Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

aaronreidsmith / pandas   python

Repository URL to install this package:

Version: 0.25.3 

/ io / formats / style.py

"""
Module for applying conditional formatting to
DataFrames and Series.
"""

from collections import defaultdict
from contextlib import contextmanager
import copy
from functools import partial
from itertools import product
from uuid import uuid1

import numpy as np

from pandas._config import get_option

from pandas.compat._optional import import_optional_dependency
from pandas.util._decorators import Appender

from pandas.core.dtypes.common import is_float, is_string_like
from pandas.core.dtypes.generic import ABCSeries

import pandas as pd
from pandas.api.types import is_dict_like, is_list_like
import pandas.core.common as com
from pandas.core.generic import _shared_docs
from pandas.core.indexing import _maybe_numeric_slice, _non_reducing_slice

jinja2 = import_optional_dependency("jinja2", extra="DataFrame.style requires jinja2.")


try:
    import matplotlib.pyplot as plt
    from matplotlib import colors

    has_mpl = True
except ImportError:
    has_mpl = False
    no_mpl_message = "{0} requires matplotlib."


@contextmanager
def _mpl(func):
    if has_mpl:
        yield plt, colors
    else:
        raise ImportError(no_mpl_message.format(func.__name__))


class Styler:
    """
    Helps style a DataFrame or Series according to the data with HTML and CSS.

    Parameters
    ----------
    data : Series or DataFrame
    precision : int
        precision to round floats to, defaults to pd.options.display.precision
    table_styles : list-like, default None
        list of {selector: (attr, value)} dicts; see Notes
    uuid : str, default None
        a unique identifier to avoid CSS collisions; generated automatically
    caption : str, default None
        caption to attach to the table
    cell_ids : bool, default True
        If True, each cell will have an ``id`` attribute in their HTML tag.
        The ``id`` takes the form ``T_<uuid>_row<num_row>_col<num_col>``
        where ``<uuid>`` is the unique identifier, ``<num_row>`` is the row
        number and ``<num_col>`` is the column number.

    Attributes
    ----------
    env : Jinja2 jinja2.Environment
    template : Jinja2 Template
    loader : Jinja2 Loader

    See Also
    --------
    DataFrame.style

    Notes
    -----
    Most styling will be done by passing style functions into
    ``Styler.apply`` or ``Styler.applymap``. Style functions should
    return values with strings containing CSS ``'attr: value'`` that will
    be applied to the indicated cells.

    If using in the Jupyter notebook, Styler has defined a ``_repr_html_``
    to automatically render itself. Otherwise call Styler.render to get
    the generated HTML.

    CSS classes are attached to the generated HTML

    * Index and Column names include ``index_name`` and ``level<k>``
      where `k` is its level in a MultiIndex
    * Index label cells include

      * ``row_heading``
      * ``row<n>`` where `n` is the numeric position of the row
      * ``level<k>`` where `k` is the level in a MultiIndex

    * Column label cells include
      * ``col_heading``
      * ``col<n>`` where `n` is the numeric position of the column
      * ``evel<k>`` where `k` is the level in a MultiIndex

    * Blank cells include ``blank``
    * Data cells include ``data``
    """

    loader = jinja2.PackageLoader("pandas", "io/formats/templates")
    env = jinja2.Environment(loader=loader, trim_blocks=True)
    template = env.get_template("html.tpl")

    def __init__(
        self,
        data,
        precision=None,
        table_styles=None,
        uuid=None,
        caption=None,
        table_attributes=None,
        cell_ids=True,
    ):
        self.ctx = defaultdict(list)
        self._todo = []

        if not isinstance(data, (pd.Series, pd.DataFrame)):
            raise TypeError("``data`` must be a Series or DataFrame")
        if data.ndim == 1:
            data = data.to_frame()
        if not data.index.is_unique or not data.columns.is_unique:
            raise ValueError("style is not supported for non-unique indices.")

        self.data = data
        self.index = data.index
        self.columns = data.columns

        self.uuid = uuid
        self.table_styles = table_styles
        self.caption = caption
        if precision is None:
            precision = get_option("display.precision")
        self.precision = precision
        self.table_attributes = table_attributes
        self.hidden_index = False
        self.hidden_columns = []
        self.cell_ids = cell_ids

        # display_funcs maps (row, col) -> formatting function

        def default_display_func(x):
            if is_float(x):
                return "{:>.{precision}g}".format(x, precision=self.precision)
            else:
                return x

        self._display_funcs = defaultdict(lambda: default_display_func)

    def _repr_html_(self):
        """
        Hooks into Jupyter notebook rich display system.
        """
        return self.render()

