"""
Module for applying conditional formatting to
DataFrames and Series.
"""
from collections import defaultdict
from contextlib import contextmanager
import copy
from functools import partial
from itertools import product
from uuid import uuid1
import numpy as np
from pandas._config import get_option
from pandas.compat._optional import import_optional_dependency
from pandas.util._decorators import Appender
from pandas.core.dtypes.common import is_float, is_string_like
from pandas.core.dtypes.generic import ABCSeries
import pandas as pd
from pandas.api.types import is_dict_like, is_list_like
import pandas.core.common as com
from pandas.core.generic import _shared_docs
from pandas.core.indexing import _maybe_numeric_slice, _non_reducing_slice
jinja2 = import_optional_dependency("jinja2", extra="DataFrame.style requires jinja2.")
try:
import matplotlib.pyplot as plt
from matplotlib import colors
has_mpl = True
except ImportError:
has_mpl = False
no_mpl_message = "{0} requires matplotlib."
@contextmanager
def _mpl(func):
if has_mpl:
yield plt, colors
else:
raise ImportError(no_mpl_message.format(func.__name__))
class Styler:
"""
Helps style a DataFrame or Series according to the data with HTML and CSS.
Parameters
----------
data : Series or DataFrame
precision : int
precision to round floats to, defaults to pd.options.display.precision
table_styles : list-like, default None
list of {selector: (attr, value)} dicts; see Notes
uuid : str, default None
a unique identifier to avoid CSS collisions; generated automatically
caption : str, default None
caption to attach to the table
cell_ids : bool, default True
If True, each cell will have an ``id`` attribute in their HTML tag.
The ``id`` takes the form ``T_<uuid>_row<num_row>_col<num_col>``
where ``<uuid>`` is the unique identifier, ``<num_row>`` is the row
number and ``<num_col>`` is the column number.
Attributes
----------
env : Jinja2 jinja2.Environment
template : Jinja2 Template
loader : Jinja2 Loader
See Also
--------
DataFrame.style
Notes
-----
Most styling will be done by passing style functions into
``Styler.apply`` or ``Styler.applymap``. Style functions should
return values with strings containing CSS ``'attr: value'`` that will
be applied to the indicated cells.
If using in the Jupyter notebook, Styler has defined a ``_repr_html_``
to automatically render itself. Otherwise call Styler.render to get
the generated HTML.
CSS classes are attached to the generated HTML
* Index and Column names include ``index_name`` and ``level<k>``
where `k` is its level in a MultiIndex
* Index label cells include
* ``row_heading``
* ``row<n>`` where `n` is the numeric position of the row
* ``level<k>`` where `k` is the level in a MultiIndex
* Column label cells include
* ``col_heading``
* ``col<n>`` where `n` is the numeric position of the column
* ``evel<k>`` where `k` is the level in a MultiIndex
* Blank cells include ``blank``
* Data cells include ``data``
"""
loader = jinja2.PackageLoader("pandas", "io/formats/templates")
env = jinja2.Environment(loader=loader, trim_blocks=True)
template = env.get_template("html.tpl")
def __init__(
self,
data,
precision=None,
table_styles=None,
uuid=None,
caption=None,
table_attributes=None,
cell_ids=True,
):
self.ctx = defaultdict(list)
self._todo = []
if not isinstance(data, (pd.Series, pd.DataFrame)):
raise TypeError("``data`` must be a Series or DataFrame")
if data.ndim == 1:
data = data.to_frame()
if not data.index.is_unique or not data.columns.is_unique:
raise ValueError("style is not supported for non-unique indices.")
self.data = data
self.index = data.index
self.columns = data.columns
self.uuid = uuid
self.table_styles = table_styles
self.caption = caption
if precision is None:
precision = get_option("display.precision")
self.precision = precision
self.table_attributes = table_attributes
self.hidden_index = False
self.hidden_columns = []
self.cell_ids = cell_ids
# display_funcs maps (row, col) -> formatting function
def default_display_func(x):
if is_float(x):
return "{:>.{precision}g}".format(x, precision=self.precision)
else:
return x
self._display_funcs = defaultdict(lambda: default_display_func)
def _repr_html_(self):
"""
Hooks into Jupyter notebook rich display system.
