"""
Data structures for sparse float data. Life is made simpler by dealing only
with float64 data
"""
from collections import abc
import warnings
import numpy as np
import pandas._libs.index as libindex
import pandas._libs.sparse as splib
from pandas._libs.sparse import BlockIndex, IntIndex
from pandas.compat.numpy import function as nv
from pandas.util._decorators import Appender, Substitution
from pandas.core.dtypes.common import is_integer, is_scalar
from pandas.core.dtypes.generic import ABCSeries, ABCSparseSeries
from pandas.core.dtypes.missing import isna, notna
from pandas.core import generic
from pandas.core.arrays import SparseArray
from pandas.core.arrays.sparse import SparseAccessor
from pandas.core.index import Index
from pandas.core.internals import SingleBlockManager
import pandas.core.ops as ops
from pandas.core.series import Series
from pandas.core.sparse.scipy_sparse import _coo_to_sparse_series, _sparse_series_to_coo
_shared_doc_kwargs = dict(
axes="index",
klass="SparseSeries",
axes_single_arg="{0, 'index'}",
optional_labels="",
optional_axis="",
)
depr_msg = """\
SparseSeries is deprecated and will be removed in a future version.
Use a Series with sparse values instead.
>>> series = pd.Series(pd.SparseArray(...))
See http://pandas.pydata.org/pandas-docs/stable/\
user_guide/sparse.html#migrating for more.
"""
class SparseSeries(Series):
"""Data structure for labeled, sparse floating point data
.. deprecated:: 0.25.0
Use a Series with sparse values instead.
Parameters
----------
data : {array-like, Series, SparseSeries, dict}
.. versionchanged :: 0.23.0
If data is a dict, argument order is maintained for Python 3.6
and later.
kind : {'block', 'integer'}
fill_value : float
Code for missing value. Defaults depends on dtype.
0 for int dtype, False for bool dtype, and NaN for other dtypes
sparse_index : {BlockIndex, IntIndex}, optional
Only if you have one. Mainly used internally
Notes
-----
SparseSeries objects are immutable via the typical Python means. If you
must change values, convert to dense, make your changes, then convert back
to sparse
"""
_subtyp = "sparse_series"
def __init__(
self,
data=None,
index=None,
sparse_index=None,
kind="block",
fill_value=None,
name=None,
dtype=None,
copy=False,
fastpath=False,
):
warnings.warn(depr_msg, FutureWarning, stacklevel=2)
# TODO: Most of this should be refactored and shared with Series
# 1. BlockManager -> array
# 2. Series.index, Series.name, index, name reconciliation
# 3. Implicit reindexing
# 4. Implicit broadcasting
# 5. Dict construction
if data is None:
data = []
elif isinstance(data, SingleBlockManager):
index = data.index
data = data.blocks[0].values
elif isinstance(data, (ABCSeries, ABCSparseSeries)):
index = data.index if index is None else index
dtype = data.dtype if dtype is None else dtype
name = data.name if name is None else name
if index is not None:
data = data.reindex(index)
elif isinstance(data, abc.Mapping):
data, index = Series()._init_dict(data, index=index)
elif is_scalar(data) and index is not None:
data = np.full(len(index), fill_value=data)
super().__init__(
SparseArray(
data,
sparse_index=sparse_index,
kind=kind,
dtype=dtype,
fill_value=fill_value,
copy=copy,
),
index=index,
name=name,
copy=False,
fastpath=fastpath,
)
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
# avoid infinite recursion for other SparseSeries inputs
inputs = tuple(x.values if isinstance(x, type(self)) else x for x in inputs)
result = self.values.__array_ufunc__(ufunc, method, *inputs, **kwargs)
return self._constructor(
result,
index=self.index,
sparse_index=self.sp_index,
fill_value=result.fill_value,
copy=False,
).__finalize__(self)
# unary ops
# TODO: See if this can be shared
def __pos__(self):
result = self.values.__pos__()
return self._constructor(
result,
index=self.index,
sparse_index=self.sp_index,
fill_value=result.fill_value,
copy=False,
).__finalize__(self)
def __neg__(self):
result = self.values.__neg__()
return self._constructor(
result,
index=self.index,
sparse_index=self.sp_index,
fill_value=result.fill_value,
copy=False,
).__finalize__(self)
def __invert__(self):
result = self.values.__invert__()
return self._constructor(
result,
index=self.index,
sparse_index=self.sp_index,
fill_value=result.fill_value,
copy=False,
).__finalize__(self)
@property
def block(self):
warnings.warn("SparseSeries.block is deprecated.", FutureWarning, stacklevel=2)
return self._data._block
@property
def fill_value(self):
return self.values.fill_value
@fill_value.setter
def fill_value(self, v):
self.values.fill_value = v
@property
def sp_index(self):
return self.values.sp_index
@property
def sp_values(self):
return self.values.sp_values
@property
def npoints(self):
return self.values.npoints
@classmethod
def from_array(
cls, arr, index=None, name=None, copy=False, fill_value=None, fastpath=False
):
"""Construct SparseSeries from array.