    @Appender(
        _shared_docs["to_excel"]
        % dict(
            axes="index, columns",
            klass="Styler",
            axes_single_arg="{0 or 'index', 1 or 'columns'}",
            optional_by="""
            by : str or list of str
                Name or list of names which refer to the axis items.""",
            versionadded_to_excel="\n    .. versionadded:: 0.20",
        )
    )
    def to_excel(
        self,
        excel_writer,
        sheet_name="Sheet1",
        na_rep="",
        float_format=None,
        columns=None,
        header=True,
        index=True,
        index_label=None,
        startrow=0,
        startcol=0,
        engine=None,
        merge_cells=True,
        encoding=None,
        inf_rep="inf",
        verbose=True,
        freeze_panes=None,
    ):

        from pandas.io.formats.excel import ExcelFormatter

        formatter = ExcelFormatter(
            self,
            na_rep=na_rep,
            cols=columns,
            header=header,
            float_format=float_format,
            index=index,
            index_label=index_label,
            merge_cells=merge_cells,
            inf_rep=inf_rep,
        )
        formatter.write(
            excel_writer,
            sheet_name=sheet_name,
            startrow=startrow,
            startcol=startcol,
            freeze_panes=freeze_panes,
            engine=engine,
        )

    def _translate(self):
        """
        Convert the DataFrame in `self.data` and the attrs from `_build_styles`
        into a dictionary of {head, body, uuid, cellstyle}.
        """
        table_styles = self.table_styles or []
        caption = self.caption
        ctx = self.ctx
        precision = self.precision
        hidden_index = self.hidden_index
        hidden_columns = self.hidden_columns
        uuid = self.uuid or str(uuid1()).replace("-", "_")
        ROW_HEADING_CLASS = "row_heading"
        COL_HEADING_CLASS = "col_heading"
        INDEX_NAME_CLASS = "index_name"

        DATA_CLASS = "data"
        BLANK_CLASS = "blank"
        BLANK_VALUE = ""

        def format_attr(pair):
            return "{key}={value}".format(**pair)

        # for sparsifying a MultiIndex
        idx_lengths = _get_level_lengths(self.index)
        col_lengths = _get_level_lengths(self.columns, hidden_columns)

        cell_context = dict()

        n_rlvls = self.data.index.nlevels
        n_clvls = self.data.columns.nlevels
        rlabels = self.data.index.tolist()
        clabels = self.data.columns.tolist()

        if n_rlvls == 1:
            rlabels = [[x] for x in rlabels]
        if n_clvls == 1:
            clabels = [[x] for x in clabels]
        clabels = list(zip(*clabels))

        cellstyle = []
        head = []

        for r in range(n_clvls):
            # Blank for Index columns...
            row_es = [
                {
                    "type": "th",
                    "value": BLANK_VALUE,
                    "display_value": BLANK_VALUE,
                    "is_visible": not hidden_index,
                    "class": " ".join([BLANK_CLASS]),
                }
            ] * (n_rlvls - 1)

            # ... except maybe the last for columns.names
            name = self.data.columns.names[r]
            cs = [
                BLANK_CLASS if name is None else INDEX_NAME_CLASS,
                "level{lvl}".format(lvl=r),
            ]
            name = BLANK_VALUE if name is None else name
            row_es.append(
                {
                    "type": "th",
                    "value": name,
                    "display_value": name,
                    "class": " ".join(cs),
                    "is_visible": not hidden_index,
                }
            )

            if clabels:
                for c, value in enumerate(clabels[r]):
                    cs = [
                        COL_HEADING_CLASS,
                        "level{lvl}".format(lvl=r),
                        "col{col}".format(col=c),
                    ]
                    cs.extend(
                        cell_context.get("col_headings", {}).get(r, {}).get(c, [])
                    )
                    es = {
                        "type": "th",
                        "value": value,
                        "display_value": value,
                        "class": " ".join(cs),
                        "is_visible": _is_visible(c, r, col_lengths),
                    }
                    colspan = col_lengths.get((r, c), 0)
                    if colspan > 1:
                        es["attributes"] = [
                            format_attr({"key": "colspan", "value": colspan})
                        ]
                    row_es.append(es)
                head.append(row_es)

        if (
            self.data.index.names
            and com._any_not_none(*self.data.index.names)
            and not hidden_index
        ):
            index_header_row = []

            for c, name in enumerate(self.data.index.names):
                cs = [INDEX_NAME_CLASS, "level{lvl}".format(lvl=c)]
                name = "" if name is None else name
                index_header_row.append(
                    {"type": "th", "value": name, "class": " ".join(cs)}
                )

            index_header_row.extend(
                [{"type": "th", "value": BLANK_VALUE, "class": " ".join([BLANK_CLASS])}]
                * (len(clabels[0]) - len(hidden_columns))
            )

            head.append(index_header_row)

        body = []
        for r, idx in enumerate(self.data.index):
            row_es = []
            for c, value in enumerate(rlabels[r]):
                rid = [
                    ROW_HEADING_CLASS,
                    "level{lvl}".format(lvl=c),
                    "row{row}".format(row=r),
                ]
                es = {
                    "type": "th",
                    "is_visible": (_is_visible(r, c, idx_lengths) and not hidden_index),
                    "value": value,
                    "display_value": value,
                    "id": "_".join(rid[1:]),
                    "class": " ".join(rid),
                }
                rowspan = idx_lengths.get((c, r), 0)
                if rowspan > 1:
                    es["attributes"] = [
                        format_attr({"key": "rowspan", "value": rowspan})
                    ]
                row_es.append(es)

