from datetime import datetime, timedelta
import warnings
import weakref
import numpy as np
from pandas._libs import index as libindex
from pandas._libs.tslibs import NaT, frequencies as libfrequencies, iNaT, resolution
from pandas._libs.tslibs.period import DIFFERENT_FREQ, IncompatibleFrequency, Period
from pandas.util._decorators import Appender, Substitution, cache_readonly
from pandas.core.dtypes.common import (
ensure_platform_int,
is_bool_dtype,
is_datetime64_any_dtype,
is_float,
is_float_dtype,
is_integer,
is_integer_dtype,
pandas_dtype,
)
from pandas.core import common as com
from pandas.core.accessor import delegate_names
from pandas.core.algorithms import unique1d
from pandas.core.arrays.period import PeriodArray, period_array, validate_dtype_freq
from pandas.core.base import _shared_docs
import pandas.core.indexes.base as ibase
from pandas.core.indexes.base import _index_shared_docs, ensure_index
from pandas.core.indexes.datetimelike import (
DatetimeIndexOpsMixin,
DatetimelikeDelegateMixin,
)
from pandas.core.indexes.datetimes import DatetimeIndex, Index, Int64Index
from pandas.core.missing import isna
from pandas.core.ops import get_op_result_name
from pandas.core.tools.datetimes import DateParseError, parse_time_string
from pandas.tseries import frequencies
from pandas.tseries.offsets import DateOffset, Tick
_index_doc_kwargs = dict(ibase._index_doc_kwargs)
_index_doc_kwargs.update(dict(target_klass="PeriodIndex or list of Periods"))
# --- Period index sketch
def _new_PeriodIndex(cls, **d):
# GH13277 for unpickling
values = d.pop("data")
if values.dtype == "int64":
freq = d.pop("freq", None)
values = PeriodArray(values, freq=freq)
return cls._simple_new(values, **d)
else:
return cls(values, **d)
class PeriodDelegateMixin(DatetimelikeDelegateMixin):
"""
Delegate from PeriodIndex to PeriodArray.
"""
_delegate_class = PeriodArray
_delegated_properties = PeriodArray._datetimelike_ops
_delegated_methods = set(PeriodArray._datetimelike_methods) | {"_addsub_int_array"}
_raw_properties = {"is_leap_year"}
@delegate_names(PeriodArray, PeriodDelegateMixin._delegated_properties, typ="property")
@delegate_names(
PeriodArray, PeriodDelegateMixin._delegated_methods, typ="method", overwrite=True
)
class PeriodIndex(DatetimeIndexOpsMixin, Int64Index, PeriodDelegateMixin):
"""
Immutable ndarray holding ordinal values indicating regular periods in
time such as particular years, quarters, months, etc.
Index keys are boxed to Period objects which carries the metadata (eg,
frequency information).
Parameters
----------
data : array-like (1d integer np.ndarray or PeriodArray), optional
Optional period-like data to construct index with
copy : bool
Make a copy of input ndarray
freq : string or period object, optional
One of pandas period strings or corresponding objects
start : starting value, period-like, optional
If data is None, used as the start point in generating regular
period data.
.. deprecated:: 0.24.0
periods : int, optional, > 0
Number of periods to generate, if generating index. Takes precedence
over end argument
.. deprecated:: 0.24.0
end : end value, period-like, optional
If periods is none, generated index will extend to first conforming
period on or just past end argument
.. deprecated:: 0.24.0
year : int, array, or Series, default None
month : int, array, or Series, default None
quarter : int, array, or Series, default None
day : int, array, or Series, default None
hour : int, array, or Series, default None
minute : int, array, or Series, default None
second : int, array, or Series, default None
tz : object, default None
Timezone for converting datetime64 data to Periods
dtype : str or PeriodDtype, default None
Attributes
----------
day
dayofweek
dayofyear
days_in_month
daysinmonth
end_time
freq
freqstr
hour
is_leap_year
minute
month
quarter
qyear
second
start_time
week
weekday
weekofyear
year
Methods
-------
asfreq
strftime
to_timestamp
See Also
--------
Index : The base pandas Index type.
Period : Represents a period of time.
DatetimeIndex : Index with datetime64 data.
TimedeltaIndex : Index of timedelta64 data.
period_range : Create a fixed-frequency PeriodIndex.
