"""
Provide user facing operators for doing the split part of the
split-apply-combine paradigm.
"""
from typing import Tuple
import warnings
import numpy as np
from pandas.util._decorators import cache_readonly
from pandas.core.dtypes.common import (
ensure_categorical,
is_categorical_dtype,
is_datetime64_dtype,
is_hashable,
is_list_like,
is_scalar,
is_timedelta64_dtype,
)
from pandas.core.dtypes.generic import ABCSeries
import pandas.core.algorithms as algorithms
from pandas.core.arrays import Categorical, ExtensionArray
import pandas.core.common as com
from pandas.core.frame import DataFrame
from pandas.core.groupby.ops import BaseGrouper
from pandas.core.index import CategoricalIndex, Index, MultiIndex
from pandas.core.series import Series
from pandas.io.formats.printing import pprint_thing
class Grouper:
"""
A Grouper allows the user to specify a groupby instruction for a target
object
This specification will select a column via the key parameter, or if the
level and/or axis parameters are given, a level of the index of the target
object.
If `axis` and/or `level` are passed as keywords to both `Grouper` and
`groupby`, the values passed to `Grouper` take precedence.
Parameters
----------
key : string, defaults to None
groupby key, which selects the grouping column of the target
level : name/number, defaults to None
the level for the target index
freq : string / frequency object, defaults to None
This will groupby the specified frequency if the target selection
(via key or level) is a datetime-like object. For full specification
of available frequencies, please see `here
<http://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`_.
axis : number/name of the axis, defaults to 0
sort : boolean, default to False
whether to sort the resulting labels
closed : {'left' or 'right'}
Closed end of interval. Only when `freq` parameter is passed.
label : {'left' or 'right'}
Interval boundary to use for labeling.
Only when `freq` parameter is passed.
convention : {'start', 'end', 'e', 's'}
If grouper is PeriodIndex and `freq` parameter is passed.
base : int, default 0
Only when `freq` parameter is passed.
loffset : string, DateOffset, timedelta object
Only when `freq` parameter is passed.
Returns
-------
A specification for a groupby instruction
Examples
--------
Syntactic sugar for ``df.groupby('A')``
>>> df.groupby(Grouper(key='A'))
Specify a resample operation on the column 'date'
>>> df.groupby(Grouper(key='date', freq='60s'))
Specify a resample operation on the level 'date' on the columns axis
with a frequency of 60s
>>> df.groupby(Grouper(level='date', freq='60s', axis=1))
"""
_attributes = ("key", "level", "freq", "axis", "sort") # type: Tuple[str, ...]
def __new__(cls, *args, **kwargs):
if kwargs.get("freq") is not None:
from pandas.core.resample import TimeGrouper
cls = TimeGrouper
return super().__new__(cls)
def __init__(self, key=None, level=None, freq=None, axis=0, sort=False):
self.key = key
self.level = level
self.freq = freq
self.axis = axis
self.sort = sort
self.grouper = None
self.obj = None
self.indexer = None
self.binner = None
self._grouper = None
@property
def ax(self):
return self.grouper
def _get_grouper(self, obj, validate=True):
"""
Parameters
----------
obj : the subject object
validate : boolean, default True
if True, validate the grouper
Returns
-------
a tuple of binner, grouper, obj (possibly sorted)
"""
self._set_grouper(obj)
self.grouper, exclusions, self.obj = _get_grouper(
self.obj,
[self.key],
axis=self.axis,
level=self.level,
sort=self.sort,
validate=validate,
)
return self.binner, self.grouper, self.obj
def _set_grouper(self, obj, sort=False):
"""
given an object and the specifications, setup the internal grouper
for this particular specification
Parameters
----------
obj : the subject object
sort : bool, default False
whether the resulting grouper should be sorted
"""
if self.key is not None and self.level is not None:
raise ValueError("The Grouper cannot specify both a key and a level!")