            for c, col in enumerate(self.data.columns):
                cs = [DATA_CLASS, "row{row}".format(row=r), "col{col}".format(col=c)]
                cs.extend(cell_context.get("data", {}).get(r, {}).get(c, []))
                formatter = self._display_funcs[(r, c)]
                value = self.data.iloc[r, c]
                row_dict = {
                    "type": "td",
                    "value": value,
                    "class": " ".join(cs),
                    "display_value": formatter(value),
                    "is_visible": (c not in hidden_columns),
                }
                # only add an id if the cell has a style
                if self.cell_ids or not (len(ctx[r, c]) == 1 and ctx[r, c][0] == ""):
                    row_dict["id"] = "_".join(cs[1:])
                row_es.append(row_dict)
                props = []
                for x in ctx[r, c]:
                    # have to handle empty styles like ['']
                    if x.count(":"):
                        props.append(x.split(":"))
                    else:
                        props.append(["", ""])
                cellstyle.append(
                    {
                        "props": props,
                        "selector": "row{row}_col{col}".format(row=r, col=c),
                    }
                )
            body.append(row_es)

        table_attr = self.table_attributes
        use_mathjax = get_option("display.html.use_mathjax")
        if not use_mathjax:
            table_attr = table_attr or ""
            if 'class="' in table_attr:
                table_attr = table_attr.replace('class="', 'class="tex2jax_ignore ')
            else:
                table_attr += ' class="tex2jax_ignore"'

        return dict(
            head=head,
            cellstyle=cellstyle,
            body=body,
            uuid=uuid,
            precision=precision,
            table_styles=table_styles,
            caption=caption,
            table_attributes=table_attr,
        )

    def format(self, formatter, subset=None):
        """
        Format the text display value of cells.

        .. versionadded:: 0.18.0

        Parameters
        ----------
        formatter : str, callable, or dict
        subset : IndexSlice
            An argument to ``DataFrame.loc`` that restricts which elements
            ``formatter`` is applied to.

        Returns
        -------
        self : Styler

        Notes
        -----

        ``formatter`` is either an ``a`` or a dict ``{column name: a}`` where
        ``a`` is one of

        - str: this will be wrapped in: ``a.format(x)``
        - callable: called with the value of an individual cell

        The default display value for numeric values is the "general" (``g``)
        format with ``pd.options.display.precision`` precision.

        Examples
        --------

        >>> df = pd.DataFrame(np.random.randn(4, 2), columns=['a', 'b'])
        >>> df.style.format("{:.2%}")
        >>> df['c'] = ['a', 'b', 'c', 'd']
        >>> df.style.format({'c': str.upper})
        """
        if subset is None:
            row_locs = range(len(self.data))
            col_locs = range(len(self.data.columns))
        else:
            subset = _non_reducing_slice(subset)
            if len(subset) == 1:
                subset = subset, self.data.columns

            sub_df = self.data.loc[subset]
            row_locs = self.data.index.get_indexer_for(sub_df.index)
            col_locs = self.data.columns.get_indexer_for(sub_df.columns)

        if is_dict_like(formatter):
            for col, col_formatter in formatter.items():
                # formatter must be callable, so '{}' are converted to lambdas
                col_formatter = _maybe_wrap_formatter(col_formatter)
                col_num = self.data.columns.get_indexer_for([col])[0]

                for row_num in row_locs:
                    self._display_funcs[(row_num, col_num)] = col_formatter
        else:
            # single scalar to format all cells with
            locs = product(*(row_locs, col_locs))
            for i, j in locs:
                formatter = _maybe_wrap_formatter(formatter)
                self._display_funcs[(i, j)] = formatter
        return self

    def render(self, **kwargs):
        """
        Render the built up styles to HTML.

        Parameters
        ----------
        **kwargs
            Any additional keyword arguments are passed
            through to ``self.template.render``.
            This is useful when you need to provide
            additional variables for a custom template.

            .. versionadded:: 0.20

        Returns
        -------
        rendered : str
            The rendered HTML.

        Notes
        -----
        ``Styler`` objects have defined the ``_repr_html_`` method
        which automatically calls ``self.render()`` when it's the
        last item in a Notebook cell. When calling ``Styler.render()``
        directly, wrap the result in ``IPython.display.HTML`` to view
        the rendered HTML in the notebook.

        Pandas uses the following keys in render. Arguments passed
        in ``**kwargs`` take precedence, so think carefully if you want
        to override them:

        * head
        * cellstyle
        * body
        * uuid
        * precision
        * table_styles
        * caption
        * table_attributes
        """
        self._compute()
        # TODO: namespace all the pandas keys
        d = self._translate()
        # filter out empty styles, every cell will have a class
        # but the list of props may just be [['', '']].
        # so we have the neested anys below
        trimmed = [x for x in d["cellstyle"] if any(any(y) for y in x["props"])]
        d["cellstyle"] = trimmed
        d.update(kwargs)
        return self.template.render(**d)

    def _update_ctx(self, attrs):
        """
        Update the state of the Styler.