Notes
-----
Creating a PeriodIndex based on `start`, `periods`, and `end` has
been deprecated in favor of :func:`period_range`.
Examples
--------
>>> idx = pd.PeriodIndex(year=year_arr, quarter=q_arr)
"""
_typ = "periodindex"
_attributes = ["name", "freq"]
# define my properties & methods for delegation
_is_numeric_dtype = False
_infer_as_myclass = True
_data = None
_engine_type = libindex.PeriodEngine
_supports_partial_string_indexing = True
# ------------------------------------------------------------------------
# Index Constructors
def __new__(
cls,
data=None,
ordinal=None,
freq=None,
start=None,
end=None,
periods=None,
tz=None,
dtype=None,
copy=False,
name=None,
**fields
):
valid_field_set = {
"year",
"month",
"day",
"quarter",
"hour",
"minute",
"second",
}
if not set(fields).issubset(valid_field_set):
raise TypeError(
"__new__() got an unexpected keyword argument {}".format(
list(set(fields) - valid_field_set)[0]
)
)
if name is None and hasattr(data, "name"):
name = data.name
if data is None and ordinal is None:
# range-based.
data, freq2 = PeriodArray._generate_range(start, end, periods, freq, fields)
# PeriodArray._generate range does validate that fields is
# empty when really using the range-based constructor.
if not fields:
msg = (
"Creating a PeriodIndex by passing range "
"endpoints is deprecated. Use "
"`pandas.period_range` instead."
)
# period_range differs from PeriodIndex for cases like
# start="2000", periods=4
# PeriodIndex interprets that as A-DEC freq.
# period_range interprets it as 'D' freq.
cond = freq is None and (
(start and not isinstance(start, Period))
or (end and not isinstance(end, Period))
)
if cond:
msg += (
" Note that the default `freq` may differ. Pass "
"'freq=\"{}\"' to ensure the same output."
).format(freq2.freqstr)
warnings.warn(msg, FutureWarning, stacklevel=2)
freq = freq2
data = PeriodArray(data, freq=freq)
else:
freq = validate_dtype_freq(dtype, freq)
# PeriodIndex allow PeriodIndex(period_index, freq=different)
# Let's not encourage that kind of behavior in PeriodArray.
if freq and isinstance(data, cls) and data.freq != freq:
# TODO: We can do some of these with no-copy / coercion?
# e.g. D -> 2D seems to be OK
data = data.asfreq(freq)
if data is None and ordinal is not None:
# we strangely ignore `ordinal` if data is passed.
ordinal = np.asarray(ordinal, dtype=np.int64)
data = PeriodArray(ordinal, freq)
else:
# don't pass copy here, since we copy later.
data = period_array(data=data, freq=freq)
if copy:
data = data.copy()
return cls._simple_new(data, name=name)
@classmethod
def _simple_new(cls, values, name=None, freq=None, **kwargs):
"""
Create a new PeriodIndex.
Parameters
----------
values : PeriodArray, PeriodIndex, Index[int64], ndarray[int64]
Values that can be converted to a PeriodArray without inference
or coercion.
"""
# TODO: raising on floats is tested, but maybe not useful.
# Should the callers know not to pass floats?
# At the very least, I think we can ensure that lists aren't passed.
if isinstance(values, list):
values = np.asarray(values)
if is_float_dtype(values):
raise TypeError("PeriodIndex._simple_new does not accept floats.")
if freq:
freq = Period._maybe_convert_freq(freq)
values = PeriodArray(values, freq=freq)
if not isinstance(values, PeriodArray):
raise TypeError("PeriodIndex._simple_new only accepts PeriodArray")
result = object.__new__(cls)
result._data = values
# For groupby perf. See note in indexes/base about _index_data
result._index_data = values._data
result.name = name
result._reset_identity()
return result
# ------------------------------------------------------------------------
# Data
@property
def values(self):
return np.asarray(self)
@property
def freq(self):
return self._data.freq
@freq.setter
def freq(self, value):
value = Period._maybe_convert_freq(value)
# TODO: When this deprecation is enforced, PeriodIndex.freq can
# be removed entirely, and we'll just inherit.
msg = (
"Setting {cls}.freq has been deprecated and will be "
"removed in a future version; use {cls}.asfreq instead. "
"The {cls}.freq setter is not guaranteed to work."