"""
return self.render()
@Appender(
_shared_docs["to_excel"]
% dict(
axes="index, columns",
klass="Styler",
axes_single_arg="{0 or 'index', 1 or 'columns'}",
optional_by="""
by : str or list of str
Name or list of names which refer to the axis items.""",
versionadded_to_excel="\n .. versionadded:: 0.20",
)
)
def to_excel(
self,
excel_writer,
sheet_name="Sheet1",
na_rep="",
float_format=None,
columns=None,
header=True,
index=True,
index_label=None,
startrow=0,
startcol=0,
engine=None,
merge_cells=True,
encoding=None,
inf_rep="inf",
verbose=True,
freeze_panes=None,
):
from pandas.io.formats.excel import ExcelFormatter
formatter = ExcelFormatter(
self,
na_rep=na_rep,
cols=columns,
header=header,
float_format=float_format,
index=index,
index_label=index_label,
merge_cells=merge_cells,
inf_rep=inf_rep,
)
formatter.write(
excel_writer,
sheet_name=sheet_name,
startrow=startrow,
startcol=startcol,
freeze_panes=freeze_panes,
engine=engine,
)
def _translate(self):
"""
Convert the DataFrame in `self.data` and the attrs from `_build_styles`
into a dictionary of {head, body, uuid, cellstyle}.
"""
table_styles = self.table_styles or []
caption = self.caption
ctx = self.ctx
precision = self.precision
hidden_index = self.hidden_index
hidden_columns = self.hidden_columns
uuid = self.uuid or str(uuid1()).replace("-", "_")
ROW_HEADING_CLASS = "row_heading"
COL_HEADING_CLASS = "col_heading"
INDEX_NAME_CLASS = "index_name"
DATA_CLASS = "data"
BLANK_CLASS = "blank"
BLANK_VALUE = ""
def format_attr(pair):
return "{key}={value}".format(**pair)
# for sparsifying a MultiIndex
idx_lengths = _get_level_lengths(self.index)
col_lengths = _get_level_lengths(self.columns, hidden_columns)
cell_context = dict()
n_rlvls = self.data.index.nlevels
n_clvls = self.data.columns.nlevels
rlabels = self.data.index.tolist()
clabels = self.data.columns.tolist()
if n_rlvls == 1:
rlabels = [[x] for x in rlabels]
if n_clvls == 1:
clabels = [[x] for x in clabels]
clabels = list(zip(*clabels))
cellstyle = []
head = []
for r in range(n_clvls):
# Blank for Index columns...
row_es = [
{
"type": "th",
"value": BLANK_VALUE,
"display_value": BLANK_VALUE,
"is_visible": not hidden_index,
"class": " ".join([BLANK_CLASS]),
}
] * (n_rlvls - 1)
# ... except maybe the last for columns.names
name = self.data.columns.names[r]
cs = [
BLANK_CLASS if name is None else INDEX_NAME_CLASS,
"level{lvl}".format(lvl=r),
]
name = BLANK_VALUE if name is None else name
row_es.append(
{
"type": "th",
"value": name,
"display_value": name,
"class": " ".join(cs),
"is_visible": not hidden_index,
}
)
if clabels:
for c, value in enumerate(clabels[r]):
cs = [
COL_HEADING_CLASS,
"level{lvl}".format(lvl=r),
"col{col}".format(col=c),
]
cs.extend(
cell_context.get("col_headings", {}).get(r, {}).get(c, [])
)
es = {
"type": "th",
"value": value,
"display_value": value,
"class": " ".join(cs),
"is_visible": _is_visible(c, r, col_lengths),
}
colspan = col_lengths.get((r, c), 0)
if colspan > 1:
es["attributes"] = [
format_attr({"key": "colspan", "value": colspan})
]
row_es.append(es)
head.append(row_es)
if (
self.data.index.names
and com._any_not_none(*self.data.index.names)
and not hidden_index
):
index_header_row = []
for c, name in enumerate(self.data.index.names):
cs = [INDEX_NAME_CLASS, "level{lvl}".format(lvl=c)]
name = "" if name is None else name
index_header_row.append(
{"type": "th", "value": name, "class": " ".join(cs)}
)
index_header_row.extend(
[{"type": "th", "value": BLANK_VALUE, "class": " ".join([BLANK_CLASS])}]
* (len(clabels[0]) - len(hidden_columns))
)
head.append(index_header_row)
body = []
for r, idx in enumerate(self.data.index):
row_es = []
for c, value in enumerate(rlabels[r]):
rid = [
ROW_HEADING_CLASS,
"level{lvl}".format(lvl=c),
"row{row}".format(row=r),
]
es = {
"type": "th",
"is_visible": (_is_visible(r, c, idx_lengths) and not hidden_index),
"value": value,
"display_value": value,
"id": "_".join(rid[1:]),
"class": " ".join(rid),
}
rowspan = idx_lengths.get((c, r), 0)
if rowspan > 1:
es["attributes"] = [
format_attr({"key": "rowspan", "value": rowspan})
]
row_es.append(es)
for c, col in enumerate(self.data.columns):
cs = [DATA_CLASS, "row{row}".format(row=r), "col{col}".format(col=c)]
