Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

aaronreidsmith / pandas   python

Repository URL to install this package:

Version: 0.25.3 

/ core / indexes / numeric.py

import warnings

import numpy as np

from pandas._libs import index as libindex
from pandas.util._decorators import Appender, cache_readonly

from pandas.core.dtypes.common import (
    is_bool,
    is_bool_dtype,
    is_dtype_equal,
    is_extension_array_dtype,
    is_float,
    is_float_dtype,
    is_integer_dtype,
    is_scalar,
    needs_i8_conversion,
    pandas_dtype,
)
import pandas.core.dtypes.concat as _concat
from pandas.core.dtypes.generic import (
    ABCFloat64Index,
    ABCInt64Index,
    ABCRangeIndex,
    ABCUInt64Index,
)
from pandas.core.dtypes.missing import isna

from pandas.core import algorithms
import pandas.core.common as com
from pandas.core.indexes.base import Index, InvalidIndexError, _index_shared_docs
from pandas.core.ops import get_op_result_name

_num_index_shared_docs = dict()


class NumericIndex(Index):
    """
    Provide numeric type operations

    This is an abstract class

    """

    _is_numeric_dtype = True

    def __new__(cls, data=None, dtype=None, copy=False, name=None, fastpath=None):

        if fastpath is not None:
            warnings.warn(
                "The 'fastpath' keyword is deprecated, and will be "
                "removed in a future version.",
                FutureWarning,
                stacklevel=2,
            )
            if fastpath:
                return cls._simple_new(data, name=name)

        # is_scalar, generators handled in coerce_to_ndarray
        data = cls._coerce_to_ndarray(data)

        if issubclass(data.dtype.type, str):
            cls._string_data_error(data)

        if copy or not is_dtype_equal(data.dtype, cls._default_dtype):
            subarr = np.array(data, dtype=cls._default_dtype, copy=copy)
            cls._assert_safe_casting(data, subarr)
        else:
            subarr = data

        if name is None and hasattr(data, "name"):
            name = data.name
        return cls._simple_new(subarr, name=name)

    @Appender(_index_shared_docs["_maybe_cast_slice_bound"])
    def _maybe_cast_slice_bound(self, label, side, kind):
        assert kind in ["ix", "loc", "getitem", None]

        # we will try to coerce to integers
        return self._maybe_cast_indexer(label)

    @Appender(_index_shared_docs["_shallow_copy"])
    def _shallow_copy(self, values=None, **kwargs):
        if values is not None and not self._can_hold_na:
            # Ensure we are not returning an Int64Index with float data:
            return self._shallow_copy_with_infer(values=values, **kwargs)
        return super()._shallow_copy(values=values, **kwargs)

    def _convert_for_op(self, value):
        """ Convert value to be insertable to ndarray """

        if is_bool(value) or is_bool_dtype(value):
            # force conversion to object
            # so we don't lose the bools
            raise TypeError

        return value

    def _convert_tolerance(self, tolerance, target):
        tolerance = np.asarray(tolerance)
        if target.size != tolerance.size and tolerance.size > 1:
            raise ValueError("list-like tolerance size must match " "target index size")
        if not np.issubdtype(tolerance.dtype, np.number):
            if tolerance.ndim > 0:
                raise ValueError(
                    (
                        "tolerance argument for %s must contain "
                        "numeric elements if it is list type"
                    )
                    % (type(self).__name__,)
                )
            else:
                raise ValueError(
                    (
                        "tolerance argument for %s must be numeric "
                        "if it is a scalar: %r"
                    )
                    % (type(self).__name__, tolerance)
                )
        return tolerance

    @classmethod
    def _assert_safe_casting(cls, data, subarr):
        """
        Subclasses need to override this only if the process of casting data
        from some accepted dtype to the internal dtype(s) bears the risk of
        truncation (e.g. float to int).
        """
        pass

    def _concat_same_dtype(self, indexes, name):
        return _concat._concat_index_same_dtype(indexes).rename(name)

    @property
    def is_all_dates(self):
        """
        Checks that all the labels are datetime objects
        """
        return False

    @Appender(Index.insert.__doc__)
    def insert(self, loc, item):
        # treat NA values as nans:
        if is_scalar(item) and isna(item):
            item = self._na_value
        return super().insert(loc, item)

    def _union(self, other, sort):
        # Right now, we treat union(int, float) a bit special.
        # See https://github.com/pandas-dev/pandas/issues/26778 for discussion
        # We may change union(int, float) to go to object.
        # float | [u]int -> float  (the special case)
        # <T>   | <T>    -> T
        # <T>   | <U>    -> object
        needs_cast = (is_integer_dtype(self.dtype) and is_float_dtype(other.dtype)) or (
            is_integer_dtype(other.dtype) and is_float_dtype(self.dtype)
        )
        if needs_cast:
            first = self.astype("float")
            second = other.astype("float")
            return first._union(second, sort)
        else:
            return super()._union(other, sort)


_num_index_shared_docs[
    "class_descr"
] = """
    Immutable ndarray implementing an ordered, sliceable set. The basic object
    storing axis labels for all pandas objects. %(klass)s is a special case
    of `Index` with purely %(ltype)s labels. %(extra)s

    Parameters
    ----------
    data : array-like (1-dimensional)
    dtype : NumPy dtype (default: %(dtype)s)
    copy : bool
        Make a copy of input ndarray
    name : object
        Name to be stored in the index

    Attributes
    ----------
    None

    Methods
    -------
    None

    See Also
    --------
    Index : The base pandas Index type.

