import re
from typing import Optional # noqa
import warnings
import numpy as np
from pandas._config import get_option
from pandas.errors import AbstractMethodError
from pandas.util._decorators import cache_readonly
from pandas.core.dtypes.common import (
is_hashable,
is_integer,
is_iterator,
is_list_like,
is_number,
)
from pandas.core.dtypes.generic import (
ABCDataFrame,
ABCIndexClass,
ABCMultiIndex,
ABCPeriodIndex,
ABCSeries,
)
from pandas.core.dtypes.missing import isna, notna
import pandas.core.common as com
from pandas.io.formats.printing import pprint_thing
from pandas.plotting._matplotlib import converter
from pandas.plotting._matplotlib.compat import _mpl_ge_3_0_0
from pandas.plotting._matplotlib.style import _get_standard_colors
from pandas.plotting._matplotlib.tools import (
_flatten,
_get_all_lines,
_get_xlim,
_handle_shared_axes,
_subplots,
format_date_labels,
table,
)
if get_option("plotting.matplotlib.register_converters"):
converter.register(explicit=False)
class MPLPlot:
"""
Base class for assembling a pandas plot using matplotlib
Parameters
----------
data :
"""
@property
def _kind(self):
"""Specify kind str. Must be overridden in child class"""
raise NotImplementedError
_layout_type = "vertical"
_default_rot = 0
orientation = None # type: Optional[str]
_pop_attributes = [
"label",
"style",
"logy",
"logx",
"loglog",
"mark_right",
"stacked",
]
_attr_defaults = {
"logy": False,
"logx": False,
"loglog": False,
"mark_right": True,
"stacked": False,
}
def __init__(
self,
data,
kind=None,
by=None,
subplots=False,
sharex=None,
sharey=False,
use_index=True,
figsize=None,
grid=None,
legend=True,
rot=None,
ax=None,
fig=None,
title=None,
xlim=None,
ylim=None,
xticks=None,
yticks=None,
sort_columns=False,
fontsize=None,
secondary_y=False,
colormap=None,
table=False,
layout=None,
**kwds
):
import matplotlib.pyplot as plt
converter._WARN = False # no warning for pandas plots
self.data = data
self.by = by
self.kind = kind
self.sort_columns = sort_columns
self.subplots = subplots
if sharex is None:
if ax is None:
self.sharex = True
else:
# if we get an axis, the users should do the visibility
# setting...
self.sharex = False
else:
self.sharex = sharex
self.sharey = sharey
self.figsize = figsize
self.layout = layout
self.xticks = xticks
self.yticks = yticks
self.xlim = xlim
self.ylim = ylim
self.title = title
self.use_index = use_index
self.fontsize = fontsize
if rot is not None:
self.rot = rot
# need to know for format_date_labels since it's rotated to 30 by
# default
self._rot_set = True
else:
self._rot_set = False
self.rot = self._default_rot
if grid is None:
grid = False if secondary_y else plt.rcParams["axes.grid"]
self.grid = grid
self.legend = legend
self.legend_handles = []
self.legend_labels = []
for attr in self._pop_attributes:
value = kwds.pop(attr, self._attr_defaults.get(attr, None))
setattr(self, attr, value)
self.ax = ax
self.fig = fig
self.axes = None
# parse errorbar input if given
xerr = kwds.pop("xerr", None)
yerr = kwds.pop("yerr", None)
self.errors = {
kw: self._parse_errorbars(kw, err)
for kw, err in zip(["xerr", "yerr"], [xerr, yerr])
}
if not isinstance(secondary_y, (bool, tuple, list, np.ndarray, ABCIndexClass)):
secondary_y = [secondary_y]
self.secondary_y = secondary_y
# ugly TypeError if user passes matplotlib's `cmap` name.
# Probably better to accept either.
if "cmap" in kwds and colormap:
raise TypeError("Only specify one of `cmap` and `colormap`.")