.. deprecated:: 0.23.0
Use the pd.SparseSeries(..) constructor instead.
"""
warnings.warn(
"'from_array' is deprecated and will be removed in a "
"future version. Please use the pd.SparseSeries(..) "
"constructor instead.",
FutureWarning,
stacklevel=2,
)
return cls(
arr,
index=index,
name=name,
copy=copy,
fill_value=fill_value,
fastpath=fastpath,
)
@property
def _constructor(self):
return SparseSeries
@property
def _constructor_expanddim(self):
from pandas.core.sparse.api import SparseDataFrame
return SparseDataFrame
@property
def kind(self):
if isinstance(self.sp_index, BlockIndex):
return "block"
elif isinstance(self.sp_index, IntIndex):
return "integer"
def as_sparse_array(self, kind=None, fill_value=None, copy=False):
""" return my self as a sparse array, do not copy by default """
if fill_value is None:
fill_value = self.fill_value
if kind is None:
kind = self.kind
return SparseArray(
self.values,
sparse_index=self.sp_index,
fill_value=fill_value,
kind=kind,
copy=copy,
)
def __repr__(self):
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "Sparse")
series_rep = Series.__repr__(self)
rep = "{series}\n{index!r}".format(series=series_rep, index=self.sp_index)
return rep
def _reduce(
self, op, name, axis=0, skipna=True, numeric_only=None, filter_type=None, **kwds
):
""" perform a reduction operation """
return op(self.array.to_dense(), skipna=skipna, **kwds)
def __getstate__(self):
# pickling
return dict(
_typ=self._typ,
_subtyp=self._subtyp,
_data=self._data,
fill_value=self.fill_value,
name=self.name,
)
def _unpickle_series_compat(self, state):
nd_state, own_state = state
# recreate the ndarray
data = np.empty(nd_state[1], dtype=nd_state[2])
np.ndarray.__setstate__(data, nd_state)
index, fill_value, sp_index = own_state[:3]
name = None
if len(own_state) > 3:
name = own_state[3]
# create a sparse array
if not isinstance(data, SparseArray):
data = SparseArray(
data, sparse_index=sp_index, fill_value=fill_value, copy=False
)
# recreate
data = SingleBlockManager(data, index, fastpath=True)
generic.NDFrame.__init__(self, data)
self._set_axis(0, index)
self.name = name
def _set_subtyp(self, is_all_dates):
if is_all_dates:
object.__setattr__(self, "_subtyp", "sparse_time_series")
else:
object.__setattr__(self, "_subtyp", "sparse_series")
def _ixs(self, i, axis=0):
"""
Return the i-th value or values in the SparseSeries by location
Parameters
----------
i : int, slice, or sequence of integers
Returns
-------
value : scalar (int) or Series (slice, sequence)
"""
label = self.index[i]
if isinstance(label, Index):
return self.take(i, axis=axis)
else:
return self._get_val_at(i)
def _get_val_at(self, loc):
""" forward to the array """
return self.values._get_val_at(loc)
def __getitem__(self, key):