)
warnings.warn(msg.format(cls=type(self).__name__), FutureWarning, stacklevel=2)
# PeriodArray._freq isn't actually mutable. We set the private _freq
# here, but people shouldn't be doing this anyway.
self._data._freq = value
def _shallow_copy(self, values=None, **kwargs):
# TODO: simplify, figure out type of values
if values is None:
values = self._data
if isinstance(values, type(self)):
values = values._values
if not isinstance(values, PeriodArray):
if isinstance(values, np.ndarray) and is_integer_dtype(values.dtype):
values = PeriodArray(values, freq=self.freq)
else:
# in particular, I would like to avoid period_array here.
# Some people seem to be calling use with unexpected types
# Index.difference -> ndarray[Period]
# DatetimelikeIndexOpsMixin.repeat -> ndarray[ordinal]
# I think that once all of Datetime* are EAs, we can simplify
# this quite a bit.
values = period_array(values, freq=self.freq)
# We don't allow changing `freq` in _shallow_copy.
validate_dtype_freq(self.dtype, kwargs.get("freq"))
attributes = self._get_attributes_dict()
attributes.update(kwargs)
if not len(values) and "dtype" not in kwargs:
attributes["dtype"] = self.dtype
return self._simple_new(values, **attributes)
def _shallow_copy_with_infer(self, values=None, **kwargs):
""" we always want to return a PeriodIndex """
return self._shallow_copy(values=values, **kwargs)
@property
def _box_func(self):
"""Maybe box an ordinal or Period"""
# TODO(DatetimeArray): Avoid double-boxing
# PeriodArray takes care of boxing already, so we need to check
# whether we're given an ordinal or a Period. It seems like some
# places outside of indexes/period.py are calling this _box_func,
# but passing data that's already boxed.
def func(x):
if isinstance(x, Period) or x is NaT:
return x
else:
return Period._from_ordinal(ordinal=x, freq=self.freq)
return func
def _maybe_convert_timedelta(self, other):
"""
Convert timedelta-like input to an integer multiple of self.freq
Parameters
----------
other : timedelta, np.timedelta64, DateOffset, int, np.ndarray
Returns
-------
converted : int, np.ndarray[int64]
Raises
------
IncompatibleFrequency : if the input cannot be written as a multiple
of self.freq. Note IncompatibleFrequency subclasses ValueError.
"""
if isinstance(other, (timedelta, np.timedelta64, Tick, np.ndarray)):
offset = frequencies.to_offset(self.freq.rule_code)
if isinstance(offset, Tick):
# _check_timedeltalike_freq_compat will raise if incompatible
delta = self._data._check_timedeltalike_freq_compat(other)
return delta
elif isinstance(other, DateOffset):
freqstr = other.rule_code
base = libfrequencies.get_base_alias(freqstr)
if base == self.freq.rule_code:
return other.n
msg = DIFFERENT_FREQ.format(
cls=type(self).__name__, own_freq=self.freqstr, other_freq=other.freqstr
)
raise IncompatibleFrequency(msg)
elif is_integer(other):
# integer is passed to .shift via
# _add_datetimelike_methods basically
# but ufunc may pass integer to _add_delta
return other
# raise when input doesn't have freq
msg = DIFFERENT_FREQ.format(
cls=type(self).__name__, own_freq=self.freqstr, other_freq=None
)
raise IncompatibleFrequency(msg)
# ------------------------------------------------------------------------
# Rendering Methods
def _format_native_types(self, na_rep="NaT", quoting=None, **kwargs):
# just dispatch, return ndarray
return self._data._format_native_types(na_rep=na_rep, quoting=quoting, **kwargs)
def _mpl_repr(self):
# how to represent ourselves to matplotlib
return self.astype(object).values
@property
def _formatter_func(self):
return self.array._formatter(boxed=False)
# ------------------------------------------------------------------------
# Indexing
@cache_readonly
def _engine(self):
