from collections import abc
from datetime import datetime, time
from functools import partial
from typing import Optional, TypeVar, Union
import numpy as np
from pandas._libs import tslib, tslibs
from pandas._libs.tslibs import Timestamp, conversion, parsing
from pandas._libs.tslibs.parsing import ( # noqa
DateParseError,
_format_is_iso,
_guess_datetime_format,
parse_time_string,
)
from pandas._libs.tslibs.strptime import array_strptime
from pandas.util._decorators import deprecate_kwarg
from pandas.core.dtypes.common import (
ensure_object,
is_datetime64_dtype,
is_datetime64_ns_dtype,
is_datetime64tz_dtype,
is_float,
is_integer,
is_integer_dtype,
is_list_like,
is_numeric_dtype,
is_scalar,
)
from pandas.core.dtypes.generic import (
ABCDataFrame,
ABCDatetimeIndex,
ABCIndex,
ABCIndexClass,
ABCSeries,
)
from pandas.core.dtypes.missing import notna
from pandas._typing import ArrayLike
from pandas.core import algorithms
from pandas.core.algorithms import unique
# ---------------------------------------------------------------------
# types used in annotations
ArrayConvertible = Union[list, tuple, ArrayLike, ABCSeries]
# ---------------------------------------------------------------------
# ---------------------------------------------------------------------
# types used in annotations
Scalar = Union[int, float, str]
DatetimeScalar = TypeVar("DatetimeScalar", Scalar, datetime)
DatetimeScalarOrArrayConvertible = Union[
DatetimeScalar, list, tuple, ArrayLike, ABCSeries
]
# ---------------------------------------------------------------------
def _guess_datetime_format_for_array(arr, **kwargs):
# Try to guess the format based on the first non-NaN element
non_nan_elements = notna(arr).nonzero()[0]
if len(non_nan_elements):
return _guess_datetime_format(arr[non_nan_elements[0]], **kwargs)
def should_cache(
arg: ArrayConvertible, unique_share: float = 0.7, check_count: Optional[int] = None
) -> bool:
"""
Decides whether to do caching.
If the percent of unique elements among `check_count` elements less
than `unique_share * 100` then we can do caching.
Parameters
----------
arg: listlike, tuple, 1-d array, Series
unique_share: float, default=0.7, optional
0 < unique_share < 1
check_count: int, optional
0 <= check_count <= len(arg)
Returns
-------
do_caching: bool
Notes
-----
By default for a sequence of less than 50 items in size, we don't do
caching; for the number of elements less than 5000, we take ten percent of
all elements to check for a uniqueness share; if the sequence size is more
than 5000, then we check only the first 500 elements.
All constants were chosen empirically by.
"""
do_caching = True
# default realization
if check_count is None:
# in this case, the gain from caching is negligible
if len(arg) <= 50:
return False
if len(arg) <= 5000:
check_count = int(len(arg) * 0.1)
else:
check_count = 500
else:
assert (
0 <= check_count <= len(arg)
), "check_count must be in next bounds: [0; len(arg)]"
if check_count == 0:
return False
assert 0 < unique_share < 1, "unique_share must be in next bounds: (0; 1)"
unique_elements = unique(arg[:check_count])
if len(unique_elements) > check_count * unique_share:
do_caching = False
return do_caching
def _maybe_cache(arg, format, cache, convert_listlike):
"""
Create a cache of unique dates from an array of dates
Parameters
----------
arg : listlike, tuple, 1-d array, Series
format : string
Strftime format to parse time
cache : boolean
True attempts to create a cache of converted values
convert_listlike : function
Conversion function to apply on dates
Returns
-------
cache_array : Series
Cache of converted, unique dates. Can be empty
"""
from pandas import Series
cache_array = Series()
if cache:
# Perform a quicker unique check
if not should_cache(arg):
return cache_array
unique_dates = unique(arg)
if len(unique_dates) < len(arg):
cache_dates = convert_listlike(unique_dates, True, format)
cache_array = Series(cache_dates, index=unique_dates)