    Notes
    -----
    An Index instance can **only** contain hashable objects.
"""

_int64_descr_args = dict(klass="Int64Index", ltype="integer", dtype="int64", extra="")


class IntegerIndex(NumericIndex):
    """
    This is an abstract class for Int64Index, UInt64Index.
    """

    def __contains__(self, key):
        """
        Check if key is a float and has a decimal. If it has, return False.
        """
        hash(key)
        try:
            if is_float(key) and int(key) != key:
                return False
            return key in self._engine
        except (OverflowError, TypeError, ValueError):
            return False


class Int64Index(IntegerIndex):
    __doc__ = _num_index_shared_docs["class_descr"] % _int64_descr_args

    _typ = "int64index"
    _can_hold_na = False
    _engine_type = libindex.Int64Engine
    _default_dtype = np.int64

    @property
    def inferred_type(self):
        """Always 'integer' for ``Int64Index``"""
        return "integer"

    @property
    def asi8(self):
        # do not cache or you'll create a memory leak
        return self.values.view("i8")

    @Appender(_index_shared_docs["_convert_scalar_indexer"])
    def _convert_scalar_indexer(self, key, kind=None):
        assert kind in ["ix", "loc", "getitem", "iloc", None]

        # don't coerce ilocs to integers
        if kind != "iloc":
            key = self._maybe_cast_indexer(key)
        return super()._convert_scalar_indexer(key, kind=kind)

    def _wrap_joined_index(self, joined, other):
        name = get_op_result_name(self, other)
        return Int64Index(joined, name=name)

    @classmethod
    def _assert_safe_casting(cls, data, subarr):
        """
        Ensure incoming data can be represented as ints.
        """
        if not issubclass(data.dtype.type, np.signedinteger):
            if not np.array_equal(data, subarr):
                raise TypeError("Unsafe NumPy casting, you must " "explicitly cast")

    def _is_compatible_with_other(self, other):
        return super()._is_compatible_with_other(other) or all(
            isinstance(type(obj), (ABCInt64Index, ABCFloat64Index, ABCRangeIndex))
            for obj in [self, other]
        )


Int64Index._add_numeric_methods()
Int64Index._add_logical_methods()

_uint64_descr_args = dict(
    klass="UInt64Index", ltype="unsigned integer", dtype="uint64", extra=""
)


class UInt64Index(IntegerIndex):
    __doc__ = _num_index_shared_docs["class_descr"] % _uint64_descr_args

    _typ = "uint64index"
    _can_hold_na = False
    _engine_type = libindex.UInt64Engine
    _default_dtype = np.uint64

    @property
    def inferred_type(self):
        """Always 'integer' for ``UInt64Index``"""
        return "integer"

    @property
    def asi8(self):
        # do not cache or you'll create a memory leak
        return self.values.view("u8")

    @Appender(_index_shared_docs["_convert_scalar_indexer"])
    def _convert_scalar_indexer(self, key, kind=None):
        assert kind in ["ix", "loc", "getitem", "iloc", None]

        # don't coerce ilocs to integers
        if kind != "iloc":
            key = self._maybe_cast_indexer(key)
        return super()._convert_scalar_indexer(key, kind=kind)

    @Appender(_index_shared_docs["_convert_arr_indexer"])
    def _convert_arr_indexer(self, keyarr):
        # Cast the indexer to uint64 if possible so
        # that the values returned from indexing are
        # also uint64.
        keyarr = com.asarray_tuplesafe(keyarr)
        if is_integer_dtype(keyarr):
            return com.asarray_tuplesafe(keyarr, dtype=np.uint64)
        return keyarr

    @Appender(_index_shared_docs["_convert_index_indexer"])
    def _convert_index_indexer(self, keyarr):
        # Cast the indexer to uint64 if possible so
        # that the values returned from indexing are
        # also uint64.
        if keyarr.is_integer():
            return keyarr.astype(np.uint64)
        return keyarr

    def _wrap_joined_index(self, joined, other):
        name = get_op_result_name(self, other)
        return UInt64Index(joined, name=name)

    @classmethod
    def _assert_safe_casting(cls, data, subarr):
        """
        Ensure incoming data can be represented as uints.
        """
        if not issubclass(data.dtype.type, np.unsignedinteger):
            if not np.array_equal(data, subarr):
                raise TypeError("Unsafe NumPy casting, you must " "explicitly cast")

    def _is_compatible_with_other(self, other):
        return super()._is_compatible_with_other(other) or all(
            isinstance(type(obj), (ABCUInt64Index, ABCFloat64Index))
            for obj in [self, other]
        )