elif "cmap" in kwds:
self.colormap = kwds.pop("cmap")
else:
self.colormap = colormap
self.table = table
self.kwds = kwds
self._validate_color_args()
def _validate_color_args(self):
if "color" not in self.kwds and "colors" in self.kwds:
warnings.warn(
(
"'colors' is being deprecated. Please use 'color'"
"instead of 'colors'"
)
)
colors = self.kwds.pop("colors")
self.kwds["color"] = colors
if (
"color" in self.kwds
and self.nseries == 1
and not is_list_like(self.kwds["color"])
):
# support series.plot(color='green')
self.kwds["color"] = [self.kwds["color"]]
if (
"color" in self.kwds
and isinstance(self.kwds["color"], tuple)
and self.nseries == 1
and len(self.kwds["color"]) in (3, 4)
):
# support RGB and RGBA tuples in series plot
self.kwds["color"] = [self.kwds["color"]]
if (
"color" in self.kwds or "colors" in self.kwds
) and self.colormap is not None:
warnings.warn(
"'color' and 'colormap' cannot be used " "simultaneously. Using 'color'"
)
if "color" in self.kwds and self.style is not None:
if is_list_like(self.style):
styles = self.style
else:
styles = [self.style]
# need only a single match
for s in styles:
if re.match("^[a-z]+?", s) is not None:
raise ValueError(
"Cannot pass 'style' string with a color "
"symbol and 'color' keyword argument. Please"
" use one or the other or pass 'style' "
"without a color symbol"
)
def _iter_data(self, data=None, keep_index=False, fillna=None):
if data is None:
data = self.data
if fillna is not None:
data = data.fillna(fillna)
# TODO: unused?
# if self.sort_columns:
# columns = com.try_sort(data.columns)
# else:
# columns = data.columns
for col, values in data.items():
if keep_index is True:
yield col, values
else:
yield col, values.values
@property
def nseries(self):
if self.data.ndim == 1:
return 1
else:
return self.data.shape[1]
def draw(self):
self.plt.draw_if_interactive()
def generate(self):
self._args_adjust()
self._compute_plot_data()
self._setup_subplots()
self._make_plot()
self._add_table()
self._make_legend()
self._adorn_subplots()
for ax in self.axes:
self._post_plot_logic_common(ax, self.data)
self._post_plot_logic(ax, self.data)
def _args_adjust(self):
pass
def _has_plotted_object(self, ax):
"""check whether ax has data"""
return len(ax.lines) != 0 or len(ax.artists) != 0 or len(ax.containers) != 0
def _maybe_right_yaxis(self, ax, axes_num):
if not self.on_right(axes_num):
# secondary axes may be passed via ax kw
return self._get_ax_layer(ax)
if hasattr(ax, "right_ax"):
# if it has right_ax proparty, ``ax`` must be left axes
return ax.right_ax
elif hasattr(ax, "left_ax"):
# if it has left_ax proparty, ``ax`` must be right axes
return ax
else:
# otherwise, create twin axes
orig_ax, new_ax = ax, ax.twinx()
# TODO: use Matplotlib public API when available
new_ax._get_lines = orig_ax._get_lines
new_ax._get_patches_for_fill = orig_ax._get_patches_for_fill
orig_ax.right_ax, new_ax.left_ax = new_ax, orig_ax
if not self._has_plotted_object(orig_ax): # no data on left y
orig_ax.get_yaxis().set_visible(False)
if self.logy is True or self.loglog is True:
new_ax.set_yscale("log")
elif self.logy == "sym" or self.loglog == "sym":
new_ax.set_yscale("symlog")
return new_ax
def _setup_subplots(self):
if self.subplots:
fig, axes = _subplots(
naxes=self.nseries,
sharex=self.sharex,
sharey=self.sharey,
figsize=self.figsize,
ax=self.ax,
layout=self.layout,
layout_type=self._layout_type,
)
else:
if self.ax is None:
fig = self.plt.figure(figsize=self.figsize)
axes = fig.add_subplot(111)
else:
fig = self.ax.get_figure()
if self.figsize is not None:
fig.set_size_inches(self.figsize)
axes = self.ax
axes = _flatten(axes)
valid_log = {False, True, "sym", None}
input_log = {self.logx, self.logy, self.loglog}
if input_log - valid_log:
invalid_log = next(iter((input_log - valid_log)))
raise ValueError(
"Boolean, None and 'sym' are valid options,"
" '{}' is given.".format(invalid_log)
)
if self.logx is True or self.loglog is True:
[a.set_xscale("log") for a in axes]
elif self.logx == "sym" or self.loglog == "sym":
[a.set_xscale("symlog") for a in axes]
if self.logy is True or self.loglog is True:
[a.set_yscale("log") for a in axes]
elif self.logy == "sym" or self.loglog == "sym":
[a.set_yscale("symlog") for a in axes]
self.fig = fig
self.axes = axes
@property
def result(self):
"""
Return result axes
"""
if self.subplots:
if self.layout is not None and not is_list_like(self.ax):
return self.axes.reshape(*self.layout)
else:
return self.axes
else:
sec_true = isinstance(self.secondary_y, bool) and self.secondary_y
all_sec = (
is_list_like(self.secondary_y) and len(self.secondary_y) == self.nseries
)
if sec_true or all_sec:
# if all data is plotted on secondary, return right axes
return self._get_ax_layer(self.axes[0], primary=False)
else:
return self.axes[0]
def _compute_plot_data(self):
data = self.data
if isinstance(data, ABCSeries):
label = self.label
if label is None and data.name is None:
label = "None"
data = data.to_frame(name=label)
# GH16953, _convert is needed as fallback, for ``Series``
# with ``dtype == object``
data = data._convert(datetime=True, timedelta=True)
numeric_data = data.select_dtypes(
include=[np.number, "datetime", "datetimetz", "timedelta"]
)
try:
is_empty = numeric_data.empty
except AttributeError:
is_empty = not len(numeric_data)
# no non-numeric frames or series allowed
if is_empty:
raise TypeError("no numeric data to plot")