# TODO: Document difference from Series.__getitem__, deprecate,
# and remove!
if is_integer(key) and key not in self.index:
return self._get_val_at(key)
else:
return super().__getitem__(key)
def _get_values(self, indexer):
try:
return self._constructor(
self._data.get_slice(indexer), fastpath=True
).__finalize__(self)
except Exception:
return self[indexer]
def _set_with_engine(self, key, value):
return self._set_value(key, value)
def abs(self):
"""
Return an object with absolute value taken. Only applicable to objects
that are all numeric
Returns
-------
abs: same type as caller
"""
return self._constructor(np.abs(self.values), index=self.index).__finalize__(
self
)
def get(self, label, default=None):
"""
Returns value occupying requested label, default to specified
missing value if not present. Analogous to dict.get
Parameters
----------
label : object
Label value looking for
default : object, optional
Value to return if label not in index
Returns
-------
y : scalar
"""
if label in self.index:
loc = self.index.get_loc(label)
return self._get_val_at(loc)
else:
return default
def get_value(self, label, takeable=False):
"""
Retrieve single value at passed index label
.. deprecated:: 0.21.0
Please use .at[] or .iat[] accessors.
Parameters
----------
index : label
takeable : interpret the index as indexers, default False
Returns
-------
value : scalar value
"""
warnings.warn(
"get_value is deprecated and will be removed "
"in a future release. Please use "
".at[] or .iat[] accessors instead",
FutureWarning,
stacklevel=2,
)
return self._get_value(label, takeable=takeable)
def _get_value(self, label, takeable=False):
loc = label if takeable is True else self.index.get_loc(label)
return self._get_val_at(loc)
_get_value.__doc__ = get_value.__doc__
def set_value(self, label, value, takeable=False):
"""
Quickly set single value at passed label. If label is not contained, a
new object is created with the label placed at the end of the result
index
.. deprecated:: 0.21.0
Please use .at[] or .iat[] accessors.
Parameters
----------
label : object
Partial indexing with MultiIndex not allowed
value : object
Scalar value
takeable : interpret the index as indexers, default False
Notes
-----
This method *always* returns a new object. It is not particularly
efficient but is provided for API compatibility with Series
Returns
-------
series : SparseSeries
"""
warnings.warn(
"set_value is deprecated and will be removed "
"in a future release. Please use "
".at[] or .iat[] accessors instead",
FutureWarning,
stacklevel=2,
)
return self._set_value(label, value, takeable=takeable)
def _set_value(self, label, value, takeable=False):
values = self.to_dense()
# if the label doesn't exist, we will create a new object here
# and possibly change the index
new_values = values._set_value(label, value, takeable=takeable)
if new_values is not None:
values = new_values
new_index = values.index
values = SparseArray(values, fill_value=self.fill_value, kind=self.kind)
self._data = SingleBlockManager(values, new_index)
self._index = new_index
_set_value.__doc__ = set_value.__doc__
def _set_values(self, key, value):
# this might be inefficient as we have to recreate the sparse array
# rather than setting individual elements, but have to convert
# the passed slice/boolean that's in dense space into a sparse indexer
# not sure how to do that!
if isinstance(key, Series):
key = key.values
values = self.values.to_dense()
values[key] = libindex.convert_scalar(values, value)
values = SparseArray(values, fill_value=self.fill_value, kind=self.kind)
self._data = SingleBlockManager(values, self.index)
def to_dense(self):
"""
Convert SparseSeries to a Series.