cs.extend(cell_context.get("data", {}).get(r, {}).get(c, []))
formatter = self._display_funcs[(r, c)]
value = self.data.iloc[r, c]
row_dict = {
"type": "td",
"value": value,
"class": " ".join(cs),
"display_value": formatter(value),
"is_visible": (c not in hidden_columns),
}
# only add an id if the cell has a style
if self.cell_ids or not (len(ctx[r, c]) == 1 and ctx[r, c][0] == ""):
row_dict["id"] = "_".join(cs[1:])
row_es.append(row_dict)
props = []
for x in ctx[r, c]:
# have to handle empty styles like ['']
if x.count(":"):
props.append(x.split(":"))
else:
props.append(["", ""])
cellstyle.append(
{
"props": props,
"selector": "row{row}_col{col}".format(row=r, col=c),
}
)
body.append(row_es)
table_attr = self.table_attributes
use_mathjax = get_option("display.html.use_mathjax")
if not use_mathjax:
table_attr = table_attr or ""
if 'class="' in table_attr:
table_attr = table_attr.replace('class="', 'class="tex2jax_ignore ')
else:
table_attr += ' class="tex2jax_ignore"'
return dict(
head=head,
cellstyle=cellstyle,
body=body,
uuid=uuid,
precision=precision,
table_styles=table_styles,
caption=caption,
table_attributes=table_attr,
)
def format(self, formatter, subset=None):
"""
Format the text display value of cells.
.. versionadded:: 0.18.0
Parameters
----------
formatter : str, callable, or dict
subset : IndexSlice
An argument to ``DataFrame.loc`` that restricts which elements
``formatter`` is applied to.
Returns
-------
self : Styler
Notes
-----
``formatter`` is either an ``a`` or a dict ``{column name: a}`` where
``a`` is one of
- str: this will be wrapped in: ``a.format(x)``
- callable: called with the value of an individual cell
The default display value for numeric values is the "general" (``g``)
format with ``pd.options.display.precision`` precision.
Examples
--------
>>> df = pd.DataFrame(np.random.randn(4, 2), columns=['a', 'b'])
>>> df.style.format("{:.2%}")
>>> df['c'] = ['a', 'b', 'c', 'd']
>>> df.style.format({'c': str.upper})
"""
if subset is None:
row_locs = range(len(self.data))
col_locs = range(len(self.data.columns))
else:
subset = _non_reducing_slice(subset)
if len(subset) == 1:
subset = subset, self.data.columns
sub_df = self.data.loc[subset]
row_locs = self.data.index.get_indexer_for(sub_df.index)
col_locs = self.data.columns.get_indexer_for(sub_df.columns)
if is_dict_like(formatter):
for col, col_formatter in formatter.items():
# formatter must be callable, so '{}' are converted to lambdas
col_formatter = _maybe_wrap_formatter(col_formatter)
col_num = self.data.columns.get_indexer_for([col])[0]
for row_num in row_locs:
self._display_funcs[(row_num, col_num)] = col_formatter
else:
# single scalar to format all cells with
locs = product(*(row_locs, col_locs))
for i, j in locs:
formatter = _maybe_wrap_formatter(formatter)
self._display_funcs[(i, j)] = formatter
return self
def render(self, **kwargs):
"""
Render the built up styles to HTML.
Parameters
----------
**kwargs
Any additional keyword arguments are passed
through to ``self.template.render``.
This is useful when you need to provide
additional variables for a custom template.
.. versionadded:: 0.20
Returns
-------
rendered : str
The rendered HTML.
Notes
-----
``Styler`` objects have defined the ``_repr_html_`` method
which automatically calls ``self.render()`` when it's the
last item in a Notebook cell. When calling ``Styler.render()``
directly, wrap the result in ``IPython.display.HTML`` to view
the rendered HTML in the notebook.
Pandas uses the following keys in render. Arguments passed
in ``**kwargs`` take precedence, so think carefully if you want
to override them:
* head
* cellstyle
* body
* uuid
* precision
* table_styles
* caption
* table_attributes
"""
self._compute()
# TODO: namespace all the pandas keys
d = self._translate()
# filter out empty styles, every cell will have a class
# but the list of props may just be [['', '']].
# so we have the neested anys below
trimmed = [x for x in d["cellstyle"] if any(any(y) for y in x["props"])]
d["cellstyle"] = trimmed
d.update(kwargs)
return self.template.render(**d)
def _update_ctx(self, attrs):
"""
Update the state of the Styler.
