""" implement the TimedeltaIndex """
from datetime import datetime
import warnings
import numpy as np
from pandas._libs import NaT, Timedelta, index as libindex, join as libjoin, lib
from pandas.util._decorators import Appender, Substitution
from pandas.core.dtypes.common import (
_TD_DTYPE,
ensure_int64,
is_float,
is_integer,
is_list_like,
is_scalar,
is_timedelta64_dtype,
is_timedelta64_ns_dtype,
pandas_dtype,
)
import pandas.core.dtypes.concat as _concat
from pandas.core.dtypes.missing import isna
from pandas.core.accessor import delegate_names
from pandas.core.arrays import datetimelike as dtl
from pandas.core.arrays.timedeltas import TimedeltaArray, _is_convertible_to_td
from pandas.core.base import _shared_docs
import pandas.core.common as com
from pandas.core.indexes.base import Index, _index_shared_docs
from pandas.core.indexes.datetimelike import (
DatetimeIndexOpsMixin,
DatetimelikeDelegateMixin,
maybe_unwrap_index,
wrap_arithmetic_op,
)
from pandas.core.indexes.numeric import Int64Index
from pandas.core.ops import get_op_result_name
from pandas.tseries.frequencies import to_offset
def _make_wrapped_arith_op(opname):
meth = getattr(TimedeltaArray, opname)
def method(self, other):
result = meth(self._data, maybe_unwrap_index(other))
return wrap_arithmetic_op(self, other, result)
method.__name__ = opname
return method
class TimedeltaDelegateMixin(DatetimelikeDelegateMixin):
# Most attrs are dispatched via datetimelike_{ops,methods}
# Some are "raw" methods, the result is not not re-boxed in an Index
# We also have a few "extra" attrs, which may or may not be raw,
# which we we dont' want to expose in the .dt accessor.
_delegate_class = TimedeltaArray
_delegated_properties = TimedeltaArray._datetimelike_ops + ["components"]
_delegated_methods = TimedeltaArray._datetimelike_methods + ["_box_values"]
_raw_properties = {"components"}
_raw_methods = {"to_pytimedelta"}
@delegate_names(
TimedeltaArray, TimedeltaDelegateMixin._delegated_properties, typ="property"
)
@delegate_names(
TimedeltaArray,
TimedeltaDelegateMixin._delegated_methods,
typ="method",
overwrite=False,
)
class TimedeltaIndex(
DatetimeIndexOpsMixin, dtl.TimelikeOps, Int64Index, TimedeltaDelegateMixin
):
"""
Immutable ndarray of timedelta64 data, represented internally as int64, and
which can be boxed to timedelta objects
Parameters
----------
data : array-like (1-dimensional), optional
Optional timedelta-like data to construct index with
unit : unit of the arg (D,h,m,s,ms,us,ns) denote the unit, optional
which is an integer/float number
freq : string or pandas offset object, optional
One of pandas date offset strings or corresponding objects. The string
'infer' can be passed in order to set the frequency of the index as the
inferred frequency upon creation
copy : bool
Make a copy of input ndarray
start : starting value, timedelta-like, optional
If data is None, start is used as the start point in generating regular
timedelta data.
.. deprecated:: 0.24.0
periods : int, optional, > 0
Number of periods to generate, if generating index. Takes precedence
over end argument
.. deprecated:: 0.24.0
end : end time, timedelta-like, optional
If periods is none, generated index will extend to first conforming
time on or just past end argument
.. deprecated:: 0.24. 0
closed : string or None, default None
Make the interval closed with respect to the given frequency to
the 'left', 'right', or both sides (None)
.. deprecated:: 0.24. 0
name : object
Name to be stored in the index
Attributes
----------
days
seconds
microseconds
nanoseconds
components
inferred_freq
Methods
-------
to_pytimedelta
to_series
round
floor
ceil
to_frame
mean
See Also
--------
Index : The base pandas Index type.
Timedelta : Represents a duration between two dates or times.
DatetimeIndex : Index of datetime64 data.
PeriodIndex : Index of Period data.
timedelta_range : Create a fixed-frequency TimedeltaIndex.
Notes
-----
To learn more about the frequency strings, please see `this link
<http://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.
Creating a TimedeltaIndex based on `start`, `periods`, and `end` has
been deprecated in favor of :func:`timedelta_range`.