# GH25587: cast ExtensionArray of pandas (IntegerArray, etc.) to
# np.ndarray before plot.
numeric_data = numeric_data.copy()
for col in numeric_data:
numeric_data[col] = np.asarray(numeric_data[col])
self.data = numeric_data
def _make_plot(self):
raise AbstractMethodError(self)
def _add_table(self):
if self.table is False:
return
elif self.table is True:
data = self.data.transpose()
else:
data = self.table
ax = self._get_ax(0)
table(ax, data)
def _post_plot_logic_common(self, ax, data):
"""Common post process for each axes"""
if self.orientation == "vertical" or self.orientation is None:
self._apply_axis_properties(ax.xaxis, rot=self.rot, fontsize=self.fontsize)
self._apply_axis_properties(ax.yaxis, fontsize=self.fontsize)
if hasattr(ax, "right_ax"):
self._apply_axis_properties(ax.right_ax.yaxis, fontsize=self.fontsize)
elif self.orientation == "horizontal":
self._apply_axis_properties(ax.yaxis, rot=self.rot, fontsize=self.fontsize)
self._apply_axis_properties(ax.xaxis, fontsize=self.fontsize)
if hasattr(ax, "right_ax"):
self._apply_axis_properties(ax.right_ax.yaxis, fontsize=self.fontsize)
else: # pragma no cover
raise ValueError
def _post_plot_logic(self, ax, data):
"""Post process for each axes. Overridden in child classes"""
pass
def _adorn_subplots(self):
"""Common post process unrelated to data"""
if len(self.axes) > 0:
all_axes = self._get_subplots()
nrows, ncols = self._get_axes_layout()
_handle_shared_axes(
axarr=all_axes,
nplots=len(all_axes),
naxes=nrows * ncols,
nrows=nrows,
ncols=ncols,
sharex=self.sharex,
sharey=self.sharey,
)
for ax in self.axes:
if self.yticks is not None:
ax.set_yticks(self.yticks)
if self.xticks is not None:
ax.set_xticks(self.xticks)
if self.ylim is not None:
ax.set_ylim(self.ylim)
if self.xlim is not None:
ax.set_xlim(self.xlim)
ax.grid(self.grid)
if self.title:
if self.subplots:
if is_list_like(self.title):
if len(self.title) != self.nseries:
msg = (
"The length of `title` must equal the number "
"of columns if using `title` of type `list` "
"and `subplots=True`.\n"
"length of title = {}\n"
"number of columns = {}"
).format(len(self.title), self.nseries)
raise ValueError(msg)
for (ax, title) in zip(self.axes, self.title):
ax.set_title(title)
else:
self.fig.suptitle(self.title)
else:
if is_list_like(self.title):
msg = (
"Using `title` of type `list` is not supported "
"unless `subplots=True` is passed"
)
raise ValueError(msg)
self.axes[0].set_title(self.title)
def _apply_axis_properties(self, axis, rot=None, fontsize=None):
""" Tick creation within matplotlib is reasonably expensive and is
internally deferred until accessed as Ticks are created/destroyed
multiple times per draw. It's therefore beneficial for us to avoid
accessing unless we will act on the Tick.