Collects a mapping of {index_label: ['<property>: <value>']}.
attrs : Series or DataFrame
should contain strings of '<property>: <value>;<prop2>: <val2>'
Whitespace shouldn't matter and the final trailing ';' shouldn't
matter.
"""
for row_label, v in attrs.iterrows():
for col_label, col in v.items():
i = self.index.get_indexer([row_label])[0]
j = self.columns.get_indexer([col_label])[0]
for pair in col.rstrip(";").split(";"):
self.ctx[(i, j)].append(pair)
def _copy(self, deepcopy=False):
styler = Styler(
self.data,
precision=self.precision,
caption=self.caption,
uuid=self.uuid,
table_styles=self.table_styles,
)
if deepcopy:
styler.ctx = copy.deepcopy(self.ctx)
styler._todo = copy.deepcopy(self._todo)
else:
styler.ctx = self.ctx
styler._todo = self._todo
return styler
def __copy__(self):
"""
Deep copy by default.
"""
return self._copy(deepcopy=False)
def __deepcopy__(self, memo):
return self._copy(deepcopy=True)
def clear(self):
"""
Reset the styler, removing any previously applied styles.
Returns None.
"""
self.ctx.clear()
self._todo = []
def _compute(self):
"""
Execute the style functions built up in `self._todo`.
Relies on the conventions that all style functions go through
.apply or .applymap. The append styles to apply as tuples of
(application method, *args, **kwargs)
"""
r = self
for func, args, kwargs in self._todo:
r = func(self)(*args, **kwargs)
return r
def _apply(self, func, axis=0, subset=None, **kwargs):
subset = slice(None) if subset is None else subset
subset = _non_reducing_slice(subset)
data = self.data.loc[subset]
if axis is not None:
result = data.apply(func, axis=axis, result_type="expand", **kwargs)
result.columns = data.columns
else:
result = func(data, **kwargs)
if not isinstance(result, pd.DataFrame):
raise TypeError(
"Function {func!r} must return a DataFrame when "
"passed to `Styler.apply` with axis=None".format(func=func)
)
if not (
result.index.equals(data.index) and result.columns.equals(data.columns)
):
msg = (
"Result of {func!r} must have identical index and "
"columns as the input".format(func=func)
)
raise ValueError(msg)
result_shape = result.shape
expected_shape = self.data.loc[subset].shape
if result_shape != expected_shape:
msg = (
"Function {func!r} returned the wrong shape.\n"
"Result has shape: {res}\n"
"Expected shape: {expect}".format(
func=func, res=result.shape, expect=expected_shape
)
)
raise ValueError(msg)
self._update_ctx(result)
return self
def apply(self, func, axis=0, subset=None, **kwargs):
"""
Apply a function column-wise, row-wise, or table-wise,
updating the HTML representation with the result.
Parameters
----------
func : function
``func`` should take a Series or DataFrame (depending
on ``axis``), and return an object with the same shape.
Must return a DataFrame with identical index and
column labels when ``axis=None``
axis : {0 or 'index', 1 or 'columns', None}, default 0
apply to each column (``axis=0`` or ``'index'``), to each row
(``axis=1`` or ``'columns'``), or to the entire DataFrame at once
with ``axis=None``.
subset : IndexSlice
a valid indexer to limit ``data`` to *before* applying the
function. Consider using a pandas.IndexSlice
kwargs : dict
pass along to ``func``
Returns
-------
self : Styler
Notes
-----
The output shape of ``func`` should match the input, i.e. if
``x`` is the input row, column, or table (depending on ``axis``),
then ``func(x).shape == x.shape`` should be true.
This is similar to ``DataFrame.apply``, except that ``axis=None``
applies the function to the entire DataFrame at once,
rather than column-wise or row-wise.
Examples
--------
>>> def highlight_max(x):
... return ['background-color: yellow' if v == x.max() else ''
for v in x]
...
>>> df = pd.DataFrame(np.random.randn(5, 2))
>>> df.style.apply(highlight_max)
"""
self._todo.append(
(lambda instance: getattr(instance, "_apply"), (func, axis, subset), kwargs)
)
return self
def _applymap(self, func, subset=None, **kwargs):
func = partial(func, **kwargs) # applymap doesn't take kwargs?
if subset is None:
subset = pd.IndexSlice[:]
subset = _non_reducing_slice(subset)
result = self.data.loc[subset].applymap(func)
self._update_ctx(result)
return self
def applymap(self, func, subset=None, **kwargs):
"""
Apply a function elementwise, updating the HTML
representation with the result.