"""
_typ = "timedeltaindex"
_join_precedence = 10
def _join_i8_wrapper(joinf, **kwargs):
return DatetimeIndexOpsMixin._join_i8_wrapper(joinf, dtype="m8[ns]", **kwargs)
_inner_indexer = _join_i8_wrapper(libjoin.inner_join_indexer_int64)
_outer_indexer = _join_i8_wrapper(libjoin.outer_join_indexer_int64)
_left_indexer = _join_i8_wrapper(libjoin.left_join_indexer_int64)
_left_indexer_unique = _join_i8_wrapper(
libjoin.left_join_indexer_unique_int64, with_indexers=False
)
_engine_type = libindex.TimedeltaEngine
_comparables = ["name", "freq"]
_attributes = ["name", "freq"]
_is_numeric_dtype = True
_infer_as_myclass = True
_freq = None
_bool_ops = TimedeltaArray._bool_ops
_object_ops = TimedeltaArray._object_ops
_field_ops = TimedeltaArray._field_ops
_datetimelike_ops = TimedeltaArray._datetimelike_ops
_datetimelike_methods = TimedeltaArray._datetimelike_methods
_other_ops = TimedeltaArray._other_ops
# -------------------------------------------------------------------
# Constructors
def __new__(
cls,
data=None,
unit=None,
freq=None,
start=None,
end=None,
periods=None,
closed=None,
dtype=_TD_DTYPE,
copy=False,
name=None,
verify_integrity=None,
):
if verify_integrity is not None:
warnings.warn(
"The 'verify_integrity' argument is deprecated, "
"will be removed in a future version.",
FutureWarning,
stacklevel=2,
)
else:
verify_integrity = True
if data is None:
freq, freq_infer = dtl.maybe_infer_freq(freq)
warnings.warn(
"Creating a TimedeltaIndex by passing range "
"endpoints is deprecated. Use "
"`pandas.timedelta_range` instead.",
FutureWarning,
stacklevel=2,
)
result = TimedeltaArray._generate_range(
start, end, periods, freq, closed=closed
)
return cls._simple_new(result._data, freq=freq, name=name)
if is_scalar(data):
raise TypeError(
"{cls}() must be called with a "
"collection of some kind, {data} was passed".format(
cls=cls.__name__, data=repr(data)
)
)
if unit in {"Y", "y", "M"}:
warnings.warn(
"M and Y units are deprecated and "
"will be removed in a future version.",
FutureWarning,
stacklevel=2,
)
if isinstance(data, TimedeltaArray):
if copy:
data = data.copy()
return cls._simple_new(data, name=name, freq=freq)
if isinstance(data, TimedeltaIndex) and freq is None and name is None:
if copy:
return data.copy()
else:
return data._shallow_copy()
# - Cases checked above all return/raise before reaching here - #
tdarr = TimedeltaArray._from_sequence(
data, freq=freq, unit=unit, dtype=dtype, copy=copy
)
return cls._simple_new(tdarr._data, freq=tdarr.freq, name=name)
@classmethod
def _simple_new(cls, values, name=None, freq=None, dtype=_TD_DTYPE):
# `dtype` is passed by _shallow_copy in corner cases, should always
# be timedelta64[ns] if present
if not isinstance(values, TimedeltaArray):
values = TimedeltaArray._simple_new(values, dtype=dtype, freq=freq)
else:
if freq is None:
freq = values.freq
assert isinstance(values, TimedeltaArray), type(values)
assert dtype == _TD_DTYPE, dtype
assert values.dtype == "m8[ns]", values.dtype
tdarr = TimedeltaArray._simple_new(values._data, freq=freq)
result = object.__new__(cls)
result._data = tdarr
result.name = name
# For groupby perf. See note in indexes/base about _index_data
result._index_data = tdarr._data
result._reset_identity()
return result
# -------------------------------------------------------------------
def __setstate__(self, state):
"""Necessary for making this object picklable"""
if isinstance(state, dict):
super().__setstate__(state)
else:
raise Exception("invalid pickle state")
_unpickle_compat = __setstate__
def _maybe_update_attributes(self, attrs):
""" Update Index attributes (e.g. freq) depending on op """
freq = attrs.get("freq", None)
if freq is not None:
# no need to infer if freq is None
attrs["freq"] = "infer"
return attrs
# -------------------------------------------------------------------
# Rendering Methods
@property
def _formatter_func(self):
from pandas.io.formats.format import _get_format_timedelta64
return _get_format_timedelta64(self, box=True)
def _format_native_types(self, na_rep="NaT", date_format=None, **kwargs):