UInt64Index._add_numeric_methods()
UInt64Index._add_logical_methods()

_float64_descr_args = dict(
    klass="Float64Index", dtype="float64", ltype="float", extra=""
)


class Float64Index(NumericIndex):
    __doc__ = _num_index_shared_docs["class_descr"] % _float64_descr_args

    _typ = "float64index"
    _engine_type = libindex.Float64Engine
    _default_dtype = np.float64

    @property
    def inferred_type(self):
        """Always 'floating' for ``Float64Index``"""
        return "floating"

    @Appender(_index_shared_docs["astype"])
    def astype(self, dtype, copy=True):
        dtype = pandas_dtype(dtype)
        if needs_i8_conversion(dtype):
            msg = (
                "Cannot convert Float64Index to dtype {dtype}; integer "
                "values are required for conversion"
            ).format(dtype=dtype)
            raise TypeError(msg)
        elif (
            is_integer_dtype(dtype) and not is_extension_array_dtype(dtype)
        ) and self.hasnans:
            # TODO(jreback); this can change once we have an EA Index type
            # GH 13149
            raise ValueError("Cannot convert NA to integer")
        return super().astype(dtype, copy=copy)

    @Appender(_index_shared_docs["_convert_scalar_indexer"])
    def _convert_scalar_indexer(self, key, kind=None):
        assert kind in ["ix", "loc", "getitem", "iloc", None]

        if kind == "iloc":
            return self._validate_indexer("positional", key, kind)

        return key

    @Appender(_index_shared_docs["_convert_slice_indexer"])
    def _convert_slice_indexer(self, key, kind=None):
        # if we are not a slice, then we are done
        if not isinstance(key, slice):
            return key

        if kind == "iloc":
            return super()._convert_slice_indexer(key, kind=kind)

        # translate to locations
        return self.slice_indexer(key.start, key.stop, key.step, kind=kind)

    def _format_native_types(
        self, na_rep="", float_format=None, decimal=".", quoting=None, **kwargs
    ):
        from pandas.io.formats.format import FloatArrayFormatter

        formatter = FloatArrayFormatter(
            self.values,
            na_rep=na_rep,
            float_format=float_format,
            decimal=decimal,
            quoting=quoting,
            fixed_width=False,
        )
        return formatter.get_result_as_array()

    def get_value(self, series, key):
        """ we always want to get an index value, never a value """
        if not is_scalar(key):
            raise InvalidIndexError

        k = com.values_from_object(key)
        loc = self.get_loc(k)
        new_values = com.values_from_object(series)[loc]

        return new_values

    def equals(self, other):
        """
        Determines if two Index objects contain the same elements.
        """
        if self is other:
            return True

        if not isinstance(other, Index):
            return False

        # need to compare nans locations and make sure that they are the same
        # since nans don't compare equal this is a bit tricky
        try:
            if not isinstance(other, Float64Index):
                other = self._constructor(other)
            if not is_dtype_equal(self.dtype, other.dtype) or self.shape != other.shape:
                return False
            left, right = self._ndarray_values, other._ndarray_values
            return ((left == right) | (self._isnan & other._isnan)).all()
        except (TypeError, ValueError):
            return False

    def __contains__(self, other):
        if super().__contains__(other):
            return True

        try:
            # if other is a sequence this throws a ValueError
            return np.isnan(other) and self.hasnans
        except ValueError:
            try:
                return len(other) <= 1 and other.item() in self
            except AttributeError:
                return len(other) <= 1 and other in self
            except TypeError:
                pass
        except TypeError:
            pass

        return False

    @Appender(_index_shared_docs["get_loc"])
    def get_loc(self, key, method=None, tolerance=None):
        try:
            if np.all(np.isnan(key)) or is_bool(key):
                nan_idxs = self._nan_idxs
                try:
                    return nan_idxs.item()
                except ValueError:
                    if not len(nan_idxs):
                        raise KeyError(key)
                    return nan_idxs
        except (TypeError, NotImplementedError):
            pass
        return super().get_loc(key, method=method, tolerance=tolerance)

    @cache_readonly
    def is_unique(self):
        return super().is_unique and self._nan_idxs.size < 2

    @Appender(Index.isin.__doc__)
    def isin(self, values, level=None):
        if level is not None:
            self._validate_index_level(level)
        return algorithms.isin(np.array(self), values)

    def _is_compatible_with_other(self, other):
        return super()._is_compatible_with_other(other) or all(
            isinstance(
                type(obj),
                (ABCInt64Index, ABCFloat64Index, ABCUInt64Index, ABCRangeIndex),
            )
            for obj in [self, other]
        )


Float64Index._add_numeric_methods()
Float64Index._add_logical_methods_disabled()