Parameters
----------
func : function
``func`` should take a scalar and return a scalar
subset : IndexSlice
a valid indexer to limit ``data`` to *before* applying the
function. Consider using a pandas.IndexSlice
kwargs : dict
pass along to ``func``
Returns
-------
self : Styler
See Also
--------
Styler.where
"""
self._todo.append(
(lambda instance: getattr(instance, "_applymap"), (func, subset), kwargs)
)
return self
def where(self, cond, value, other=None, subset=None, **kwargs):
"""
Apply a function elementwise, updating the HTML
representation with a style which is selected in
accordance with the return value of a function.
.. versionadded:: 0.21.0
Parameters
----------
cond : callable
``cond`` should take a scalar and return a boolean
value : str
applied when ``cond`` returns true
other : str
applied when ``cond`` returns false
subset : IndexSlice
a valid indexer to limit ``data`` to *before* applying the
function. Consider using a pandas.IndexSlice
kwargs : dict
pass along to ``cond``
Returns
-------
self : Styler
See Also
--------
Styler.applymap
"""
if other is None:
other = ""
return self.applymap(
lambda val: value if cond(val) else other, subset=subset, **kwargs
)
def set_precision(self, precision):
"""
Set the precision used to render.
Parameters
----------
precision : int
Returns
-------
self : Styler
"""
self.precision = precision
return self
def set_table_attributes(self, attributes):
"""
Set the table attributes.
These are the items that show up in the opening ``<table>`` tag
in addition to to automatic (by default) id.
Parameters
----------
attributes : string
Returns
-------
self : Styler
Examples
--------
>>> df = pd.DataFrame(np.random.randn(10, 4))
>>> df.style.set_table_attributes('class="pure-table"')
# ... <table class="pure-table"> ...
"""
self.table_attributes = attributes
return self
def export(self):
"""
Export the styles to applied to the current Styler.
Can be applied to a second style with ``Styler.use``.
Returns
-------
styles : list
See Also
--------
Styler.use
"""
return self._todo
def use(self, styles):
"""
Set the styles on the current Styler, possibly using styles
from ``Styler.export``.
Parameters
----------
styles : list
list of style functions
Returns
-------
self : Styler
See Also
--------
Styler.export
"""
self._todo.extend(styles)
return self
def set_uuid(self, uuid):
"""
Set the uuid for a Styler.
Parameters
----------
uuid : str
Returns
-------
self : Styler
"""
self.uuid = uuid
return self
def set_caption(self, caption):
"""
Set the caption on a Styler
Parameters
----------
caption : str
Returns
-------
self : Styler
"""
self.caption = caption
return self
def set_table_styles(self, table_styles):
"""
Set the table styles on a Styler.
These are placed in a ``<style>`` tag before the generated HTML table.
Parameters
----------
table_styles : list
Each individual table_style should be a dictionary with
``selector`` and ``props`` keys. ``selector`` should be a CSS
selector that the style will be applied to (automatically
prefixed by the table's UUID) and ``props`` should be a list of
tuples with ``(attribute, value)``.
Returns
-------
self : Styler
Examples
--------
>>> df = pd.DataFrame(np.random.randn(10, 4))
>>> df.style.set_table_styles(
... [{'selector': 'tr:hover',
... 'props': [('background-color', 'yellow')]}]
... )
"""
self.table_styles = table_styles
return self
def hide_index(self):
"""
Hide any indices from rendering.
.. versionadded:: 0.23.0
Returns
-------
self : Styler
"""
self.hidden_index = True
return self
def hide_columns(self, subset):
"""
Hide columns from rendering.
.. versionadded:: 0.23.0
Parameters
----------
subset : IndexSlice
An argument to ``DataFrame.loc`` that identifies which columns
are hidden.
Returns
-------
self : Styler
"""
subset = _non_reducing_slice(subset)
hidden_df = self.data.loc[subset]
self.hidden_columns = self.columns.get_indexer_for(hidden_df.columns)
return self
# -----------------------------------------------------------------------
# A collection of "builtin" styles
# -----------------------------------------------------------------------
@staticmethod
def _highlight_null(v, null_color):
return (
"background-color: {color}".format(color=null_color) if pd.isna(v) else ""
)
def highlight_null(self, null_color="red"):
"""
Shade the background ``null_color`` for missing values.
Parameters
----------
null_color : str
Returns
-------
self : Styler
"""
self.applymap(self._highlight_null, null_color=null_color)
return self
def background_gradient(
self,
cmap="PuBu",
low=0,
high=0,
axis=0,
subset=None,
text_color_threshold=0.408,
):
"""
Color the background in a gradient according to
the data in each column (optionally row).
Requires matplotlib.