"""
if rot is not None or fontsize is not None:
# rot=0 is a valid setting, hence the explicit None check
labels = axis.get_majorticklabels() + axis.get_minorticklabels()
for label in labels:
if rot is not None:
label.set_rotation(rot)
if fontsize is not None:
label.set_fontsize(fontsize)
@property
def legend_title(self):
if not isinstance(self.data.columns, ABCMultiIndex):
name = self.data.columns.name
if name is not None:
name = pprint_thing(name)
return name
else:
stringified = map(pprint_thing, self.data.columns.names)
return ",".join(stringified)
def _add_legend_handle(self, handle, label, index=None):
if label is not None:
if self.mark_right and index is not None:
if self.on_right(index):
label = label + " (right)"
self.legend_handles.append(handle)
self.legend_labels.append(label)
def _make_legend(self):
ax, leg = self._get_ax_legend(self.axes[0])
handles = []
labels = []
title = ""
if not self.subplots:
if leg is not None:
title = leg.get_title().get_text()
handles = leg.legendHandles
labels = [x.get_text() for x in leg.get_texts()]
if self.legend:
if self.legend == "reverse":
self.legend_handles = reversed(self.legend_handles)
self.legend_labels = reversed(self.legend_labels)
handles += self.legend_handles
labels += self.legend_labels
if self.legend_title is not None:
title = self.legend_title
if len(handles) > 0:
ax.legend(handles, labels, loc="best", title=title)
elif self.subplots and self.legend:
for ax in self.axes:
if ax.get_visible():
ax.legend(loc="best")
def _get_ax_legend(self, ax):
leg = ax.get_legend()
other_ax = getattr(ax, "left_ax", None) or getattr(ax, "right_ax", None)
other_leg = None
if other_ax is not None:
other_leg = other_ax.get_legend()
if leg is None and other_leg is not None:
leg = other_leg
ax = other_ax
return ax, leg
@cache_readonly
def plt(self):
import matplotlib.pyplot as plt
return plt
_need_to_set_index = False
def _get_xticks(self, convert_period=False):
index = self.data.index
is_datetype = index.inferred_type in ("datetime", "date", "datetime64", "time")
if self.use_index:
if convert_period and isinstance(index, ABCPeriodIndex):
self.data = self.data.reindex(index=index.sort_values())
x = self.data.index.to_timestamp()._mpl_repr()
elif index.is_numeric():
"""
Matplotlib supports numeric values or datetime objects as
xaxis values. Taking LBYL approach here, by the time
matplotlib raises exception when using non numeric/datetime
values for xaxis, several actions are already taken by plt.
"""
x = index._mpl_repr()
elif is_datetype:
self.data = self.data[notna(self.data.index)]
self.data = self.data.sort_index()
x = self.data.index._mpl_repr()
else:
self._need_to_set_index = True
x = list(range(len(index)))
else:
x = list(range(len(index)))
return x
@classmethod
def _plot(cls, ax, x, y, style=None, is_errorbar=False, **kwds):
mask = isna(y)
if mask.any():
y = np.ma.array(y)
y = np.ma.masked_where(mask, y)
if isinstance(x, ABCIndexClass):
x = x._mpl_repr()
if is_errorbar:
if "xerr" in kwds:
kwds["xerr"] = np.array(kwds.get("xerr"))
if "yerr" in kwds:
kwds["yerr"] = np.array(kwds.get("yerr"))
return ax.errorbar(x, y, **kwds)
else:
# prevent style kwarg from going to errorbar, where it is
# unsupported
if style is not None:
args = (x, y, style)
else:
args = (x, y)
return ax.plot(*args, **kwds)
def _get_index_name(self):
if isinstance(self.data.index, ABCMultiIndex):
name = self.data.index.names
if com._any_not_none(*name):
name = ",".join(pprint_thing(x) for x in name)
else:
name = None
else:
name = self.data.index.name
if name is not None:
name = pprint_thing(name)
return name
@classmethod
def _get_ax_layer(cls, ax, primary=True):
"""get left (primary) or right (secondary) axes"""
if primary:
return getattr(ax, "left_ax", ax)
else:
return getattr(ax, "right_ax", ax)
def _get_ax(self, i):
# get the twinx ax if appropriate
if self.subplots:
ax = self.axes[i]
ax = self._maybe_right_yaxis(ax, i)
self.axes[i] = ax
else:
ax = self.axes[0]
ax = self._maybe_right_yaxis(ax, i)
ax.get_yaxis().set_visible(True)
return ax
@classmethod
def get_default_ax(cls, ax):
import matplotlib.pyplot as plt
if ax is None and len(plt.get_fignums()) > 0:
with plt.rc_context():
ax = plt.gca()
ax = cls._get_ax_layer(ax)
def on_right(self, i):
if isinstance(self.secondary_y, bool):
return self.secondary_y
if isinstance(self.secondary_y, (tuple, list, np.ndarray, ABCIndexClass)):
return self.data.columns[i] in self.secondary_y
def _apply_style_colors(self, colors, kwds, col_num, label):
"""
Manage style and color based on column number and its label.