        Collects a mapping of {index_label: ['<property>: <value>']}.

        attrs : Series or DataFrame
        should contain strings of '<property>: <value>;<prop2>: <val2>'
        Whitespace shouldn't matter and the final trailing ';' shouldn't
        matter.
        """
        for row_label, v in attrs.iterrows():
            for col_label, col in v.items():
                i = self.index.get_indexer([row_label])[0]
                j = self.columns.get_indexer([col_label])[0]
                for pair in col.rstrip(";").split(";"):
                    self.ctx[(i, j)].append(pair)

    def _copy(self, deepcopy=False):
        styler = Styler(
            self.data,
            precision=self.precision,
            caption=self.caption,
            uuid=self.uuid,
            table_styles=self.table_styles,
        )
        if deepcopy:
            styler.ctx = copy.deepcopy(self.ctx)
            styler._todo = copy.deepcopy(self._todo)
        else:
            styler.ctx = self.ctx
            styler._todo = self._todo
        return styler

    def __copy__(self):
        """
        Deep copy by default.
        """
        return self._copy(deepcopy=False)

    def __deepcopy__(self, memo):
        return self._copy(deepcopy=True)

    def clear(self):
        """
        Reset the styler, removing any previously applied styles.
        Returns None.
        """
        self.ctx.clear()
        self._todo = []

    def _compute(self):
        """
        Execute the style functions built up in `self._todo`.

        Relies on the conventions that all style functions go through
        .apply or .applymap. The append styles to apply as tuples of

        (application method, *args, **kwargs)
        """
        r = self
        for func, args, kwargs in self._todo:
            r = func(self)(*args, **kwargs)
        return r

    def _apply(self, func, axis=0, subset=None, **kwargs):
        subset = slice(None) if subset is None else subset
        subset = _non_reducing_slice(subset)
        data = self.data.loc[subset]
        if axis is not None:
            result = data.apply(func, axis=axis, result_type="expand", **kwargs)
            result.columns = data.columns
        else:
            result = func(data, **kwargs)
            if not isinstance(result, pd.DataFrame):
                raise TypeError(
                    "Function {func!r} must return a DataFrame when "
                    "passed to `Styler.apply` with axis=None".format(func=func)
                )
            if not (
                result.index.equals(data.index) and result.columns.equals(data.columns)
            ):
                msg = (
                    "Result of {func!r} must have identical index and "
                    "columns as the input".format(func=func)
                )
                raise ValueError(msg)

        result_shape = result.shape
        expected_shape = self.data.loc[subset].shape
        if result_shape != expected_shape:
            msg = (
                "Function {func!r} returned the wrong shape.\n"
                "Result has shape: {res}\n"
                "Expected shape:   {expect}".format(
                    func=func, res=result.shape, expect=expected_shape
                )
            )
            raise ValueError(msg)
        self._update_ctx(result)
        return self

    def apply(self, func, axis=0, subset=None, **kwargs):
        """
        Apply a function column-wise, row-wise, or table-wise,
        updating the HTML representation with the result.

        Parameters
        ----------
        func : function
            ``func`` should take a Series or DataFrame (depending
            on ``axis``), and return an object with the same shape.
            Must return a DataFrame with identical index and
            column labels when ``axis=None``
        axis : {0 or 'index', 1 or 'columns', None}, default 0
            apply to each column (``axis=0`` or ``'index'``), to each row
            (``axis=1`` or ``'columns'``), or to the entire DataFrame at once
            with ``axis=None``.
        subset : IndexSlice
            a valid indexer to limit ``data`` to *before* applying the
            function. Consider using a pandas.IndexSlice
        kwargs : dict
            pass along to ``func``

        Returns
        -------
        self : Styler

        Notes
        -----
        The output shape of ``func`` should match the input, i.e. if
        ``x`` is the input row, column, or table (depending on ``axis``),
        then ``func(x).shape == x.shape`` should be true.

        This is similar to ``DataFrame.apply``, except that ``axis=None``
        applies the function to the entire DataFrame at once,
        rather than column-wise or row-wise.

        Examples
        --------
        >>> def highlight_max(x):
        ...     return ['background-color: yellow' if v == x.max() else ''
                        for v in x]
        ...
        >>> df = pd.DataFrame(np.random.randn(5, 2))
        >>> df.style.apply(highlight_max)
        """
        self._todo.append(
            (lambda instance: getattr(instance, "_apply"), (func, axis, subset), kwargs)
        )
        return self

    def _applymap(self, func, subset=None, **kwargs):
        func = partial(func, **kwargs)  # applymap doesn't take kwargs?
        if subset is None:
            subset = pd.IndexSlice[:]
        subset = _non_reducing_slice(subset)
        result = self.data.loc[subset].applymap(func)
        self._update_ctx(result)
        return self

    def applymap(self, func, subset=None, **kwargs):
        """
        Apply a function elementwise, updating the HTML
        representation with the result.