# Keep self.grouper value before overriding
if self._grouper is None:
self._grouper = self.grouper
# the key must be a valid info item
if self.key is not None:
key = self.key
# The 'on' is already defined
if getattr(self.grouper, "name", None) == key and isinstance(
obj, ABCSeries
):
ax = self._grouper.take(obj.index)
else:
if key not in obj._info_axis:
raise KeyError("The grouper name {0} is not found".format(key))
ax = Index(obj[key], name=key)
else:
ax = obj._get_axis(self.axis)
if self.level is not None:
level = self.level
# if a level is given it must be a mi level or
# equivalent to the axis name
if isinstance(ax, MultiIndex):
level = ax._get_level_number(level)
ax = Index(ax._get_level_values(level), name=ax.names[level])
else:
if level not in (0, ax.name):
raise ValueError("The level {0} is not valid".format(level))
# possibly sort
if (self.sort or sort) and not ax.is_monotonic:
# use stable sort to support first, last, nth
indexer = self.indexer = ax.argsort(kind="mergesort")
ax = ax.take(indexer)
obj = obj.take(indexer, axis=self.axis, is_copy=False)
self.obj = obj
self.grouper = ax
return self.grouper
@property
def groups(self):
return self.grouper.groups
def __repr__(self):
attrs_list = (
"{}={!r}".format(attr_name, getattr(self, attr_name))
for attr_name in self._attributes
if getattr(self, attr_name) is not None
)
attrs = ", ".join(attrs_list)
cls_name = self.__class__.__name__
return "{}({})".format(cls_name, attrs)
class Grouping:
"""
Holds the grouping information for a single key
Parameters
----------
index : Index
grouper :
obj :
name :
level :
observed : boolean, default False
If we are a Categorical, use the observed values
in_axis : if the Grouping is a column in self.obj and hence among
Groupby.exclusions list
Returns
-------
**Attributes**:
* indices : dict of {group -> index_list}
* labels : ndarray, group labels
* ids : mapping of label -> group
* counts : array of group counts
* group_index : unique groups
* groups : dict of {group -> label_list}
"""
def __init__(
self,
index,
grouper=None,
obj=None,
name=None,
level=None,
sort=True,
observed=False,
in_axis=False,
):
self.name = name
self.level = level
self.grouper = _convert_grouper(index, grouper)
self.all_grouper = None
self.index = index
self.sort = sort
self.obj = obj
self.observed = observed
self.in_axis = in_axis
# right place for this?
if isinstance(grouper, (Series, Index)) and name is None:
self.name = grouper.name
if isinstance(grouper, MultiIndex):
self.grouper = grouper.values
# we have a single grouper which may be a myriad of things,
# some of which are dependent on the passing in level
if level is not None:
if not isinstance(level, int):
if level not in index.names:
raise AssertionError("Level {} not in index".format(level))
level = index.names.index(level)
if self.name is None:
self.name = index.names[level]
self.grouper, self._labels, self._group_index = index._get_grouper_for_level( # noqa: E501
self.grouper, level
)
# a passed Grouper like, directly get the grouper in the same way
# as single grouper groupby, use the group_info to get labels
elif isinstance(self.grouper, Grouper):
# get the new grouper; we already have disambiguated
# what key/level refer to exactly, don't need to
# check again as we have by this point converted these
# to an actual value (rather than a pd.Grouper)
_, grouper, _ = self.grouper._get_grouper(self.obj, validate=False)
if self.name is None:
self.name = grouper.result_index.name
self.obj = self.grouper.obj
self.grouper = grouper._get_grouper()
else:
if self.grouper is None and self.name is not None:
self.grouper = self.obj[self.name]
elif isinstance(self.grouper, (list, tuple)):
self.grouper = com.asarray_tuplesafe(self.grouper)
# a passed Categorical
elif is_categorical_dtype(self.grouper):
from pandas.core.groupby.categorical import recode_for_groupby
self.grouper, self.all_grouper = recode_for_groupby(
self.grouper, self.sort, observed
)
categories = self.grouper.categories
# we make a CategoricalIndex out of the cat grouper
# preserving the categories / ordered attributes
self._labels = self.grouper.codes
if observed:
codes = algorithms.unique1d(self.grouper.codes)
codes = codes[codes != -1]
if sort or self.grouper.ordered:
codes = np.sort(codes)
else:
codes = np.arange(len(categories))
self._group_index = CategoricalIndex(
Categorical.from_codes(
codes=codes, categories=categories, ordered=self.grouper.ordered
)
)
# we are done
if isinstance(self.grouper, Grouping):
self.grouper = self.grouper.grouper
# no level passed
elif not isinstance(
self.grouper, (Series, Index, ExtensionArray, np.ndarray)
):
if getattr(self.grouper, "ndim", 1) != 1:
t = self.name or str(type(self.grouper))
raise ValueError("Grouper for '{}' not 1-dimensional".format(t))
self.grouper = self.index.map(self.grouper)
if not (
hasattr(self.grouper, "__len__")
and len(self.grouper) == len(self.index)
):
errmsg = (
"Grouper result violates len(labels) == "
"len(data)\nresult: %s" % pprint_thing(self.grouper)
)
self.grouper = None # Try for sanity
raise AssertionError(errmsg)
# if we have a date/time-like grouper, make sure that we have
# Timestamps like
if getattr(self.grouper, "dtype", None) is not None:
if is_datetime64_dtype(self.grouper):
from pandas import to_datetime
self.grouper = to_datetime(self.grouper)
elif is_timedelta64_dtype(self.grouper):
from pandas import to_timedelta
self.grouper = to_timedelta(self.grouper)
def __repr__(self):
return "Grouping({0})".format(self.name)
def __iter__(self):
return iter(self.indices)
_labels = None
_group_index = None
@property
def ngroups(self):
return len(self.group_index)
@cache_readonly
def indices(self):
# we have a list of groupers
if isinstance(self.grouper, BaseGrouper):
return self.grouper.indices
values = ensure_categorical(self.grouper)
return values._reverse_indexer()
@property
def labels(self):
if self._labels is None:
self._make_labels()
return self._labels
@cache_readonly
def result_index(self):
if self.all_grouper is not None:
from pandas.core.groupby.categorical import recode_from_groupby
return recode_from_groupby(self.all_grouper, self.sort, self.group_index)
return self.group_index
@property
def group_index(self):
if self._group_index is None:
self._make_labels()
return self._group_index
def _make_labels(self):
if self._labels is None or self._group_index is None:
# we have a list of groupers
if isinstance(self.grouper, BaseGrouper):
labels = self.grouper.label_info
uniques = self.grouper.result_index
else:
labels, uniques = algorithms.factorize(self.grouper, sort=self.sort)
uniques = Index(uniques, name=self.name)
self._labels = labels
self._group_index = uniques
@cache_readonly
def groups(self):
return self.index.groupby(Categorical.from_codes(self.labels, self.group_index))
def _get_grouper(
obj,
key=None,
axis=0,
level=None,
sort=True,
observed=False,
mutated=False,
validate=True,
):
"""
create and return a BaseGrouper, which is an internal
mapping of how to create the grouper indexers.
This may be composed of multiple Grouping objects, indicating
multiple groupers
Groupers are ultimately index mappings. They can originate as:
index mappings, keys to columns, functions, or Groupers
Groupers enable local references to axis,level,sort, while
the passed in axis, level, and sort are 'global'.
This routine tries to figure out what the passing in references
are and then creates a Grouping for each one, combined into
a BaseGrouper.
If observed & we have a categorical grouper, only show the observed
values
If validate, then check for key/level overlaps
"""
group_axis = obj._get_axis(axis)
# validate that the passed single level is compatible with the passed
# axis of the object
if level is not None:
# TODO: These if-block and else-block are almost same.
# MultiIndex instance check is removable, but it seems that there are
# some processes only for non-MultiIndex in else-block,
# eg. `obj.index.name != level`. We have to consider carefully whether
# these are applicable for MultiIndex. Even if these are applicable,
# we need to check if it makes no side effect to subsequent processes
# on the outside of this condition.
# (GH 17621)
if isinstance(group_axis, MultiIndex):
if is_list_like(level) and len(level) == 1:
level = level[0]
if key is None and is_scalar(level):
# Get the level values from group_axis
key = group_axis.get_level_values(level)
level = None
else:
# allow level to be a length-one list-like object
# (e.g., level=[0])
# GH 13901
if is_list_like(level):
nlevels = len(level)
if nlevels == 1:
level = level[0]
elif nlevels == 0:
raise ValueError("No group keys passed!")
else:
raise ValueError("multiple levels only valid with " "MultiIndex")
if isinstance(level, str):
if obj.index.name != level:
raise ValueError(
"level name {} is not the name of the " "index".format(level)
)
elif level > 0 or level < -1:
raise ValueError("level > 0 or level < -1 only valid with MultiIndex")
# NOTE: `group_axis` and `group_axis.get_level_values(level)`
# are same in this section.
level = None
key = group_axis
# a passed-in Grouper, directly convert
if isinstance(key, Grouper):
binner, grouper, obj = key._get_grouper(obj, validate=False)
if key.key is None:
return grouper, [], obj
else:
return grouper, {key.key}, obj
# already have a BaseGrouper, just return it
elif isinstance(key, BaseGrouper):