Returns tuple of appropriate style and kwds which "color" may be added.
"""
style = None
if self.style is not None:
if isinstance(self.style, list):
try:
style = self.style[col_num]
except IndexError:
pass
elif isinstance(self.style, dict):
style = self.style.get(label, style)
else:
style = self.style
has_color = "color" in kwds or self.colormap is not None
nocolor_style = style is None or re.match("[a-z]+", style) is None
if (has_color or self.subplots) and nocolor_style:
kwds["color"] = colors[col_num % len(colors)]
return style, kwds
def _get_colors(self, num_colors=None, color_kwds="color"):
if num_colors is None:
num_colors = self.nseries
return _get_standard_colors(
num_colors=num_colors,
colormap=self.colormap,
color=self.kwds.get(color_kwds),
)
def _parse_errorbars(self, label, err):
"""
Look for error keyword arguments and return the actual errorbar data
or return the error DataFrame/dict
Error bars can be specified in several ways:
Series: the user provides a pandas.Series object of the same
length as the data
ndarray: provides a np.ndarray of the same length as the data
DataFrame/dict: error values are paired with keys matching the
key in the plotted DataFrame
str: the name of the column within the plotted DataFrame
"""
if err is None:
return None
def match_labels(data, e):
e = e.reindex(data.index)
return e
# key-matched DataFrame
if isinstance(err, ABCDataFrame):
err = match_labels(self.data, err)
# key-matched dict
elif isinstance(err, dict):
pass
# Series of error values
elif isinstance(err, ABCSeries):
# broadcast error series across data
err = match_labels(self.data, err)
err = np.atleast_2d(err)
err = np.tile(err, (self.nseries, 1))
# errors are a column in the dataframe
elif isinstance(err, str):
evalues = self.data[err].values
self.data = self.data[self.data.columns.drop(err)]
err = np.atleast_2d(evalues)
err = np.tile(err, (self.nseries, 1))
elif is_list_like(err):
if is_iterator(err):
err = np.atleast_2d(list(err))
else:
# raw error values
err = np.atleast_2d(err)
err_shape = err.shape
# asymmetrical error bars
if err.ndim == 3:
if (
(err_shape[0] != self.nseries)
or (err_shape[1] != 2)
or (err_shape[2] != len(self.data))
):
msg = (
"Asymmetrical error bars should be provided "
+ "with the shape (%u, 2, %u)" % (self.nseries, len(self.data))
)
raise ValueError(msg)
# broadcast errors to each data series
if len(err) == 1:
err = np.tile(err, (self.nseries, 1))
elif is_number(err):
err = np.tile([err], (self.nseries, len(self.data)))
else:
msg = "No valid {label} detected".format(label=label)
raise ValueError(msg)
return err
def _get_errorbars(self, label=None, index=None, xerr=True, yerr=True):
errors = {}
for kw, flag in zip(["xerr", "yerr"], [xerr, yerr]):
if flag:
err = self.errors[kw]
# user provided label-matched dataframe of errors
if isinstance(err, (ABCDataFrame, dict)):
if label is not None and label in err.keys():
err = err[label]
else:
err = None
elif index is not None and err is not None:
err = err[index]
if err is not None:
errors[kw] = err
return errors
def _get_subplots(self):
from matplotlib.axes import Subplot
return [
ax for ax in self.axes[0].get_figure().get_axes() if isinstance(ax, Subplot)
]
def _get_axes_layout(self):
axes = self._get_subplots()
x_set = set()
y_set = set()
for ax in axes:
# check axes coordinates to estimate layout
points = ax.get_position().get_points()
x_set.add(points[0][0])
y_set.add(points[0][1])
return (len(y_set), len(x_set))
class PlanePlot(MPLPlot):
"""
Abstract class for plotting on plane, currently scatter and hexbin.