return cache_array
def _box_as_indexlike(
dt_array: ArrayLike, utc: Optional[bool] = None, name: Optional[str] = None
) -> Union[ABCIndex, ABCDatetimeIndex]:
"""
Properly boxes the ndarray of datetimes to DatetimeIndex
if it is possible or to generic Index instead
Parameters
----------
dt_array: 1-d array
array of datetimes to be boxed
tz : object
None or 'utc'
name : string, default None
Name for a resulting index
Returns
-------
result : datetime of converted dates
- DatetimeIndex if convertible to sole datetime64 type
- general Index otherwise
"""
from pandas import DatetimeIndex, Index
if is_datetime64_dtype(dt_array):
tz = "utc" if utc else None
return DatetimeIndex(dt_array, tz=tz, name=name)
return Index(dt_array, name=name)
def _convert_and_box_cache(
arg: DatetimeScalarOrArrayConvertible,
cache_array: ABCSeries,
box: bool,
name: Optional[str] = None,
) -> Union[ABCIndex, np.ndarray]:
"""
Convert array of dates with a cache and box the result
Parameters
----------
arg : integer, float, string, datetime, list, tuple, 1-d array, Series
cache_array : Series
Cache of converted, unique dates
box : boolean
True boxes result as an Index-like, False returns an ndarray
name : string, default None
Name for a DatetimeIndex
Returns
-------
result : datetime of converted dates
- Index-like if box=True
- ndarray if box=False
"""
from pandas import Series
result = Series(arg).map(cache_array)
if box:
return _box_as_indexlike(result, utc=None, name=name)
return result.values
def _return_parsed_timezone_results(result, timezones, box, tz, name):
"""
Return results from array_strptime if a %z or %Z directive was passed.
Parameters
----------
result : ndarray
int64 date representations of the dates
timezones : ndarray
pytz timezone objects
box : boolean
True boxes result as an Index-like, False returns an ndarray
tz : object
None or pytz timezone object
name : string, default None
Name for a DatetimeIndex
Returns
-------
tz_result : ndarray of parsed dates with timezone
Returns:
- Index-like if box=True
- ndarray of Timestamps if box=False
"""
if tz is not None:
raise ValueError(
"Cannot pass a tz argument when "
"parsing strings with timezone "
"information."
)
tz_results = np.array(
[Timestamp(res).tz_localize(zone) for res, zone in zip(result, timezones)]
)
if box:
from pandas import Index
return Index(tz_results, name=name)
return tz_results
def _convert_listlike_datetimes(
arg,
box,
format,
name=None,
tz=None,
unit=None,
errors=None,
infer_datetime_format=None,
dayfirst=None,
yearfirst=None,
exact=None,
):
"""
Helper function for to_datetime. Performs the conversions of 1D listlike
of dates
Parameters
----------
arg : list, tuple, ndarray, Series, Index
date to be parced
box : boolean
True boxes result as an Index-like, False returns an ndarray
name : object
None or string for the Index name
tz : object
None or 'utc'
unit : string
None or string of the frequency of the passed data
errors : string
error handing behaviors from to_datetime, 'raise', 'coerce', 'ignore'
infer_datetime_format : boolean
inferring format behavior from to_datetime
dayfirst : boolean
dayfirst parsing behavior from to_datetime
yearfirst : boolean
yearfirst parsing behavior from to_datetime
exact : boolean
exact format matching behavior from to_datetime
Returns
-------
ndarray of parsed dates
Returns:
- Index-like if box=True
- ndarray of Timestamps if box=False
"""
from pandas import DatetimeIndex
from pandas.core.arrays import DatetimeArray
from pandas.core.arrays.datetimes import (
maybe_convert_dtype,
objects_to_datetime64ns,
)
if isinstance(arg, (list, tuple)):
arg = np.array(arg, dtype="O")
# these are shortcutable
if is_datetime64tz_dtype(arg):
if not isinstance(arg, (DatetimeArray, DatetimeIndex)):
return DatetimeIndex(arg, tz=tz, name=name)
if tz == "utc":
arg = arg.tz_convert(None).tz_localize(tz)
return arg
elif is_datetime64_ns_dtype(arg):
if box and not isinstance(arg, (DatetimeArray, DatetimeIndex)):
try:
return DatetimeIndex(arg, tz=tz, name=name)
except ValueError:
pass
elif tz:
# DatetimeArray, DatetimeIndex
return arg.tz_localize(tz)
return arg
elif unit is not None:
if format is not None:
raise ValueError("cannot specify both format and unit")
arg = getattr(arg, "values", arg)
result, tz_parsed = tslib.array_with_unit_to_datetime(arg, unit, errors=errors)
if box:
if errors == "ignore":
from pandas import Index
result = Index(result, name=name)
else:
result = DatetimeIndex(result, name=name)
# GH 23758: We may still need to localize the result with tz
# GH 25546: Apply tz_parsed first (from arg), then tz (from caller)
# result will be naive but in UTC
try:
result = result.tz_localize("UTC").tz_convert(tz_parsed)
except AttributeError:
# Regular Index from 'ignore' path
return result
if tz is not None:
if result.tz is None:
result = result.tz_localize(tz)
else:
result = result.tz_convert(tz)
return result
elif getattr(arg, "ndim", 1) > 1:
raise TypeError(
"arg must be a string, datetime, list, tuple, " "1-d array, or Series"
)
# warn if passing timedelta64, raise for PeriodDtype
# NB: this must come after unit transformation
orig_arg = arg
arg, _ = maybe_convert_dtype(arg, copy=False)
arg = ensure_object(arg)
require_iso8601 = False
if infer_datetime_format and format is None:
format = _guess_datetime_format_for_array(arg, dayfirst=dayfirst)
if format is not None:
# There is a special fast-path for iso8601 formatted
# datetime strings, so in those cases don't use the inferred
# format because this path makes process slower in this
# special case
format_is_iso8601 = _format_is_iso(format)
if format_is_iso8601:
require_iso8601 = not infer_datetime_format
format = None
tz_parsed = None
result = None
if format is not None:
try:
# shortcut formatting here
if format == "%Y%m%d":
try:
# pass orig_arg as float-dtype may have been converted to
# datetime64[ns]
orig_arg = ensure_object(orig_arg)
result = _attempt_YYYYMMDD(orig_arg, errors=errors)
except (ValueError, TypeError, tslibs.OutOfBoundsDatetime):
raise ValueError(
"cannot convert the input to " "'%Y%m%d' date format"
)
# fallback
if result is None:
try:
result, timezones = array_strptime(
arg, format, exact=exact, errors=errors
)
if "%Z" in format or "%z" in format:
return _return_parsed_timezone_results(
result, timezones, box, tz, name
)
except tslibs.OutOfBoundsDatetime:
if errors == "raise":
raise
elif errors == "coerce":
result = np.empty(arg.shape, dtype="M8[ns]")
iresult = result.view("i8")
iresult.fill(tslibs.iNaT)
else:
result = arg
except ValueError:
# if format was inferred, try falling back
# to array_to_datetime - terminate here
# for specified formats
if not infer_datetime_format:
if errors == "raise":
raise
elif errors == "coerce":
result = np.empty(arg.shape, dtype="M8[ns]")
iresult = result.view("i8")
iresult.fill(tslibs.iNaT)
else:
result = arg
except ValueError as e:
# Fallback to try to convert datetime objects if timezone-aware
# datetime objects are found without passing `utc=True`
try:
values, tz = conversion.datetime_to_datetime64(arg)
return DatetimeIndex._simple_new(values, name=name, tz=tz)
except (ValueError, TypeError):
raise e
if result is None:
assert format is None or infer_datetime_format
utc = tz == "utc"
result, tz_parsed = objects_to_datetime64ns(
arg,
dayfirst=dayfirst,
yearfirst=yearfirst,
utc=utc,
errors=errors,
require_iso8601=require_iso8601,
allow_object=True,
)
if tz_parsed is not None:
if box:
# We can take a shortcut since the datetime64 numpy array
# is in UTC
return DatetimeIndex._simple_new(result, name=name, tz=tz_parsed)
else:
# Convert the datetime64 numpy array to an numpy array
# of datetime objects
result = [Timestamp(ts, tz=tz_parsed).to_pydatetime() for ts in result]
return np.array(result, dtype=object)
if box:
utc = tz == "utc"
return _box_as_indexlike(result, utc=utc, name=name)
return result
def _adjust_to_origin(arg, origin, unit):
"""
Helper function for to_datetime.