return key, [], obj
# In the future, a tuple key will always mean an actual key,
# not an iterable of keys. In the meantime, we attempt to provide
# a warning. We can assume that the user wanted a list of keys when
# the key is not in the index. We just have to be careful with
# unhashable elements of `key`. Any unhashable elements implies that
# they wanted a list of keys.
# https://github.com/pandas-dev/pandas/issues/18314
is_tuple = isinstance(key, tuple)
all_hashable = is_tuple and is_hashable(key)
if is_tuple:
if (
all_hashable and key not in obj and set(key).issubset(obj)
) or not all_hashable:
# column names ('a', 'b') -> ['a', 'b']
# arrays like (a, b) -> [a, b]
msg = (
"Interpreting tuple 'by' as a list of keys, rather than "
"a single key. Use 'by=[...]' instead of 'by=(...)'. In "
"the future, a tuple will always mean a single key."
)
warnings.warn(msg, FutureWarning, stacklevel=5)
key = list(key)
if not isinstance(key, list):
keys = [key]
match_axis_length = False
else:
keys = key
match_axis_length = len(keys) == len(group_axis)
# what are we after, exactly?
any_callable = any(callable(g) or isinstance(g, dict) for g in keys)
any_groupers = any(isinstance(g, Grouper) for g in keys)
any_arraylike = any(
isinstance(g, (list, tuple, Series, Index, np.ndarray)) for g in keys
)
# is this an index replacement?
if (
not any_callable
and not any_arraylike
and not any_groupers
and match_axis_length
and level is None
):
if isinstance(obj, DataFrame):
all_in_columns_index = all(
g in obj.columns or g in obj.index.names for g in keys
)
elif isinstance(obj, Series):
all_in_columns_index = all(g in obj.index.names for g in keys)
if not all_in_columns_index:
keys = [com.asarray_tuplesafe(keys)]
if isinstance(level, (tuple, list)):
if key is None:
keys = [None] * len(level)
levels = level
else:
levels = [level] * len(keys)
groupings = []
exclusions = []
# if the actual grouper should be obj[key]
def is_in_axis(key):
if not _is_label_like(key):
try:
obj._data.items.get_loc(key)
except Exception:
return False
return True
# if the grouper is obj[name]
def is_in_obj(gpr):
try:
return id(gpr) == id(obj[gpr.name])
except Exception:
return False
for i, (gpr, level) in enumerate(zip(keys, levels)):
if is_in_obj(gpr): # df.groupby(df['name'])
in_axis, name = True, gpr.name
exclusions.append(name)
elif is_in_axis(gpr): # df.groupby('name')
if gpr in obj:
if validate:
obj._check_label_or_level_ambiguity(gpr)
in_axis, name, gpr = True, gpr, obj[gpr]
exclusions.append(name)
elif obj._is_level_reference(gpr):
in_axis, name, level, gpr = False, None, gpr, None
else:
raise KeyError(gpr)
elif isinstance(gpr, Grouper) and gpr.key is not None:
# Add key to exclusions
exclusions.append(gpr.key)
in_axis, name = False, None
else:
in_axis, name = False, None
if is_categorical_dtype(gpr) and len(gpr) != obj.shape[axis]:
raise ValueError(
(
"Length of grouper ({len_gpr}) and axis ({len_axis})"
" must be same length".format(
len_gpr=len(gpr), len_axis=obj.shape[axis]
)
)
)
# create the Grouping
# allow us to passing the actual Grouping as the gpr
ping = (
Grouping(
group_axis,
gpr,
obj=obj,
name=name,
level=level,
sort=sort,
observed=observed,
in_axis=in_axis,
)
if not isinstance(gpr, Grouping)
else gpr
)
groupings.append(ping)
if len(groupings) == 0 and len(obj):
raise ValueError("No group keys passed!")
elif len(groupings) == 0:
groupings.append(Grouping(Index([], dtype="int"), np.array([], dtype=np.intp)))
# create the internals grouper
grouper = BaseGrouper(group_axis, groupings, sort=sort, mutated=mutated)
return grouper, exclusions, obj
def _is_label_like(val):
return isinstance(val, (str, tuple)) or (val is not None and is_scalar(val))
def _convert_grouper(axis, grouper):
if isinstance(grouper, dict):
return grouper.get
elif isinstance(grouper, Series):
if grouper.index.equals(axis):
return grouper._values
else:
return grouper.reindex(axis)._values
elif isinstance(grouper, (list, Series, Index, np.ndarray)):
if len(grouper) != len(axis):
raise ValueError("Grouper and axis must be same length")
return grouper
else:
return grouper