        Parameters
        ----------
        func : function
            ``func`` should take a scalar and return a scalar
        subset : IndexSlice
            a valid indexer to limit ``data`` to *before* applying the
            function. Consider using a pandas.IndexSlice
        kwargs : dict
            pass along to ``func``

        Returns
        -------
        self : Styler

        See Also
        --------
        Styler.where
        """
        self._todo.append(
            (lambda instance: getattr(instance, "_applymap"), (func, subset), kwargs)
        )
        return self

    def where(self, cond, value, other=None, subset=None, **kwargs):
        """
        Apply a function elementwise, updating the HTML
        representation with a style which is selected in
        accordance with the return value of a function.

        .. versionadded:: 0.21.0

        Parameters
        ----------
        cond : callable
            ``cond`` should take a scalar and return a boolean
        value : str
            applied when ``cond`` returns true
        other : str
            applied when ``cond`` returns false
        subset : IndexSlice
            a valid indexer to limit ``data`` to *before* applying the
            function. Consider using a pandas.IndexSlice
        kwargs : dict
            pass along to ``cond``

        Returns
        -------
        self : Styler

        See Also
        --------
        Styler.applymap
        """

        if other is None:
            other = ""

        return self.applymap(
            lambda val: value if cond(val) else other, subset=subset, **kwargs
        )

    def set_precision(self, precision):
        """
        Set the precision used to render.

        Parameters
        ----------
        precision : int

        Returns
        -------
        self : Styler
        """
        self.precision = precision
        return self

    def set_table_attributes(self, attributes):
        """
        Set the table attributes.

        These are the items that show up in the opening ``<table>`` tag
        in addition to to automatic (by default) id.

        Parameters
        ----------
        attributes : string

        Returns
        -------
        self : Styler

        Examples
        --------
        >>> df = pd.DataFrame(np.random.randn(10, 4))
        >>> df.style.set_table_attributes('class="pure-table"')
        # ... <table class="pure-table"> ...
        """
        self.table_attributes = attributes
        return self

    def export(self):
        """
        Export the styles to applied to the current Styler.

        Can be applied to a second style with ``Styler.use``.

        Returns
        -------
        styles : list

        See Also
        --------
        Styler.use
        """
        return self._todo

    def use(self, styles):
        """
        Set the styles on the current Styler, possibly using styles
        from ``Styler.export``.

        Parameters
        ----------
        styles : list
            list of style functions

        Returns
        -------
        self : Styler

        See Also
        --------
        Styler.export
        """
        self._todo.extend(styles)
        return self

    def set_uuid(self, uuid):
        """
        Set the uuid for a Styler.

        Parameters
        ----------
        uuid : str

        Returns
        -------
        self : Styler
        """
        self.uuid = uuid
        return self

    def set_caption(self, caption):
        """
        Set the caption on a Styler

        Parameters
        ----------
        caption : str

        Returns
        -------
        self : Styler
        """
        self.caption = caption
        return self

    def set_table_styles(self, table_styles):
        """
        Set the table styles on a Styler.

        These are placed in a ``<style>`` tag before the generated HTML table.

        Parameters
        ----------
        table_styles : list
            Each individual table_style should be a dictionary with
            ``selector`` and ``props`` keys. ``selector`` should be a CSS
            selector that the style will be applied to (automatically
            prefixed by the table's UUID) and ``props`` should be a list of
            tuples with ``(attribute, value)``.

        Returns
        -------
        self : Styler

        Examples
        --------
        >>> df = pd.DataFrame(np.random.randn(10, 4))
        >>> df.style.set_table_styles(
        ...     [{'selector': 'tr:hover',
        ...       'props': [('background-color', 'yellow')]}]
        ... )
        """
        self.table_styles = table_styles
        return self

    def hide_index(self):
        """
        Hide any indices from rendering.

        .. versionadded:: 0.23.0

        Returns
        -------
        self : Styler
        """
        self.hidden_index = True
        return self

    def hide_columns(self, subset):
        """
        Hide columns from rendering.

        .. versionadded:: 0.23.0

        Parameters
        ----------
        subset : IndexSlice
            An argument to ``DataFrame.loc`` that identifies which columns
            are hidden.

        Returns
        -------
        self : Styler
        """
        subset = _non_reducing_slice(subset)
        hidden_df = self.data.loc[subset]
        self.hidden_columns = self.columns.get_indexer_for(hidden_df.columns)
        return self

    # -----------------------------------------------------------------------
    # A collection of "builtin" styles
    # -----------------------------------------------------------------------

    @staticmethod
    def _highlight_null(v, null_color):
        return (
            "background-color: {color}".format(color=null_color) if pd.isna(v) else ""
        )

    def highlight_null(self, null_color="red"):
        """
        Shade the background ``null_color`` for missing values.

        Parameters
        ----------
        null_color : str

        Returns
        -------
        self : Styler
        """
        self.applymap(self._highlight_null, null_color=null_color)
        return self

    def background_gradient(
        self,
        cmap="PuBu",
        low=0,
        high=0,
        axis=0,
        subset=None,
        text_color_threshold=0.408,
    ):
        """
        Color the background in a gradient according to
        the data in each column (optionally row).