Adjust input argument to the specified origin
Parameters
----------
arg : list, tuple, ndarray, Series, Index
date to be adjusted
origin : 'julian' or Timestamp
origin offset for the arg
unit : string
passed unit from to_datetime, must be 'D'
Returns
-------
ndarray or scalar of adjusted date(s)
"""
if origin == "julian":
original = arg
j0 = Timestamp(0).to_julian_date()
if unit != "D":
raise ValueError("unit must be 'D' for origin='julian'")
try:
arg = arg - j0
except TypeError:
raise ValueError("incompatible 'arg' type for given " "'origin'='julian'")
# preemptively check this for a nice range
j_max = Timestamp.max.to_julian_date() - j0
j_min = Timestamp.min.to_julian_date() - j0
if np.any(arg > j_max) or np.any(arg < j_min):
raise tslibs.OutOfBoundsDatetime(
"{original} is Out of Bounds for "
"origin='julian'".format(original=original)
)
else:
# arg must be numeric
if not (
(is_scalar(arg) and (is_integer(arg) or is_float(arg)))
or is_numeric_dtype(np.asarray(arg))
):
raise ValueError(
"'{arg}' is not compatible with origin='{origin}'; "
"it must be numeric with a unit specified ".format(
arg=arg, origin=origin
)
)
# we are going to offset back to unix / epoch time
try:
offset = Timestamp(origin)
except tslibs.OutOfBoundsDatetime:
raise tslibs.OutOfBoundsDatetime(
"origin {origin} is Out of Bounds".format(origin=origin)
)
except ValueError:
raise ValueError(
"origin {origin} cannot be converted "
"to a Timestamp".format(origin=origin)
)
if offset.tz is not None:
raise ValueError("origin offset {} must be tz-naive".format(offset))
offset -= Timestamp(0)
# convert the offset to the unit of the arg
# this should be lossless in terms of precision
offset = offset // tslibs.Timedelta(1, unit=unit)
# scalars & ndarray-like can handle the addition
if is_list_like(arg) and not isinstance(
arg, (ABCSeries, ABCIndexClass, np.ndarray)
):
arg = np.asarray(arg)
arg = arg + offset
return arg
@deprecate_kwarg(old_arg_name="box", new_arg_name=None)
def to_datetime(
arg,
errors="raise",
dayfirst=False,
yearfirst=False,
utc=None,
box=True,
format=None,
exact=True,
unit=None,
infer_datetime_format=False,
origin="unix",
cache=True,
):
"""
Convert argument to datetime.
Parameters
----------
arg : integer, float, string, datetime, list, tuple, 1-d array, Series
.. versionadded:: 0.18.1
or DataFrame/dict-like
errors : {'ignore', 'raise', 'coerce'}, default 'raise'
- If 'raise', then invalid parsing will raise an exception
- If 'coerce', then invalid parsing will be set as NaT
- If 'ignore', then invalid parsing will return the input
dayfirst : boolean, default False
Specify a date parse order if `arg` is str or its list-likes.
If True, parses dates with the day first, eg 10/11/12 is parsed as
2012-11-10.
Warning: dayfirst=True is not strict, but will prefer to parse
with day first (this is a known bug, based on dateutil behavior).
yearfirst : boolean, default False
Specify a date parse order if `arg` is str or its list-likes.
- If True parses dates with the year first, eg 10/11/12 is parsed as
2010-11-12.
- If both dayfirst and yearfirst are True, yearfirst is preceded (same
as dateutil).
Warning: yearfirst=True is not strict, but will prefer to parse
with year first (this is a known bug, based on dateutil behavior).
.. versionadded:: 0.16.1
utc : boolean, default None
Return UTC DatetimeIndex if True (converting any tz-aware
datetime.datetime objects as well).
box : boolean, default True
- If True returns a DatetimeIndex or Index-like object
- If False returns ndarray of values.
.. deprecated:: 0.25.0
Use :meth:`Series.to_numpy` or :meth:`Timestamp.to_datetime64`
instead to get an ndarray of values or numpy.datetime64,
respectively.
format : string, default None
strftime to parse time, eg "%d/%m/%Y", note that "%f" will parse
all the way up to nanoseconds.
See strftime documentation for more information on choices:
https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior
exact : boolean, True by default
- If True, require an exact format match.
- If False, allow the format to match anywhere in the target string.
unit : string, default 'ns'
unit of the arg (D,s,ms,us,ns) denote the unit, which is an
integer or float number. This will be based off the origin.
Example, with unit='ms' and origin='unix' (the default), this
would calculate the number of milliseconds to the unix epoch start.
infer_datetime_format : boolean, default False
If True and no `format` is given, attempt to infer the format of the
datetime strings, and if it can be inferred, switch to a faster
method of parsing them. In some cases this can increase the parsing
speed by ~5-10x.
origin : scalar, default is 'unix'
Define the reference date. The numeric values would be parsed as number
of units (defined by `unit`) since this reference date.