# To avoid a reference cycle, pass a weakref of self to _engine_type.
period = weakref.ref(self)
return self._engine_type(period, len(self))
@Appender(_index_shared_docs["contains"])
def __contains__(self, key):
if isinstance(key, Period):
if key.freq != self.freq:
return False
else:
return key.ordinal in self._engine
else:
try:
self.get_loc(key)
return True
except Exception:
return False
@cache_readonly
def _int64index(self):
return Int64Index._simple_new(self.asi8, name=self.name)
# ------------------------------------------------------------------------
# Index Methods
def _coerce_scalar_to_index(self, item):
"""
we need to coerce a scalar to a compat for our index type
Parameters
----------
item : scalar item to coerce
"""
return PeriodIndex([item], **self._get_attributes_dict())
def __array__(self, dtype=None):
if is_integer_dtype(dtype):
return self.asi8
else:
return self.astype(object).values
def __array_wrap__(self, result, context=None):
"""
Gets called after a ufunc. Needs additional handling as
PeriodIndex stores internal data as int dtype
Replace this to __numpy_ufunc__ in future version
"""
if isinstance(context, tuple) and len(context) > 0:
func = context[0]
if func is np.add:
pass
elif func is np.subtract:
name = self.name
left = context[1][0]
right = context[1][1]
if isinstance(left, PeriodIndex) and isinstance(right, PeriodIndex):
name = left.name if left.name == right.name else None
return Index(result, name=name)
elif isinstance(left, Period) or isinstance(right, Period):
return Index(result, name=name)
elif isinstance(func, np.ufunc):
if "M->M" not in func.types:
msg = "ufunc '{0}' not supported for the PeriodIndex"
# This should be TypeError, but TypeError cannot be raised
# from here because numpy catches.
raise ValueError(msg.format(func.__name__))
if is_bool_dtype(result):
return result
# the result is object dtype array of Period
# cannot pass _simple_new as it is
return type(self)(result, freq=self.freq, name=self.name)
def asof_locs(self, where, mask):
"""
where : array of timestamps
mask : array of booleans where data is not NA
"""
where_idx = where
if isinstance(where_idx, DatetimeIndex):
where_idx = PeriodIndex(where_idx.values, freq=self.freq)
locs = self._ndarray_values[mask].searchsorted(
where_idx._ndarray_values, side="right"
)
locs = np.where(locs > 0, locs - 1, 0)
result = np.arange(len(self))[mask].take(locs)
first = mask.argmax()
result[
(locs == 0) & (where_idx._ndarray_values < self._ndarray_values[first])
] = -1
return result
@Appender(_index_shared_docs["astype"])
def astype(self, dtype, copy=True, how="start"):
dtype = pandas_dtype(dtype)
if is_datetime64_any_dtype(dtype):
# 'how' is index-specific, isn't part of the EA interface.
tz = getattr(dtype, "tz", None)
return self.to_timestamp(how=how).tz_localize(tz)
# TODO: should probably raise on `how` here, so we don't ignore it.
return super().astype(dtype, copy=copy)
@Substitution(klass="PeriodIndex")
@Appender(_shared_docs["searchsorted"])
def searchsorted(self, value, side="left", sorter=None):
if isinstance(value, Period):
if value.freq != self.freq:
msg = DIFFERENT_FREQ.format(
cls=type(self).__name__,
own_freq=self.freqstr,
other_freq=value.freqstr,
)
raise IncompatibleFrequency(msg)
value = value.ordinal
elif isinstance(value, str):
try:
value = Period(value, freq=self.freq).ordinal
except DateParseError:
raise KeyError("Cannot interpret '{}' as period".format(value))
return self._ndarray_values.searchsorted(value, side=side, sorter=sorter)
@property
def is_all_dates(self):
return True
@property
def is_full(self):
"""
Returns True if this PeriodIndex is range-like in that all Periods
between start and end are present, in order.