        Requires matplotlib.

        Parameters
        ----------
        cmap : str or colormap
            matplotlib colormap
        low, high : float
            compress the range by these values.
        axis : {0 or 'index', 1 or 'columns', None}, default 0
            apply to each column (``axis=0`` or ``'index'``), to each row
            (``axis=1`` or ``'columns'``), or to the entire DataFrame at once
            with ``axis=None``.
        subset : IndexSlice
            a valid slice for ``data`` to limit the style application to.
        text_color_threshold : float or int
            luminance threshold for determining text color. Facilitates text
            visibility across varying background colors. From 0 to 1.
            0 = all text is dark colored, 1 = all text is light colored.

            .. versionadded:: 0.24.0

        Returns
        -------
        self : Styler

        Raises
        ------
        ValueError
            If ``text_color_threshold`` is not a value from 0 to 1.

        Notes
        -----
        Set ``text_color_threshold`` or tune ``low`` and ``high`` to keep the
        text legible by not using the entire range of the color map. The range
        of the data is extended by ``low * (x.max() - x.min())`` and ``high *
        (x.max() - x.min())`` before normalizing.
        """
        subset = _maybe_numeric_slice(self.data, subset)
        subset = _non_reducing_slice(subset)
        self.apply(
            self._background_gradient,
            cmap=cmap,
            subset=subset,
            axis=axis,
            low=low,
            high=high,
            text_color_threshold=text_color_threshold,
        )
        return self

    @staticmethod
    def _background_gradient(s, cmap="PuBu", low=0, high=0, text_color_threshold=0.408):
        """
        Color background in a range according to the data.
        """
        if (
            not isinstance(text_color_threshold, (float, int))
            or not 0 <= text_color_threshold <= 1
        ):
            msg = "`text_color_threshold` must be a value from 0 to 1."
            raise ValueError(msg)

        with _mpl(Styler.background_gradient) as (plt, colors):
            smin = s.values.min()
            smax = s.values.max()
            rng = smax - smin
            # extend lower / upper bounds, compresses color range
            norm = colors.Normalize(smin - (rng * low), smax + (rng * high))
            # matplotlib colors.Normalize modifies inplace?
            # https://github.com/matplotlib/matplotlib/issues/5427
            rgbas = plt.cm.get_cmap(cmap)(norm(s.values))

            def relative_luminance(rgba):
                """
                Calculate relative luminance of a color.

                The calculation adheres to the W3C standards
                (https://www.w3.org/WAI/GL/wiki/Relative_luminance)

                Parameters
                ----------
                color : rgb or rgba tuple

                Returns
                -------
                float
                    The relative luminance as a value from 0 to 1
                """
                r, g, b = (
                    x / 12.92 if x <= 0.03928 else ((x + 0.055) / 1.055 ** 2.4)
                    for x in rgba[:3]
                )
                return 0.2126 * r + 0.7152 * g + 0.0722 * b

            def css(rgba):
                dark = relative_luminance(rgba) < text_color_threshold
                text_color = "#f1f1f1" if dark else "#000000"
                return "background-color: {b};color: {c};".format(
                    b=colors.rgb2hex(rgba), c=text_color
                )

            if s.ndim == 1:
                return [css(rgba) for rgba in rgbas]
            else:
                return pd.DataFrame(
                    [[css(rgba) for rgba in row] for row in rgbas],
                    index=s.index,
                    columns=s.columns,
                )

    def set_properties(self, subset=None, **kwargs):
        """
        Convenience method for setting one or more non-data dependent
        properties or each cell.

        Parameters
        ----------
        subset : IndexSlice
            a valid slice for ``data`` to limit the style application to
        kwargs : dict
            property: value pairs to be set for each cell

        Returns
        -------
        self : Styler

        Examples
        --------
        >>> df = pd.DataFrame(np.random.randn(10, 4))
        >>> df.style.set_properties(color="white", align="right")
        >>> df.style.set_properties(**{'background-color': 'yellow'})
        """
        values = ";".join("{p}: {v}".format(p=p, v=v) for p, v in kwargs.items())
        f = lambda x: values
        return self.applymap(f, subset=subset)

    @staticmethod
    def _bar(s, align, colors, width=100, vmin=None, vmax=None):
        """
        Draw bar chart in dataframe cells.
        """
        # Get input value range.
        smin = s.min() if vmin is None else vmin
        if isinstance(smin, ABCSeries):
            smin = smin.min()
        smax = s.max() if vmax is None else vmax
        if isinstance(smax, ABCSeries):
            smax = smax.max()
        if align == "mid":
            smin = min(0, smin)
            smax = max(0, smax)
        elif align == "zero":
            # For "zero" mode, we want the range to be symmetrical around zero.
            smax = max(abs(smin), abs(smax))
            smin = -smax
        # Transform to percent-range of linear-gradient
        normed = width * (s.values - smin) / (smax - smin + 1e-12)
        zero = -width * smin / (smax - smin + 1e-12)

        def css_bar(start, end, color):
            """
            Generate CSS code to draw a bar from start to end.
            """
            css = "width: 10em; height: 80%;"
            if end > start:
                css += "background: linear-gradient(90deg,"
                if start > 0:
                    css += " transparent {s:.1f}%, {c} {s:.1f}%, ".format(
                        s=start, c=color
                    )
                css += "{c} {e:.1f}%, transparent {e:.1f}%)".format(
                    e=min(end, width), c=color
                )
            return css

        def css(x):
            if pd.isna(x):
                return ""