- If 'unix' (or POSIX) time; origin is set to 1970-01-01.
- If 'julian', unit must be 'D', and origin is set to beginning of
Julian Calendar. Julian day number 0 is assigned to the day starting
at noon on January 1, 4713 BC.
- If Timestamp convertible, origin is set to Timestamp identified by
origin.
.. versionadded:: 0.20.0
cache : boolean, default True
If True, use a cache of unique, converted dates to apply the datetime
conversion. May produce significant speed-up when parsing duplicate
date strings, especially ones with timezone offsets.
.. versionadded:: 0.23.0
.. versionchanged:: 0.25.0
- changed default value from False to True
Returns
-------
ret : datetime if parsing succeeded.
Return type depends on input:
- list-like: DatetimeIndex
- Series: Series of datetime64 dtype
- scalar: Timestamp
In case when it is not possible to return designated types (e.g. when
any element of input is before Timestamp.min or after Timestamp.max)
return will have datetime.datetime type (or corresponding
array/Series).
See Also
--------
DataFrame.astype : Cast argument to a specified dtype.
to_timedelta : Convert argument to timedelta.
Examples
--------
Assembling a datetime from multiple columns of a DataFrame. The keys can be
common abbreviations like ['year', 'month', 'day', 'minute', 'second',
'ms', 'us', 'ns']) or plurals of the same
>>> df = pd.DataFrame({'year': [2015, 2016],
... 'month': [2, 3],
... 'day': [4, 5]})
>>> pd.to_datetime(df)
0 2015-02-04
1 2016-03-05
dtype: datetime64[ns]
If a date does not meet the `timestamp limitations
<http://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
#timeseries-timestamp-limits>`_, passing errors='ignore'
will return the original input instead of raising any exception.
Passing errors='coerce' will force an out-of-bounds date to NaT,
in addition to forcing non-dates (or non-parseable dates) to NaT.
>>> pd.to_datetime('13000101', format='%Y%m%d', errors='ignore')
datetime.datetime(1300, 1, 1, 0, 0)
>>> pd.to_datetime('13000101', format='%Y%m%d', errors='coerce')
NaT
Passing infer_datetime_format=True can often-times speedup a parsing
if its not an ISO8601 format exactly, but in a regular format.
>>> s = pd.Series(['3/11/2000', '3/12/2000', '3/13/2000'] * 1000)
>>> s.head()
0 3/11/2000
1 3/12/2000
2 3/13/2000
3 3/11/2000
4 3/12/2000
dtype: object
>>> %timeit pd.to_datetime(s,infer_datetime_format=True) # doctest: +SKIP
100 loops, best of 3: 10.4 ms per loop
>>> %timeit pd.to_datetime(s,infer_datetime_format=False) # doctest: +SKIP
1 loop, best of 3: 471 ms per loop
Using a unix epoch time
>>> pd.to_datetime(1490195805, unit='s')
Timestamp('2017-03-22 15:16:45')
>>> pd.to_datetime(1490195805433502912, unit='ns')
Timestamp('2017-03-22 15:16:45.433502912')
.. warning:: For float arg, precision rounding might happen. To prevent
unexpected behavior use a fixed-width exact type.