"""
if len(self) == 0:
return True
if not self.is_monotonic:
raise ValueError("Index is not monotonic")
values = self.asi8
return ((values[1:] - values[:-1]) < 2).all()
@property
def inferred_type(self):
# b/c data is represented as ints make sure we can't have ambiguous
# indexing
return "period"
def get_value(self, series, key):
"""
Fast lookup of value from 1-dimensional ndarray. Only use this if you
know what you're doing
"""
s = com.values_from_object(series)
try:
return com.maybe_box(self, super().get_value(s, key), series, key)
except (KeyError, IndexError):
try:
asdt, parsed, reso = parse_time_string(key, self.freq)
grp = resolution.Resolution.get_freq_group(reso)
freqn = resolution.get_freq_group(self.freq)
vals = self._ndarray_values
# if our data is higher resolution than requested key, slice
if grp < freqn:
iv = Period(asdt, freq=(grp, 1))
ord1 = iv.asfreq(self.freq, how="S").ordinal
ord2 = iv.asfreq(self.freq, how="E").ordinal
if ord2 < vals[0] or ord1 > vals[-1]:
raise KeyError(key)
pos = np.searchsorted(self._ndarray_values, [ord1, ord2])
key = slice(pos[0], pos[1] + 1)
return series[key]
elif grp == freqn:
key = Period(asdt, freq=self.freq).ordinal
return com.maybe_box(
self, self._int64index.get_value(s, key), series, key
)
else:
raise KeyError(key)
except TypeError:
pass
period = Period(key, self.freq)
key = period.value if isna(period) else period.ordinal
return com.maybe_box(self, self._int64index.get_value(s, key), series, key)
@Appender(_index_shared_docs["get_indexer"] % _index_doc_kwargs)
def get_indexer(self, target, method=None, limit=None, tolerance=None):
target = ensure_index(target)
if hasattr(target, "freq") and target.freq != self.freq:
msg = DIFFERENT_FREQ.format(
cls=type(self).__name__,
own_freq=self.freqstr,
other_freq=target.freqstr,
)
raise IncompatibleFrequency(msg)
if isinstance(target, PeriodIndex):
target = target.asi8
if tolerance is not None:
tolerance = self._convert_tolerance(tolerance, target)
return Index.get_indexer(self._int64index, target, method, limit, tolerance)
@Appender(_index_shared_docs["get_indexer_non_unique"] % _index_doc_kwargs)
def get_indexer_non_unique(self, target):
target = ensure_index(target)
if isinstance(target, PeriodIndex):
target = target.asi8
if hasattr(target, "freq") and target.freq != self.freq:
msg = DIFFERENT_FREQ.format(
cls=type(self).__name__,
own_freq=self.freqstr,
other_freq=target.freqstr,
)
raise IncompatibleFrequency(msg)
indexer, missing = self._int64index.get_indexer_non_unique(target)
return ensure_platform_int(indexer), missing
def _get_unique_index(self, dropna=False):
"""
wrap Index._get_unique_index to handle NaT
"""
res = super()._get_unique_index(dropna=dropna)
if dropna:
res = res.dropna()
return res
@Appender(Index.unique.__doc__)
def unique(self, level=None):
# override the Index.unique method for performance GH#23083
if level is not None:
# this should never occur, but is retained to make the signature
# match Index.unique
self._validate_index_level(level)
values = self._ndarray_values
result = unique1d(values)
return self._shallow_copy(result)
def get_loc(self, key, method=None, tolerance=None):
"""
Get integer location for requested label
Returns
-------
loc : int
"""
try:
return self._engine.get_loc(key)
except KeyError:
if is_integer(key):
raise
try:
asdt, parsed, reso = parse_time_string(key, self.freq)
key = asdt
except TypeError:
pass
except DateParseError:
# A string with invalid format
raise KeyError("Cannot interpret '{}' as period".format(key))
try:
key = Period(key, freq=self.freq)
except ValueError:
# we cannot construct the Period
# as we have an invalid type
raise KeyError(key)
try:
ordinal = iNaT if key is NaT else key.ordinal
if tolerance is not None:
tolerance = self._convert_tolerance(tolerance, np.asarray(key))
return self._int64index.get_loc(ordinal, method, tolerance)
except KeyError:
raise KeyError(key)
def _maybe_cast_slice_bound(self, label, side, kind):
"""
If label is a string or a datetime, cast it to Period.ordinal according
to resolution.
Parameters
----------
label : object
side : {'left', 'right'}
kind : {'ix', 'loc', 'getitem'}
Returns
-------
bound : Period or object
Notes
-----
Value of `side` parameter should be validated in caller.