Parameters
----------
cmap : str or colormap
matplotlib colormap
low, high : float
compress the range by these values.
axis : {0 or 'index', 1 or 'columns', None}, default 0
apply to each column (``axis=0`` or ``'index'``), to each row
(``axis=1`` or ``'columns'``), or to the entire DataFrame at once
with ``axis=None``.
subset : IndexSlice
a valid slice for ``data`` to limit the style application to.
text_color_threshold : float or int
luminance threshold for determining text color. Facilitates text
visibility across varying background colors. From 0 to 1.
0 = all text is dark colored, 1 = all text is light colored.
.. versionadded:: 0.24.0
Returns
-------
self : Styler
Raises
------
ValueError
If ``text_color_threshold`` is not a value from 0 to 1.
Notes
-----
Set ``text_color_threshold`` or tune ``low`` and ``high`` to keep the
text legible by not using the entire range of the color map. The range
of the data is extended by ``low * (x.max() - x.min())`` and ``high *
(x.max() - x.min())`` before normalizing.
"""
subset = _maybe_numeric_slice(self.data, subset)
subset = _non_reducing_slice(subset)
self.apply(
self._background_gradient,
cmap=cmap,
subset=subset,
axis=axis,
low=low,
high=high,
text_color_threshold=text_color_threshold,
)
return self
@staticmethod
def _background_gradient(s, cmap="PuBu", low=0, high=0, text_color_threshold=0.408):
"""
Color background in a range according to the data.
"""
if (
not isinstance(text_color_threshold, (float, int))
or not 0 <= text_color_threshold <= 1
):
msg = "`text_color_threshold` must be a value from 0 to 1."
raise ValueError(msg)
with _mpl(Styler.background_gradient) as (plt, colors):
smin = s.values.min()
smax = s.values.max()
rng = smax - smin
# extend lower / upper bounds, compresses color range
norm = colors.Normalize(smin - (rng * low), smax + (rng * high))
# matplotlib colors.Normalize modifies inplace?
# https://github.com/matplotlib/matplotlib/issues/5427
rgbas = plt.cm.get_cmap(cmap)(norm(s.values))
def relative_luminance(rgba):
"""
Calculate relative luminance of a color.
The calculation adheres to the W3C standards
(https://www.w3.org/WAI/GL/wiki/Relative_luminance)
Parameters
----------
color : rgb or rgba tuple
Returns
-------
float
The relative luminance as a value from 0 to 1
"""
r, g, b = (
x / 12.92 if x <= 0.03928 else ((x + 0.055) / 1.055 ** 2.4)
for x in rgba[:3]
)
return 0.2126 * r + 0.7152 * g + 0.0722 * b
def css(rgba):
dark = relative_luminance(rgba) < text_color_threshold
text_color = "#f1f1f1" if dark else "#000000"
return "background-color: {b};color: {c};".format(
b=colors.rgb2hex(rgba), c=text_color
)
if s.ndim == 1:
return [css(rgba) for rgba in rgbas]
else:
return pd.DataFrame(
[[css(rgba) for rgba in row] for row in rgbas],
index=s.index,
columns=s.columns,
)
def set_properties(self, subset=None, **kwargs):
"""
Convenience method for setting one or more non-data dependent
properties or each cell.
Parameters
----------
subset : IndexSlice
a valid slice for ``data`` to limit the style application to
kwargs : dict
property: value pairs to be set for each cell
Returns
-------
self : Styler
Examples
--------
>>> df = pd.DataFrame(np.random.randn(10, 4))
>>> df.style.set_properties(color="white", align="right")
>>> df.style.set_properties(**{'background-color': 'yellow'})
"""
values = ";".join("{p}: {v}".format(p=p, v=v) for p, v in kwargs.items())
f = lambda x: values
return self.applymap(f, subset=subset)
@staticmethod
def _bar(s, align, colors, width=100, vmin=None, vmax=None):
"""
Draw bar chart in dataframe cells.
"""
# Get input value range.
smin = s.min() if vmin is None else vmin
if isinstance(smin, ABCSeries):
smin = smin.min()
smax = s.max() if vmax is None else vmax
if isinstance(smax, ABCSeries):
smax = smax.max()
if align == "mid":
smin = min(0, smin)
smax = max(0, smax)
elif align == "zero":
# For "zero" mode, we want the range to be symmetrical around zero.
smax = max(abs(smin), abs(smax))
smin = -smax
# Transform to percent-range of linear-gradient
normed = width * (s.values - smin) / (smax - smin + 1e-12)
zero = -width * smin / (smax - smin + 1e-12)
def css_bar(start, end, color):
"""
Generate CSS code to draw a bar from start to end.