"""
_layout_type = "single"
def __init__(self, data, x, y, **kwargs):
MPLPlot.__init__(self, data, **kwargs)
if x is None or y is None:
raise ValueError(self._kind + " requires an x and y column")
if is_integer(x) and not self.data.columns.holds_integer():
x = self.data.columns[x]
if is_integer(y) and not self.data.columns.holds_integer():
y = self.data.columns[y]
if len(self.data[x]._get_numeric_data()) == 0:
raise ValueError(self._kind + " requires x column to be numeric")
if len(self.data[y]._get_numeric_data()) == 0:
raise ValueError(self._kind + " requires y column to be numeric")
self.x = x
self.y = y
@property
def nseries(self):
return 1
def _post_plot_logic(self, ax, data):
x, y = self.x, self.y
ax.set_ylabel(pprint_thing(y))
ax.set_xlabel(pprint_thing(x))
def _plot_colorbar(self, ax, **kwds):
# Addresses issues #10611 and #10678:
# When plotting scatterplots and hexbinplots in IPython
# inline backend the colorbar axis height tends not to
# exactly match the parent axis height.
# The difference is due to small fractional differences
# in floating points with similar representation.
# To deal with this, this method forces the colorbar
# height to take the height of the parent axes.
# For a more detailed description of the issue
# see the following link:
# https://github.com/ipython/ipython/issues/11215
img = ax.collections[0]
cbar = self.fig.colorbar(img, ax=ax, **kwds)
if _mpl_ge_3_0_0():
# The workaround below is no longer necessary.
return
points = ax.get_position().get_points()
cbar_points = cbar.ax.get_position().get_points()
cbar.ax.set_position(
[
cbar_points[0, 0],
points[0, 1],
cbar_points[1, 0] - cbar_points[0, 0],
points[1, 1] - points[0, 1],
]
)
# To see the discrepancy in axis heights uncomment
# the following two lines:
# print(points[1, 1] - points[0, 1])
# print(cbar_points[1, 1] - cbar_points[0, 1])
class ScatterPlot(PlanePlot):
_kind = "scatter"
def __init__(self, data, x, y, s=None, c=None, **kwargs):
if s is None:
# hide the matplotlib default for size, in case we want to change
# the handling of this argument later
s = 20
super().__init__(data, x, y, s=s, **kwargs)
if is_integer(c) and not self.data.columns.holds_integer():
c = self.data.columns[c]
self.c = c
def _make_plot(self):
x, y, c, data = self.x, self.y, self.c, self.data
ax = self.axes[0]
c_is_column = is_hashable(c) and c in self.data.columns
# plot a colorbar only if a colormap is provided or necessary
cb = self.kwds.pop("colorbar", self.colormap or c_is_column)
# pandas uses colormap, matplotlib uses cmap.
cmap = self.colormap or "Greys"
cmap = self.plt.cm.get_cmap(cmap)
color = self.kwds.pop("color", None)
if c is not None and color is not None:
raise TypeError("Specify exactly one of `c` and `color`")
elif c is None and color is None:
c_values = self.plt.rcParams["patch.facecolor"]
elif color is not None:
c_values = color
elif c_is_column:
c_values = self.data[c].values
else:
c_values = c
if self.legend and hasattr(self, "label"):
label = self.label
else:
label = None
scatter = ax.scatter(
data[x].values,
data[y].values,
c=c_values,
label=label,
cmap=cmap,
**self.kwds
)
if cb:
cbar_label = c if c_is_column else ""
self._plot_colorbar(ax, label=cbar_label)
if label is not None:
self._add_legend_handle(scatter, label)
else:
self.legend = False
errors_x = self._get_errorbars(label=x, index=0, yerr=False)
errors_y = self._get_errorbars(label=y, index=0, xerr=False)
if len(errors_x) > 0 or len(errors_y) > 0:
err_kwds = dict(errors_x, **errors_y)
err_kwds["ecolor"] = scatter.get_facecolor()[0]
ax.errorbar(data[x].values, data[y].values, linestyle="none", **err_kwds)
class HexBinPlot(PlanePlot):
_kind = "hexbin"
def __init__(self, data, x, y, C=None, **kwargs):
super().__init__(data, x, y, **kwargs)
if is_integer(C) and not self.data.columns.holds_integer():
C = self.data.columns[C]
self.C = C
def _make_plot(self):
x, y, data, C = self.x, self.y, self.data, self.C
ax = self.axes[0]
