
ValueError
* If no function associated with the passed operator token is found.
"""
def __init__(self, op, operand):
super().__init__(op, (operand,))
self.operand = operand
try:
self.func = _unary_ops_dict[op]
except KeyError:
raise ValueError(
"Invalid unary operator {0!r}, valid operators "
"are {1}".format(op, _unary_ops_syms)
)
def __call__(self, env):
operand = self.operand(env)
return self.func(operand)
def __str__(self):
return pprint_thing("{0}({1})".format(self.op, self.operand))
@property
def return_type(self):
operand = self.operand
if operand.return_type == np.dtype("bool"):
return np.dtype("bool")
if isinstance(operand, Op) and (
operand.op in _cmp_ops_dict or operand.op in _bool_ops_dict
):
return np.dtype("bool")
return np.dtype("int")
class MathCall(Op):
def __init__(self, func, args):
super().__init__(func.name, args)
self.func = func
def __call__(self, env):
operands = [op(env) for op in self.operands]
with np.errstate(all="ignore"):
return self.func.func(*operands)
def __str__(self):
operands = map(str, self.operands)
return pprint_thing("{0}({1})".format(self.op, ",".join(operands)))
class FuncNode:
def __init__(self, name):
from pandas.core.computation.check import _NUMEXPR_INSTALLED, _NUMEXPR_VERSION
if name not in _mathops or (
_NUMEXPR_INSTALLED
and _NUMEXPR_VERSION < LooseVersion("2.6.9")
and name in ("floor", "ceil")
):
raise ValueError('"{0}" is not a supported function'.format(name))
self.name = name
self.func = getattr(np, name)
def __call__(self, *args):
return MathCall(self, args)