from pandas.io.formats.format import Timedelta64Formatter
return Timedelta64Formatter(
values=self, nat_rep=na_rep, justify="all"
).get_result()
# -------------------------------------------------------------------
# Wrapping TimedeltaArray
__mul__ = _make_wrapped_arith_op("__mul__")
__rmul__ = _make_wrapped_arith_op("__rmul__")
__floordiv__ = _make_wrapped_arith_op("__floordiv__")
__rfloordiv__ = _make_wrapped_arith_op("__rfloordiv__")
__mod__ = _make_wrapped_arith_op("__mod__")
__rmod__ = _make_wrapped_arith_op("__rmod__")
__divmod__ = _make_wrapped_arith_op("__divmod__")
__rdivmod__ = _make_wrapped_arith_op("__rdivmod__")
__truediv__ = _make_wrapped_arith_op("__truediv__")
__rtruediv__ = _make_wrapped_arith_op("__rtruediv__")
# Compat for frequency inference, see GH#23789
_is_monotonic_increasing = Index.is_monotonic_increasing
_is_monotonic_decreasing = Index.is_monotonic_decreasing
_is_unique = Index.is_unique
@property
def _box_func(self):
return lambda x: Timedelta(x, unit="ns")
def __getitem__(self, key):
result = self._data.__getitem__(key)
if is_scalar(result):
return result
return type(self)(result, name=self.name)
# -------------------------------------------------------------------
@Appender(_index_shared_docs["astype"])
def astype(self, dtype, copy=True):
dtype = pandas_dtype(dtype)
if is_timedelta64_dtype(dtype) and not is_timedelta64_ns_dtype(dtype):
# Have to repeat the check for 'timedelta64' (not ns) dtype
# so that we can return a numeric index, since pandas will return
# a TimedeltaIndex when dtype='timedelta'
result = self._data.astype(dtype, copy=copy)
if self.hasnans:
return Index(result, name=self.name)
return Index(result.astype("i8"), name=self.name)
return DatetimeIndexOpsMixin.astype(self, dtype, copy=copy)
def _union(self, other, sort):
if len(other) == 0 or self.equals(other) or len(self) == 0:
return super()._union(other, sort=sort)
if not isinstance(other, TimedeltaIndex):
try:
other = TimedeltaIndex(other)
except (TypeError, ValueError):
pass
this, other = self, other
if this._can_fast_union(other):
return this._fast_union(other)
else:
result = Index._union(this, other, sort=sort)
if isinstance(result, TimedeltaIndex):
if result.freq is None:
result.freq = to_offset(result.inferred_freq)
return result
def join(self, other, how="left", level=None, return_indexers=False, sort=False):
"""
See Index.join
"""
if _is_convertible_to_index(other):
try:
other = TimedeltaIndex(other)
except (TypeError, ValueError):
pass
return Index.join(
self,
other,
how=how,
level=level,
return_indexers=return_indexers,
sort=sort,
)
def intersection(self, other, sort=False):
"""
Specialized intersection for TimedeltaIndex objects.
May be much faster than Index.intersection
Parameters
----------
other : TimedeltaIndex or array-like
sort : False or None, default False
Sort the resulting index if possible.
.. versionadded:: 0.24.0
.. versionchanged:: 0.24.1
Changed the default to ``False`` to match the behaviour
from before 0.24.0.
.. versionchanged:: 0.25.0
The `sort` keyword is added
Returns
-------
y : Index or TimedeltaIndex
"""
return super().intersection(other, sort=sort)
def _wrap_joined_index(self, joined, other):
name = get_op_result_name(self, other)
if (
isinstance(other, TimedeltaIndex)
and self.freq == other.freq
and self._can_fast_union(other)
):
joined = self._shallow_copy(joined, name=name)
return joined
else:
return self._simple_new(joined, name)
def _can_fast_union(self, other):
if not isinstance(other, TimedeltaIndex):
return False
freq = self.freq
if freq is None or freq != other.freq:
return False
if not self.is_monotonic or not other.is_monotonic:
return False
if len(self) == 0 or len(other) == 0:
return True
# to make our life easier, "sort" the two ranges
if self[0] <= other[0]:
left, right = self, other
else:
left, right = other, self
right_start = right[0]
left_end = left[-1]
# Only need to "adjoin", not overlap
return (right_start == left_end + freq) or right_start in left
def _fast_union(self, other):
if len(other) == 0:
return self.view(type(self))
if len(self) == 0:
return other.view(type(self))
# to make our life easier, "sort" the two ranges
if self[0] <= other[0]:
left, right = self, other
else:
left, right = other, self
left_end = left[-1]
right_end = right[-1]
# concatenate
if left_end < right_end:
loc = right.searchsorted(left_end, side="right")
right_chunk = right.values[loc:]
dates = _concat._concat_compat((left.values, right_chunk))
return self._shallow_copy(dates)
else:
return left
def _maybe_promote(self, other):
if other.inferred_type == "timedelta":
other = TimedeltaIndex(other)
return self, other
def get_value(self, series, key):
"""
Fast lookup of value from 1-dimensional ndarray. Only use this if you
know what you're doing
"""
if _is_convertible_to_td(key):
key = Timedelta(key)
return self.get_value_maybe_box(series, key)
try:
return com.maybe_box(self, Index.get_value(self, series, key), series, key)
except KeyError:
try:
loc = self._get_string_slice(key)
return series[loc]
except (TypeError, ValueError, KeyError):
pass
try:
return self.get_value_maybe_box(series, key)
except (TypeError, ValueError, KeyError):
raise KeyError(key)
def get_value_maybe_box(self, series, key):
if not isinstance(key, Timedelta):
key = Timedelta(key)
values = self._engine.get_value(com.values_from_object(series), key)
return com.maybe_box(self, values, series, key)
def get_loc(self, key, method=None, tolerance=None):
"""
Get integer location for requested label
Returns
-------
loc : int
"""
if is_list_like(key) or (isinstance(key, datetime) and key is not NaT):
# GH#20464 datetime check here is to ensure we don't allow
# datetime objects to be incorrectly treated as timedelta
# objects; NaT is a special case because it plays a double role
# as Not-A-Timedelta
raise TypeError
if isna(key):
key = NaT
if tolerance is not None:
# try converting tolerance now, so errors don't get swallowed by
# the try/except clauses below
tolerance = self._convert_tolerance(tolerance, np.asarray(key))
if _is_convertible_to_td(key):
key = Timedelta(key)
return Index.get_loc(self, key, method, tolerance)
try:
return Index.get_loc(self, key, method, tolerance)
except (KeyError, ValueError, TypeError):
try:
return self._get_string_slice(key)
except (TypeError, KeyError, ValueError):
pass
try:
stamp = Timedelta(key)
return Index.get_loc(self, stamp, method, tolerance)
except (KeyError, ValueError):
raise KeyError(key)
def _maybe_cast_slice_bound(self, label, side, kind):
"""
If label is a string, cast it to timedelta according to resolution.
Parameters
----------
label : object
side : {'left', 'right'}
kind : {'ix', 'loc', 'getitem'}
Returns
-------
label : object
"""
assert kind in ["ix", "loc", "getitem", None]
if isinstance(label, str):
parsed = Timedelta(label)
lbound = parsed.round(parsed.resolution_string)
if side == "left":
return lbound
else:
return lbound + to_offset(parsed.resolution_string) - Timedelta(1, "ns")
elif is_integer(label) or is_float(label):
self._invalid_indexer("slice", label)
return label
def _get_string_slice(self, key):
if is_integer(key) or is_float(key) or key is NaT:
self._invalid_indexer("slice", key)
loc = self._partial_td_slice(key)
return loc
def _partial_td_slice(self, key):
# given a key, try to figure out a location for a partial slice
if not isinstance(key, str):
return key
raise NotImplementedError
@Substitution(klass="TimedeltaIndex")
@Appender(_shared_docs["searchsorted"])
def searchsorted(self, value, side="left", sorter=None):
if isinstance(value, (np.ndarray, Index)):
value = np.array(value, dtype=_TD_DTYPE, copy=False)
else:
value = Timedelta(value).asm8.view(_TD_DTYPE)
return self.values.searchsorted(value, side=side, sorter=sorter)
def is_type_compatible(self, typ):
return typ == self.inferred_type or typ == "timedelta"
@property
def inferred_type(self):
return "timedelta64"
@property
def is_all_dates(self):
return True
def insert(self, loc, item):
"""
Make new Index inserting new item at location
Parameters
----------
loc : int
item : object
if not either a Python datetime or a numpy integer-like, returned
Index dtype will be object rather than datetime.