"""
assert kind in ["ix", "loc", "getitem"]
if isinstance(label, datetime):
return Period(label, freq=self.freq)
elif isinstance(label, str):
try:
_, parsed, reso = parse_time_string(label, self.freq)
bounds = self._parsed_string_to_bounds(reso, parsed)
return bounds[0 if side == "left" else 1]
except Exception:
raise KeyError(label)
elif is_integer(label) or is_float(label):
self._invalid_indexer("slice", label)
return label
def _parsed_string_to_bounds(self, reso, parsed):
if reso == "year":
t1 = Period(year=parsed.year, freq="A")
elif reso == "month":
t1 = Period(year=parsed.year, month=parsed.month, freq="M")
elif reso == "quarter":
q = (parsed.month - 1) // 3 + 1
t1 = Period(year=parsed.year, quarter=q, freq="Q-DEC")
elif reso == "day":
t1 = Period(year=parsed.year, month=parsed.month, day=parsed.day, freq="D")
elif reso == "hour":
t1 = Period(
year=parsed.year,
month=parsed.month,
day=parsed.day,
hour=parsed.hour,
freq="H",
)
elif reso == "minute":
t1 = Period(
year=parsed.year,
month=parsed.month,
day=parsed.day,
hour=parsed.hour,
minute=parsed.minute,
freq="T",
)
elif reso == "second":
t1 = Period(
year=parsed.year,
month=parsed.month,
day=parsed.day,
hour=parsed.hour,
minute=parsed.minute,
second=parsed.second,
freq="S",
)
else:
raise KeyError(reso)
return (t1.asfreq(self.freq, how="start"), t1.asfreq(self.freq, how="end"))
def _get_string_slice(self, key):
if not self.is_monotonic:
raise ValueError("Partial indexing only valid for " "ordered time series")
key, parsed, reso = parse_time_string(key, self.freq)
grp = resolution.Resolution.get_freq_group(reso)
freqn = resolution.get_freq_group(self.freq)
if reso in ["day", "hour", "minute", "second"] and not grp < freqn:
raise KeyError(key)
t1, t2 = self._parsed_string_to_bounds(reso, parsed)
return slice(
self.searchsorted(t1.ordinal, side="left"),
self.searchsorted(t2.ordinal, side="right"),
)
def _convert_tolerance(self, tolerance, target):
tolerance = DatetimeIndexOpsMixin._convert_tolerance(self, tolerance, target)
if target.size != tolerance.size and tolerance.size > 1:
raise ValueError("list-like tolerance size must match " "target index size")
return self._maybe_convert_timedelta(tolerance)
def insert(self, loc, item):
if not isinstance(item, Period) or self.freq != item.freq:
return self.astype(object).insert(loc, item)
idx = np.concatenate(
(self[:loc].asi8, np.array([item.ordinal]), self[loc:].asi8)
)
return self._shallow_copy(idx)
def join(self, other, how="left", level=None, return_indexers=False, sort=False):
"""
See Index.join
"""
self._assert_can_do_setop(other)
if not isinstance(other, PeriodIndex):
return self.astype(object).join(
other, how=how, level=level, return_indexers=return_indexers, sort=sort
)
result = Int64Index.join(
self,
other,
how=how,
level=level,
return_indexers=return_indexers,
sort=sort,
)
if return_indexers:
result, lidx, ridx = result
return self._apply_meta(result), lidx, ridx
return self._apply_meta(result)
@Appender(Index.intersection.__doc__)
def intersection(self, other, sort=False):
return Index.intersection(self, other, sort=sort)
def _assert_can_do_setop(self, other):
super()._assert_can_do_setop(other)
# *Can't* use PeriodIndexes of different freqs
# *Can* use PeriodIndex/DatetimeIndex
if isinstance(other, PeriodIndex) and self.freq != other.freq:
msg = DIFFERENT_FREQ.format(
cls=type(self).__name__, own_freq=self.freqstr, other_freq=other.freqstr
)
raise IncompatibleFrequency(msg)
def _wrap_setop_result(self, other, result):
name = get_op_result_name(self, other)
result = self._apply_meta(result)
result.name = name
return result
def _apply_meta(self, rawarr):
if not isinstance(rawarr, PeriodIndex):
rawarr = PeriodIndex._simple_new(rawarr, freq=self.freq, name=self.name)
return rawarr
def __setstate__(self, state):
"""Necessary for making this object picklable"""
if isinstance(state, dict):
super().__setstate__(state)
elif isinstance(state, tuple):
# < 0.15 compat
if len(state) == 2:
nd_state, own_state = state
data = np.empty(nd_state[1], dtype=nd_state[2])
np.ndarray.__setstate__(data, nd_state)
# backcompat
freq = Period._maybe_convert_freq(own_state[1])
else: # pragma: no cover
data = np.empty(state)
np.ndarray.__setstate__(self, state)
freq = None # ?