            # avoid deprecated indexing `colors[x > zero]`
            color = colors[1] if x > zero else colors[0]

            if align == "left":
                return css_bar(0, x, color)
            else:
                return css_bar(min(x, zero), max(x, zero), color)

        if s.ndim == 1:
            return [css(x) for x in normed]
        else:
            return pd.DataFrame(
                [[css(x) for x in row] for row in normed],
                index=s.index,
                columns=s.columns,
            )

    def bar(
        self,
        subset=None,
        axis=0,
        color="#d65f5f",
        width=100,
        align="left",
        vmin=None,
        vmax=None,
    ):
        """
        Draw bar chart in the cell backgrounds.

        Parameters
        ----------
        subset : IndexSlice, optional
            A valid slice for `data` to limit the style application to.
        axis : {0 or 'index', 1 or 'columns', None}, default 0
            apply to each column (``axis=0`` or ``'index'``), to each row
            (``axis=1`` or ``'columns'``), or to the entire DataFrame at once
            with ``axis=None``.
        color : str or 2-tuple/list
            If a str is passed, the color is the same for both
            negative and positive numbers. If 2-tuple/list is used, the
            first element is the color_negative and the second is the
            color_positive (eg: ['#d65f5f', '#5fba7d']).
        width : float, default 100
            A number between 0 or 100. The largest value will cover `width`
            percent of the cell's width.
        align : {'left', 'zero',' mid'}, default 'left'
            How to align the bars with the cells.

            - 'left' : the min value starts at the left of the cell.
            - 'zero' : a value of zero is located at the center of the cell.
            - 'mid' : the center of the cell is at (max-min)/2, or
              if values are all negative (positive) the zero is aligned
              at the right (left) of the cell.

              .. versionadded:: 0.20.0

        vmin : float, optional
            Minimum bar value, defining the left hand limit
            of the bar drawing range, lower values are clipped to `vmin`.
            When None (default): the minimum value of the data will be used.

            .. versionadded:: 0.24.0

        vmax : float, optional
            Maximum bar value, defining the right hand limit
            of the bar drawing range, higher values are clipped to `vmax`.
            When None (default): the maximum value of the data will be used.

            .. versionadded:: 0.24.0

        Returns
        -------
        self : Styler
        """
        if align not in ("left", "zero", "mid"):
            raise ValueError("`align` must be one of {'left', 'zero',' mid'}")

        if not (is_list_like(color)):
            color = [color, color]
        elif len(color) == 1:
            color = [color[0], color[0]]
        elif len(color) > 2:
            raise ValueError(
                "`color` must be string or a list-like"
                " of length 2: [`color_neg`, `color_pos`]"
                " (eg: color=['#d65f5f', '#5fba7d'])"
            )

        subset = _maybe_numeric_slice(self.data, subset)
        subset = _non_reducing_slice(subset)
        self.apply(
            self._bar,
            subset=subset,
            axis=axis,
            align=align,
            colors=color,
            width=width,
            vmin=vmin,
            vmax=vmax,
        )

        return self

    def highlight_max(self, subset=None, color="yellow", axis=0):
        """
        Highlight the maximum by shading the background.

        Parameters
        ----------
        subset : IndexSlice, default None
            a valid slice for ``data`` to limit the style application to.
        color : str, default 'yellow'
        axis : {0 or 'index', 1 or 'columns', None}, default 0
            apply to each column (``axis=0`` or ``'index'``), to each row
            (``axis=1`` or ``'columns'``), or to the entire DataFrame at once
            with ``axis=None``.

        Returns
        -------
        self : Styler
        """
        return self._highlight_handler(subset=subset, color=color, axis=axis, max_=True)

    def highlight_min(self, subset=None, color="yellow", axis=0):
        """
        Highlight the minimum by shading the background.

        Parameters
        ----------
        subset : IndexSlice, default None
            a valid slice for ``data`` to limit the style application to.
        color : str, default 'yellow'
        axis : {0 or 'index', 1 or 'columns', None}, default 0
            apply to each column (``axis=0`` or ``'index'``), to each row
            (``axis=1`` or ``'columns'``), or to the entire DataFrame at once
            with ``axis=None``.