Returns
-------
new_index : Index
"""
# try to convert if possible
if _is_convertible_to_td(item):
try:
item = Timedelta(item)
except Exception:
pass
elif is_scalar(item) and isna(item):
# GH 18295
item = self._na_value
freq = None
if isinstance(item, Timedelta) or (is_scalar(item) and isna(item)):
# check freq can be preserved on edge cases
if self.freq is not None:
if (loc == 0 or loc == -len(self)) and item + self.freq == self[0]:
freq = self.freq
elif (loc == len(self)) and item - self.freq == self[-1]:
freq = self.freq
item = Timedelta(item).asm8.view(_TD_DTYPE)
try:
new_tds = np.concatenate(
(self[:loc].asi8, [item.view(np.int64)], self[loc:].asi8)
)
return self._shallow_copy(new_tds, freq=freq)
except (AttributeError, TypeError):
# fall back to object index
if isinstance(item, str):
return self.astype(object).insert(loc, item)
raise TypeError("cannot insert TimedeltaIndex with incompatible label")
def delete(self, loc):
"""
Make a new TimedeltaIndex with passed location(s) deleted.
Parameters
----------
loc: int, slice or array of ints
Indicate which sub-arrays to remove.
Returns
-------
new_index : TimedeltaIndex
"""
new_tds = np.delete(self.asi8, loc)
freq = "infer"
if is_integer(loc):
if loc in (0, -len(self), -1, len(self) - 1):
freq = self.freq
else:
if is_list_like(loc):
loc = lib.maybe_indices_to_slice(ensure_int64(np.array(loc)), len(self))
if isinstance(loc, slice) and loc.step in (1, None):
if loc.start in (0, None) or loc.stop in (len(self), None):
freq = self.freq
return TimedeltaIndex(new_tds, name=self.name, freq=freq)
TimedeltaIndex._add_comparison_ops()
TimedeltaIndex._add_numeric_methods_unary()
TimedeltaIndex._add_logical_methods_disabled()
TimedeltaIndex._add_datetimelike_methods()
def _is_convertible_to_index(other):
"""
return a boolean whether I can attempt conversion to a TimedeltaIndex
"""
if isinstance(other, TimedeltaIndex):
return True
elif len(other) > 0 and other.inferred_type not in (
"floating",
"mixed-integer",
"integer",
"mixed-integer-float",
"mixed",
):
return True
return False
def timedelta_range(
start=None, end=None, periods=None, freq=None, name=None, closed=None
):
"""
Return a fixed frequency TimedeltaIndex, with day as the default
frequency
Parameters
----------
start : string or timedelta-like, default None
Left bound for generating timedeltas
end : string or timedelta-like, default None
Right bound for generating timedeltas
periods : integer, default None
Number of periods to generate
freq : string or DateOffset, default 'D'
Frequency strings can have multiples, e.g. '5H'
name : string, default None
Name of the resulting TimedeltaIndex
closed : string, default None
Make the interval closed with respect to the given frequency to
the 'left', 'right', or both sides (None)
Returns
-------
rng : TimedeltaIndex
Notes
-----
Of the four parameters ``start``, ``end``, ``periods``, and ``freq``,
exactly three must be specified. If ``freq`` is omitted, the resulting
``TimedeltaIndex`` will have ``periods`` linearly spaced elements between
``start`` and ``end`` (closed on both sides).
To learn more about the frequency strings, please see `this link
<http://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.
Examples
--------
>>> pd.timedelta_range(start='1 day', periods=4)
TimedeltaIndex(['1 days', '2 days', '3 days', '4 days'],
dtype='timedelta64[ns]', freq='D')
The ``closed`` parameter specifies which endpoint is included. The default
behavior is to include both endpoints.
>>> pd.timedelta_range(start='1 day', periods=4, closed='right')
TimedeltaIndex(['2 days', '3 days', '4 days'],
dtype='timedelta64[ns]', freq='D')
The ``freq`` parameter specifies the frequency of the TimedeltaIndex.
Only fixed frequencies can be passed, non-fixed frequencies such as
'M' (month end) will raise.
>>> pd.timedelta_range(start='1 day', end='2 days', freq='6H')
TimedeltaIndex(['1 days 00:00:00', '1 days 06:00:00', '1 days 12:00:00',
'1 days 18:00:00', '2 days 00:00:00'],
dtype='timedelta64[ns]', freq='6H')
Specify ``start``, ``end``, and ``periods``; the frequency is generated
automatically (linearly spaced).
>>> pd.timedelta_range(start='1 day', end='5 days', periods=4)
TimedeltaIndex(['1 days 00:00:00', '2 days 08:00:00', '3 days 16:00:00',
'5 days 00:00:00'],
dtype='timedelta64[ns]', freq=None)
"""
if freq is None and com._any_none(periods, start, end):
freq = "D"
freq, freq_infer = dtl.maybe_infer_freq(freq)
tdarr = TimedeltaArray._generate_range(start, end, periods, freq, closed=closed)
return TimedeltaIndex._simple_new(tdarr._data, freq=tdarr.freq, name=name)