Using a non-unix epoch origin
>>> pd.to_datetime([1, 2, 3], unit='D',
... origin=pd.Timestamp('1960-01-01'))
DatetimeIndex(['1960-01-02', '1960-01-03', '1960-01-04'], \
dtype='datetime64[ns]', freq=None)
"""
if arg is None:
return None
if origin != "unix":
arg = _adjust_to_origin(arg, origin, unit)
tz = "utc" if utc else None
convert_listlike = partial(
_convert_listlike_datetimes,
tz=tz,
unit=unit,
dayfirst=dayfirst,
yearfirst=yearfirst,
errors=errors,
exact=exact,
infer_datetime_format=infer_datetime_format,
)
if isinstance(arg, Timestamp):
result = arg
if tz is not None:
if arg.tz is not None:
result = result.tz_convert(tz)
else:
result = result.tz_localize(tz)
elif isinstance(arg, ABCSeries):
cache_array = _maybe_cache(arg, format, cache, convert_listlike)
if not cache_array.empty:
result = arg.map(cache_array)
else:
values = convert_listlike(arg._values, True, format)
result = arg._constructor(values, index=arg.index, name=arg.name)
elif isinstance(arg, (ABCDataFrame, abc.MutableMapping)):
result = _assemble_from_unit_mappings(arg, errors, box, tz)
elif isinstance(arg, ABCIndexClass):
cache_array = _maybe_cache(arg, format, cache, convert_listlike)
if not cache_array.empty:
result = _convert_and_box_cache(arg, cache_array, box, name=arg.name)
else:
convert_listlike = partial(convert_listlike, name=arg.name)
result = convert_listlike(arg, box, format)
elif is_list_like(arg):
cache_array = _maybe_cache(arg, format, cache, convert_listlike)
if not cache_array.empty:
result = _convert_and_box_cache(arg, cache_array, box)
else:
result = convert_listlike(arg, box, format)
else:
result = convert_listlike(np.array([arg]), box, format)[0]
return result
# mappings for assembling units
_unit_map = {
"year": "year",
"years": "year",
"month": "month",
"months": "month",
"day": "day",
"days": "day",
"hour": "h",
"hours": "h",
"minute": "m",
"minutes": "m",
"second": "s",
"seconds": "s",
"ms": "ms",
"millisecond": "ms",
"milliseconds": "ms",
"us": "us",
"microsecond": "us",
"microseconds": "us",
"ns": "ns",
"nanosecond": "ns",
"nanoseconds": "ns",
}
def _assemble_from_unit_mappings(arg, errors, box, tz):
"""
assemble the unit specified fields from the arg (DataFrame)
Return a Series for actual parsing
Parameters
----------
arg : DataFrame
errors : {'ignore', 'raise', 'coerce'}, default 'raise'
- If 'raise', then invalid parsing will raise an exception
- If 'coerce', then invalid parsing will be set as NaT
- If 'ignore', then invalid parsing will return the input
box : boolean
- If True, return a DatetimeIndex
- If False, return an array
tz : None or 'utc'
Returns
-------
Series
"""
from pandas import to_timedelta, to_numeric, DataFrame
arg = DataFrame(arg)
if not arg.columns.is_unique:
raise ValueError("cannot assemble with duplicate keys")
# replace passed unit with _unit_map
def f(value):
if value in _unit_map:
return _unit_map[value]
# m is case significant
if value.lower() in _unit_map:
return _unit_map[value.lower()]
return value
unit = {k: f(k) for k in arg.keys()}
unit_rev = {v: k for k, v in unit.items()}
# we require at least Ymd
required = ["year", "month", "day"]
req = sorted(list(set(required) - set(unit_rev.keys())))
if len(req):
raise ValueError(
"to assemble mappings requires at least that "
"[year, month, day] be specified: [{required}] "
"is missing".format(required=",".join(req))
)
# keys we don't recognize
excess = sorted(list(set(unit_rev.keys()) - set(_unit_map.values())))
if len(excess):
raise ValueError(
"extra keys have been passed "
"to the datetime assemblage: "
"[{excess}]".format(excess=",".join(excess))
)
def coerce(values):
# we allow coercion to if errors allows
values = to_numeric(values, errors=errors)
# prevent overflow in case of int8 or int16
if is_integer_dtype(values):
values = values.astype("int64", copy=False)
return values
values = (
coerce(arg[unit_rev["year"]]) * 10000
+ coerce(arg[unit_rev["month"]]) * 100
+ coerce(arg[unit_rev["day"]])
)
try:
values = to_datetime(values, format="%Y%m%d", errors=errors, utc=tz)
except (TypeError, ValueError) as e:
raise ValueError("cannot assemble the " "datetimes: {error}".format(error=e))
for u in ["h", "m", "s", "ms", "us", "ns"]:
value = unit_rev.get(u)
if value is not None and value in arg:
try:
values += to_timedelta(coerce(arg[value]), unit=u, errors=errors)
except (TypeError, ValueError) as e:
raise ValueError(
"cannot assemble the datetimes [{value}]: "