data = PeriodArray(data, freq=freq)
self._data = data
else:
raise Exception("invalid pickle state")
_unpickle_compat = __setstate__
@property
def flags(self):
""" return the ndarray.flags for the underlying data """
warnings.warn(
"{obj}.flags is deprecated and will be removed "
"in a future version".format(obj=type(self).__name__),
FutureWarning,
stacklevel=2,
)
return self._ndarray_values.flags
def item(self):
"""
return the first element of the underlying data as a python
scalar
.. deprecated 0.25.0
"""
warnings.warn(
"`item` has been deprecated and will be removed in a " "future version",
FutureWarning,
stacklevel=2,
)
# TODO(DatetimeArray): remove
if len(self) == 1:
return self[0]
else:
# copy numpy's message here because Py26 raises an IndexError
raise ValueError(
"can only convert an array of size 1 to a " "Python scalar"
)
@property
def data(self):
""" return the data pointer of the underlying data """
warnings.warn(
"{obj}.data is deprecated and will be removed "
"in a future version".format(obj=type(self).__name__),
FutureWarning,
stacklevel=2,
)
return np.asarray(self._data).data
@property
def base(self):
""" return the base object if the memory of the underlying data is
shared
"""
warnings.warn(
"{obj}.base is deprecated and will be removed "
"in a future version".format(obj=type(self).__name__),
FutureWarning,
stacklevel=2,
)
return np.asarray(self._data)
def memory_usage(self, deep=False):
result = super().memory_usage(deep=deep)
if hasattr(self, "_cache") and "_int64index" in self._cache:
result += self._int64index.memory_usage(deep=deep)
return result
PeriodIndex._add_comparison_ops()
PeriodIndex._add_numeric_methods_disabled()
PeriodIndex._add_logical_methods_disabled()
PeriodIndex._add_datetimelike_methods()
def period_range(start=None, end=None, periods=None, freq=None, name=None):
"""
Return a fixed frequency PeriodIndex, with day (calendar) as the default
frequency
Parameters
----------
start : string or period-like, default None
Left bound for generating periods
end : string or period-like, default None
Right bound for generating periods
periods : integer, default None
Number of periods to generate
freq : string or DateOffset, optional
Frequency alias. By default the freq is taken from `start` or `end`
if those are Period objects. Otherwise, the default is ``"D"`` for
daily frequency.
name : string, default None
Name of the resulting PeriodIndex
Returns
-------
prng : PeriodIndex
Notes
-----
Of the three parameters: ``start``, ``end``, and ``periods``, exactly two
must be specified.
To learn more about the frequency strings, please see `this link
<http://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.
Examples
--------
>>> pd.period_range(start='2017-01-01', end='2018-01-01', freq='M')
PeriodIndex(['2017-01', '2017-02', '2017-03', '2017-04', '2017-05',
'2017-06', '2017-06', '2017-07', '2017-08', '2017-09',
'2017-10', '2017-11', '2017-12', '2018-01'],
dtype='period[M]', freq='M')
If ``start`` or ``end`` are ``Period`` objects, they will be used as anchor
endpoints for a ``PeriodIndex`` with frequency matching that of the
``period_range`` constructor.
>>> pd.period_range(start=pd.Period('2017Q1', freq='Q'),
... end=pd.Period('2017Q2', freq='Q'), freq='M')
PeriodIndex(['2017-03', '2017-04', '2017-05', '2017-06'],
dtype='period[M]', freq='M')
"""
if com.count_not_none(start, end, periods) != 2:
raise ValueError(
"Of the three parameters: start, end, and periods, "
"exactly two must be specified"
)
if freq is None and (not isinstance(start, Period) and not isinstance(end, Period)):
freq = "D"
data, freq = PeriodArray._generate_range(start, end, periods, freq, fields={})
data = PeriodArray(data, freq=freq)
return PeriodIndex(data, name=name)