        Returns
        -------
        self : Styler
        """
        return self._highlight_handler(
            subset=subset, color=color, axis=axis, max_=False
        )

    def _highlight_handler(self, subset=None, color="yellow", axis=None, max_=True):
        subset = _non_reducing_slice(_maybe_numeric_slice(self.data, subset))
        self.apply(
            self._highlight_extrema, color=color, axis=axis, subset=subset, max_=max_
        )
        return self

    @staticmethod
    def _highlight_extrema(data, color="yellow", max_=True):
        """
        Highlight the min or max in a Series or DataFrame.
        """
        attr = "background-color: {0}".format(color)
        if data.ndim == 1:  # Series from .apply
            if max_:
                extrema = data == data.max()
            else:
                extrema = data == data.min()
            return [attr if v else "" for v in extrema]
        else:  # DataFrame from .tee
            if max_:
                extrema = data == data.max().max()
            else:
                extrema = data == data.min().min()
            return pd.DataFrame(
                np.where(extrema, attr, ""), index=data.index, columns=data.columns
            )

    @classmethod
    def from_custom_template(cls, searchpath, name):
        """
        Factory function for creating a subclass of ``Styler``
        with a custom template and Jinja environment.

        Parameters
        ----------
        searchpath : str or list
            Path or paths of directories containing the templates
        name : str
            Name of your custom template to use for rendering

        Returns
        -------
        MyStyler : subclass of Styler
            Has the correct ``env`` and ``template`` class attributes set.
        """
        loader = jinja2.ChoiceLoader([jinja2.FileSystemLoader(searchpath), cls.loader])

        class MyStyler(cls):
            env = jinja2.Environment(loader=loader)
            template = env.get_template(name)

        return MyStyler

    def pipe(self, func, *args, **kwargs):
        """
        Apply ``func(self, *args, **kwargs)``, and return the result.

        .. versionadded:: 0.24.0

        Parameters
        ----------
        func : function
            Function to apply to the Styler.  Alternatively, a
            ``(callable, keyword)`` tuple where ``keyword`` is a string
            indicating the keyword of ``callable`` that expects the Styler.
        *args, **kwargs :
            Arguments passed to `func`.

        Returns
        -------
        object :
            The value returned by ``func``.

        See Also
        --------
        DataFrame.pipe : Analogous method for DataFrame.
        Styler.apply : Apply a function row-wise, column-wise, or table-wise to
            modify the dataframe's styling.

        Notes
        -----
        Like :meth:`DataFrame.pipe`, this method can simplify the
        application of several user-defined functions to a styler.  Instead
        of writing:

        .. code-block:: python

            f(g(df.style.set_precision(3), arg1=a), arg2=b, arg3=c)

        users can write:

        .. code-block:: python

            (df.style.set_precision(3)
               .pipe(g, arg1=a)
               .pipe(f, arg2=b, arg3=c))

        In particular, this allows users to define functions that take a
        styler object, along with other parameters, and return the styler after
        making styling changes (such as calling :meth:`Styler.apply` or
        :meth:`Styler.set_properties`).  Using ``.pipe``, these user-defined
        style "transformations" can be interleaved with calls to the built-in
        Styler interface.

        Examples
        --------
        >>> def format_conversion(styler):
        ...     return (styler.set_properties(**{'text-align': 'right'})
        ...                   .format({'conversion': '{:.1%}'}))

        The user-defined ``format_conversion`` function above can be called
        within a sequence of other style modifications:

        >>> df = pd.DataFrame({'trial': list(range(5)),
        ...                    'conversion': [0.75, 0.85, np.nan, 0.7, 0.72]})
        >>> (df.style
        ...    .highlight_min(subset=['conversion'], color='yellow')
        ...    .pipe(format_conversion)
        ...    .set_caption("Results with minimum conversion highlighted."))
        """
        return com._pipe(self, func, *args, **kwargs)


def _is_visible(idx_row, idx_col, lengths):
    """
    Index -> {(idx_row, idx_col): bool}).
    """
    return (idx_col, idx_row) in lengths


def _get_level_lengths(index, hidden_elements=None):
    """
    Given an index, find the level length for each element.

    Optional argument is a list of index positions which
    should not be visible.

    Result is a dictionary of (level, inital_position): span
    """
    sentinel = object()
    levels = index.format(sparsify=sentinel, adjoin=False, names=False)

    if hidden_elements is None:
        hidden_elements = []

    lengths = {}
    if index.nlevels == 1:
        for i, value in enumerate(levels):
            if i not in hidden_elements:
                lengths[(0, i)] = 1
        return lengths

    for i, lvl in enumerate(levels):
        for j, row in enumerate(lvl):
            if not get_option("display.multi_sparse"):
                lengths[(i, j)] = 1
            elif (row != sentinel) and (j not in hidden_elements):
                last_label = j
                lengths[(i, last_label)] = 1
            elif row != sentinel:
                # even if its hidden, keep track of it in case
                # length >1 and later elements are visible
                last_label = j
                lengths[(i, last_label)] = 0
            elif j not in hidden_elements:
                lengths[(i, last_label)] += 1

    non_zero_lengths = {
        element: length for element, length in lengths.items() if length >= 1
    }

    return non_zero_lengths


def _maybe_wrap_formatter(formatter):
    if is_string_like(formatter):
        return lambda x: formatter.format(x)
    elif callable(formatter):
        return formatter
    else:
        msg = (
            "Expected a template string or callable, got {formatter} "
            "instead".format(formatter=formatter)
        )
        raise TypeError(msg)