"""
css = "width: 10em; height: 80%;"
if end > start:
css += "background: linear-gradient(90deg,"
if start > 0:
css += " transparent {s:.1f}%, {c} {s:.1f}%, ".format(
s=start, c=color
)
css += "{c} {e:.1f}%, transparent {e:.1f}%)".format(
e=min(end, width), c=color
)
return css
def css(x):
if pd.isna(x):
return ""
# avoid deprecated indexing `colors[x > zero]`
color = colors[1] if x > zero else colors[0]
if align == "left":
return css_bar(0, x, color)
else:
return css_bar(min(x, zero), max(x, zero), color)
if s.ndim == 1:
return [css(x) for x in normed]
else:
return pd.DataFrame(
[[css(x) for x in row] for row in normed],
index=s.index,
columns=s.columns,
)
def bar(
self,
subset=None,
axis=0,
color="#d65f5f",
width=100,
align="left",
vmin=None,
vmax=None,
):
"""
Draw bar chart in the cell backgrounds.
Parameters
----------
subset : IndexSlice, optional
A valid slice for `data` to limit the style application to.
axis : {0 or 'index', 1 or 'columns', None}, default 0
apply to each column (``axis=0`` or ``'index'``), to each row
(``axis=1`` or ``'columns'``), or to the entire DataFrame at once
with ``axis=None``.
color : str or 2-tuple/list
If a str is passed, the color is the same for both
negative and positive numbers. If 2-tuple/list is used, the
first element is the color_negative and the second is the
color_positive (eg: ['#d65f5f', '#5fba7d']).
width : float, default 100
A number between 0 or 100. The largest value will cover `width`
percent of the cell's width.
align : {'left', 'zero',' mid'}, default 'left'
How to align the bars with the cells.
- 'left' : the min value starts at the left of the cell.
- 'zero' : a value of zero is located at the center of the cell.
- 'mid' : the center of the cell is at (max-min)/2, or
if values are all negative (positive) the zero is aligned
at the right (left) of the cell.
.. versionadded:: 0.20.0
vmin : float, optional
Minimum bar value, defining the left hand limit
of the bar drawing range, lower values are clipped to `vmin`.
When None (default): the minimum value of the data will be used.
.. versionadded:: 0.24.0
vmax : float, optional
Maximum bar value, defining the right hand limit
of the bar drawing range, higher values are clipped to `vmax`.
When None (default): the maximum value of the data will be used.
.. versionadded:: 0.24.0
Returns
-------
self : Styler
"""
if align not in ("left", "zero", "mid"):
raise ValueError("`align` must be one of {'left', 'zero',' mid'}")
if not (is_list_like(color)):
color = [color, color]
elif len(color) == 1:
color = [color[0], color[0]]
elif len(color) > 2:
raise ValueError(
"`color` must be string or a list-like"
" of length 2: [`color_neg`, `color_pos`]"
" (eg: color=['#d65f5f', '#5fba7d'])"
)
subset = _maybe_numeric_slice(self.data, subset)
subset = _non_reducing_slice(subset)
self.apply(
self._bar,
subset=subset,
axis=axis,
align=align,
colors=color,
width=width,
vmin=vmin,
vmax=vmax,
)
return self
def highlight_max(self, subset=None, color="yellow", axis=0):
"""
Highlight the maximum by shading the background.
Parameters
----------
subset : IndexSlice, default None
a valid slice for ``data`` to limit the style application to.
color : str, default 'yellow'
axis : {0 or 'index', 1 or 'columns', None}, default 0
apply to each column (``axis=0`` or ``'index'``), to each row
(``axis=1`` or ``'columns'``), or to the entire DataFrame at once
with ``axis=None``.
Returns
-------
self : Styler
"""
return self._highlight_handler(subset=subset, color=color, axis=axis, max_=True)
def highlight_min(self, subset=None, color="yellow", axis=0):
"""
Highlight the minimum by shading the background.
Parameters
----------
subset : IndexSlice, default None
a valid slice for ``data`` to limit the style application to.
color : str, default 'yellow'
axis : {0 or 'index', 1 or 'columns', None}, default 0
apply to each column (``axis=0`` or ``'index'``), to each row
(``axis=1`` or ``'columns'``), or to the entire DataFrame at once
with ``axis=None``.
Returns
-------
self : Styler
"""
return self._highlight_handler(
subset=subset, color=color, axis=axis, max_=False
)
def _highlight_handler(self, subset=None, color="yellow", axis=None, max_=True):
subset = _non_reducing_slice(_maybe_numeric_slice(self.data, subset))
self.apply(
self._highlight_extrema, color=color, axis=axis, subset=subset, max_=max_
)
return self
@staticmethod
def _highlight_extrema(data, color="yellow", max_=True):
"""
Highlight the min or max in a Series or DataFrame.