Returns
-------
s : Series
"""
return Series(self.values.to_dense(), index=self.index, name=self.name)
@property
def density(self):
return self.values.density
def copy(self, deep=True):
"""
Make a copy of the SparseSeries. Only the actual sparse values need to
be copied
"""
# TODO: https://github.com/pandas-dev/pandas/issues/22314
# We skip the block manager till that is resolved.
new_data = self.values
if deep:
new_data = new_data.copy()
return self._constructor(
new_data,
sparse_index=self.sp_index,
fill_value=self.fill_value,
index=self.index.copy(),
name=self.name,
).__finalize__(self)
@Substitution(**_shared_doc_kwargs)
@Appender(generic.NDFrame.reindex.__doc__)
def reindex(self, index=None, method=None, copy=True, limit=None, **kwargs):
# TODO: remove?
return super().reindex(
index=index, method=method, copy=copy, limit=limit, **kwargs
)
def sparse_reindex(self, new_index):
"""
Conform sparse values to new SparseIndex
Parameters
----------
new_index : {BlockIndex, IntIndex}
Returns
-------
reindexed : SparseSeries
"""
if not isinstance(new_index, splib.SparseIndex):
raise TypeError("new index must be a SparseIndex")
values = self.values
values = values.sp_index.to_int_index().reindex(
values.sp_values.astype("float64"), values.fill_value, new_index
)
values = SparseArray(
values, sparse_index=new_index, fill_value=self.values.fill_value
)
return self._constructor(values, index=self.index).__finalize__(self)
def cumsum(self, axis=0, *args, **kwargs):
"""
Cumulative sum of non-NA/null values.
When performing the cumulative summation, any non-NA/null values will
be skipped. The resulting SparseSeries will preserve the locations of
NaN values, but the fill value will be `np.nan` regardless.
Parameters
----------
axis : {0}
Returns
-------
cumsum : SparseSeries
"""
nv.validate_cumsum(args, kwargs)
# Validate axis
if axis is not None:
self._get_axis_number(axis)
new_array = self.values.cumsum()
return self._constructor(
new_array, index=self.index, sparse_index=new_array.sp_index
).__finalize__(self)
# TODO: SparseSeries.isna is Sparse, while Series.isna is dense
@Appender(generic._shared_docs["isna"] % _shared_doc_kwargs)
def isna(self):
arr = SparseArray(
isna(self.values.sp_values),
sparse_index=self.values.sp_index,
fill_value=isna(self.fill_value),
)
return self._constructor(arr, index=self.index).__finalize__(self)
isnull = isna
@Appender(generic._shared_docs["notna"] % _shared_doc_kwargs)
def notna(self):
arr = SparseArray(
notna(self.values.sp_values),
sparse_index=self.values.sp_index,
fill_value=notna(self.fill_value),
)
return self._constructor(arr, index=self.index).__finalize__(self)
notnull = notna
def dropna(self, axis=0, inplace=False, **kwargs):
"""
Analogous to Series.dropna. If fill_value=NaN, returns a dense Series
"""
# TODO: make more efficient
# Validate axis
self._get_axis_number(axis or 0)
dense_valid = self.to_dense().dropna()
if inplace:
raise NotImplementedError(
"Cannot perform inplace dropna" " operations on a SparseSeries"
)
if isna(self.fill_value):
return dense_valid
else:
dense_valid = dense_valid[dense_valid != self.fill_value]
return dense_valid.to_sparse(fill_value=self.fill_value)
def combine_first(self, other):
"""
Combine Series values, choosing the calling Series's values
first. Result index will be the union of the two indexes
Parameters
----------
other : Series
Returns
-------
y : Series
"""
if isinstance(other, SparseSeries):
other = other.to_dense()
dense_combined = self.to_dense().combine_first(other)
return dense_combined.to_sparse(fill_value=self.fill_value)
@Appender(SparseAccessor.to_coo.__doc__)
def to_coo(self, row_levels=(0,), column_levels=(1,), sort_labels=False):
A, rows, columns = _sparse_series_to_coo(
self, row_levels, column_levels, sort_labels=sort_labels
)
return A, rows, columns
@classmethod
@Appender(SparseAccessor.from_coo.__doc__)
def from_coo(cls, A, dense_index=False):
return _coo_to_sparse_series(A, dense_index=dense_index)
# overwrite series methods with unaccelerated Sparse-specific versions
ops.add_flex_arithmetic_methods(SparseSeries)
ops.add_special_arithmetic_methods(SparseSeries)