"{error}".format(value=value, error=e)
)
if not box:
return values.values
return values
def _attempt_YYYYMMDD(arg, errors):
"""
try to parse the YYYYMMDD/%Y%m%d format, try to deal with NaT-like,
arg is a passed in as an object dtype, but could really be ints/strings
with nan-like/or floats (e.g. with nan)
Parameters
----------
arg : passed value
errors : 'raise','ignore','coerce'
"""
def calc(carg):
# calculate the actual result
carg = carg.astype(object)
parsed = parsing.try_parse_year_month_day(
carg / 10000, carg / 100 % 100, carg % 100
)
return tslib.array_to_datetime(parsed, errors=errors)[0]
def calc_with_mask(carg, mask):
result = np.empty(carg.shape, dtype="M8[ns]")
iresult = result.view("i8")
iresult[~mask] = tslibs.iNaT
masked_result = calc(carg[mask].astype(np.float64).astype(np.int64))
result[mask] = masked_result.astype("M8[ns]")
return result
# try intlike / strings that are ints
try:
return calc(arg.astype(np.int64))
except (ValueError, OverflowError):
pass
# a float with actual np.nan
try:
carg = arg.astype(np.float64)
return calc_with_mask(carg, notna(carg))
except (ValueError, OverflowError):
pass
# string with NaN-like
try:
mask = ~algorithms.isin(arg, list(tslib.nat_strings))
return calc_with_mask(arg, mask)
except (ValueError, OverflowError):
pass
return None
# Fixed time formats for time parsing
_time_formats = [
"%H:%M",
"%H%M",
"%I:%M%p",
"%I%M%p",
"%H:%M:%S",
"%H%M%S",
"%I:%M:%S%p",
"%I%M%S%p",
]
def _guess_time_format_for_array(arr):
# Try to guess the format based on the first non-NaN element
non_nan_elements = notna(arr).nonzero()[0]
if len(non_nan_elements):
element = arr[non_nan_elements[0]]
for time_format in _time_formats:
try:
datetime.strptime(element, time_format)
return time_format
except ValueError:
pass
return None
def to_time(arg, format=None, infer_time_format=False, errors="raise"):
"""
Parse time strings to time objects using fixed strptime formats ("%H:%M",
"%H%M", "%I:%M%p", "%I%M%p", "%H:%M:%S", "%H%M%S", "%I:%M:%S%p",
"%I%M%S%p")
Use infer_time_format if all the strings are in the same format to speed
up conversion.
Parameters
----------
arg : string in time format, datetime.time, list, tuple, 1-d array, Series
format : str, default None
Format used to convert arg into a time object. If None, fixed formats
are used.
infer_time_format: bool, default False
Infer the time format based on the first non-NaN element. If all
strings are in the same format, this will speed up conversion.
errors : {'ignore', 'raise', 'coerce'}, default 'raise'
- If 'raise', then invalid parsing will raise an exception
- If 'coerce', then invalid parsing will be set as None
- If 'ignore', then invalid parsing will return the input
Returns
-------
datetime.time
"""
def _convert_listlike(arg, format):
if isinstance(arg, (list, tuple)):
arg = np.array(arg, dtype="O")
elif getattr(arg, "ndim", 1) > 1:
raise TypeError(
"arg must be a string, datetime, list, tuple, " "1-d array, or Series"
)
arg = ensure_object(arg)
if infer_time_format and format is None:
format = _guess_time_format_for_array(arg)
times = []
if format is not None:
for element in arg:
try:
times.append(datetime.strptime(element, format).time())
except (ValueError, TypeError):
if errors == "raise":
msg = (
"Cannot convert {element} to a time with given "
"format {format}"
).format(element=element, format=format)
raise ValueError(msg)
elif errors == "ignore":
return arg
else:
times.append(None)
else:
formats = _time_formats[:]
format_found = False
for element in arg:
time_object = None
for time_format in formats:
try:
time_object = datetime.strptime(element, time_format).time()
if not format_found:
# Put the found format in front
fmt = formats.pop(formats.index(time_format))
formats.insert(0, fmt)
format_found = True
break
except (ValueError, TypeError):
continue
if time_object is not None:
times.append(time_object)
elif errors == "raise":
raise ValueError(
"Cannot convert arg {arg} to " "a time".format(arg=arg)
)
elif errors == "ignore":
return arg
else:
times.append(None)
return times
if arg is None:
return arg
elif isinstance(arg, time):
return arg
elif isinstance(arg, ABCSeries):
values = _convert_listlike(arg._values, format)
return arg._constructor(values, index=arg.index, name=arg.name)
elif isinstance(arg, ABCIndexClass):
return _convert_listlike(arg, format)
elif is_list_like(arg):
return _convert_listlike(arg, format)
return _convert_listlike(np.array([arg]), format)[0]