"""
attr = "background-color: {0}".format(color)
if data.ndim == 1: # Series from .apply
if max_:
extrema = data == data.max()
else:
extrema = data == data.min()
return [attr if v else "" for v in extrema]
else: # DataFrame from .tee
if max_:
extrema = data == data.max().max()
else:
extrema = data == data.min().min()
return pd.DataFrame(
np.where(extrema, attr, ""), index=data.index, columns=data.columns
)
@classmethod
def from_custom_template(cls, searchpath, name):
"""
Factory function for creating a subclass of ``Styler``
with a custom template and Jinja environment.
Parameters
----------
searchpath : str or list
Path or paths of directories containing the templates
name : str
Name of your custom template to use for rendering
Returns
-------
MyStyler : subclass of Styler
Has the correct ``env`` and ``template`` class attributes set.
"""
loader = jinja2.ChoiceLoader([jinja2.FileSystemLoader(searchpath), cls.loader])
class MyStyler(cls):
env = jinja2.Environment(loader=loader)
template = env.get_template(name)
return MyStyler
def pipe(self, func, *args, **kwargs):
"""
Apply ``func(self, *args, **kwargs)``, and return the result.
.. versionadded:: 0.24.0
Parameters
----------
func : function
Function to apply to the Styler. Alternatively, a
``(callable, keyword)`` tuple where ``keyword`` is a string
indicating the keyword of ``callable`` that expects the Styler.
*args, **kwargs :
Arguments passed to `func`.
Returns
-------
object :
The value returned by ``func``.
See Also
--------
DataFrame.pipe : Analogous method for DataFrame.
Styler.apply : Apply a function row-wise, column-wise, or table-wise to
modify the dataframe's styling.
Notes
-----
Like :meth:`DataFrame.pipe`, this method can simplify the
application of several user-defined functions to a styler. Instead
of writing:
.. code-block:: python
f(g(df.style.set_precision(3), arg1=a), arg2=b, arg3=c)
users can write:
.. code-block:: python
(df.style.set_precision(3)
.pipe(g, arg1=a)
.pipe(f, arg2=b, arg3=c))
In particular, this allows users to define functions that take a
styler object, along with other parameters, and return the styler after
making styling changes (such as calling :meth:`Styler.apply` or
:meth:`Styler.set_properties`). Using ``.pipe``, these user-defined
style "transformations" can be interleaved with calls to the built-in
Styler interface.
Examples
--------
>>> def format_conversion(styler):
... return (styler.set_properties(**{'text-align': 'right'})
... .format({'conversion': '{:.1%}'}))
The user-defined ``format_conversion`` function above can be called
within a sequence of other style modifications:
>>> df = pd.DataFrame({'trial': list(range(5)),
... 'conversion': [0.75, 0.85, np.nan, 0.7, 0.72]})
>>> (df.style
... .highlight_min(subset=['conversion'], color='yellow')
... .pipe(format_conversion)
... .set_caption("Results with minimum conversion highlighted."))
"""
return com._pipe(self, func, *args, **kwargs)
def _is_visible(idx_row, idx_col, lengths):
"""
Index -> {(idx_row, idx_col): bool}).
"""
return (idx_col, idx_row) in lengths
def _get_level_lengths(index, hidden_elements=None):
"""
Given an index, find the level length for each element.
Optional argument is a list of index positions which
should not be visible.
Result is a dictionary of (level, inital_position): span
"""
sentinel = object()
levels = index.format(sparsify=sentinel, adjoin=False, names=False)
if hidden_elements is None:
hidden_elements = []
lengths = {}
if index.nlevels == 1:
for i, value in enumerate(levels):
if i not in hidden_elements:
lengths[(0, i)] = 1
return lengths
for i, lvl in enumerate(levels):
for j, row in enumerate(lvl):
if not get_option("display.multi_sparse"):
lengths[(i, j)] = 1
elif (row != sentinel) and (j not in hidden_elements):
last_label = j
lengths[(i, last_label)] = 1
elif row != sentinel:
# even if its hidden, keep track of it in case
# length >1 and later elements are visible
last_label = j
lengths[(i, last_label)] = 0
elif j not in hidden_elements:
lengths[(i, last_label)] += 1
non_zero_lengths = {
element: length for element, length in lengths.items() if length >= 1
}
return non_zero_lengths
def _maybe_wrap_formatter(formatter):
if is_string_like(formatter):
return lambda x: formatter.format(x)
elif callable(formatter):
return formatter
else:
msg = (
"Expected a template string or callable, got {formatter} "
"instead".format(formatter=formatter)
)
raise TypeError(msg)