# pandas uses colormap, matplotlib uses cmap.
cmap = self.colormap or "BuGn"
cmap = self.plt.cm.get_cmap(cmap)
cb = self.kwds.pop("colorbar", True)
if C is None:
c_values = None
else:
c_values = data[C].values
ax.hexbin(data[x].values, data[y].values, C=c_values, cmap=cmap, **self.kwds)
if cb:
self._plot_colorbar(ax)
def _make_legend(self):
pass
class LinePlot(MPLPlot):
_kind = "line"
_default_rot = 0
orientation = "vertical"
def __init__(self, data, **kwargs):
from pandas.plotting import plot_params
MPLPlot.__init__(self, data, **kwargs)
if self.stacked:
self.data = self.data.fillna(value=0)
self.x_compat = plot_params["x_compat"]
if "x_compat" in self.kwds:
self.x_compat = bool(self.kwds.pop("x_compat"))
def _is_ts_plot(self):
# this is slightly deceptive
return not self.x_compat and self.use_index and self._use_dynamic_x()
def _use_dynamic_x(self):
from pandas.plotting._matplotlib.timeseries import _use_dynamic_x
return _use_dynamic_x(self._get_ax(0), self.data)
def _make_plot(self):
if self._is_ts_plot():
from pandas.plotting._matplotlib.timeseries import _maybe_convert_index
data = _maybe_convert_index(self._get_ax(0), self.data)
x = data.index # dummy, not used
plotf = self._ts_plot
it = self._iter_data(data=data, keep_index=True)
else:
x = self._get_xticks(convert_period=True)
plotf = self._plot
it = self._iter_data()
stacking_id = self._get_stacking_id()
is_errorbar = com._any_not_none(*self.errors.values())
colors = self._get_colors()
for i, (label, y) in enumerate(it):
ax = self._get_ax(i)
kwds = self.kwds.copy()
style, kwds = self._apply_style_colors(colors, kwds, i, label)
errors = self._get_errorbars(label=label, index=i)
kwds = dict(kwds, **errors)
label = pprint_thing(label) # .encode('utf-8')
kwds["label"] = label
newlines = plotf(
ax,
x,
y,
style=style,
column_num=i,
stacking_id=stacking_id,
is_errorbar=is_errorbar,
**kwds
)
self._add_legend_handle(newlines[0], label, index=i)
lines = _get_all_lines(ax)
left, right = _get_xlim(lines)
ax.set_xlim(left, right)
@classmethod
def _plot(cls, ax, x, y, style=None, column_num=None, stacking_id=None, **kwds):
# column_num is used to get the target column from protf in line and
# area plots
if column_num == 0:
cls._initialize_stacker(ax, stacking_id, len(y))
y_values = cls._get_stacked_values(ax, stacking_id, y, kwds["label"])
lines = MPLPlot._plot(ax, x, y_values, style=style, **kwds)
cls._update_stacker(ax, stacking_id, y)
return lines
@classmethod
def _ts_plot(cls, ax, x, data, style=None, **kwds):
from pandas.plotting._matplotlib.timeseries import (
_maybe_resample,
_decorate_axes,
format_dateaxis,
)
# accept x to be consistent with normal plot func,
# x is not passed to tsplot as it uses data.index as x coordinate
# column_num must be in kwds for stacking purpose
freq, data = _maybe_resample(data, ax, kwds)
# Set ax with freq info
_decorate_axes(ax, freq, kwds)
# digging deeper
if hasattr(ax, "left_ax"):
_decorate_axes(ax.left_ax, freq, kwds)
if hasattr(ax, "right_ax"):
_decorate_axes(ax.right_ax, freq, kwds)
ax._plot_data.append((data, cls._kind, kwds))
lines = cls._plot(ax, data.index, data.values, style=style, **kwds)
# set date formatter, locators and rescale limits
format_dateaxis(ax, ax.freq, data.index)
return lines
def _get_stacking_id(self):
if self.stacked:
return id(self.data)
else:
return None
@classmethod
def _initialize_stacker(cls, ax, stacking_id, n):
if stacking_id is None:
return
if not hasattr(ax, "_stacker_pos_prior"):
ax._stacker_pos_prior = {}
if not hasattr(ax, "_stacker_neg_prior"):
ax._stacker_neg_prior = {}
ax._stacker_pos_prior[stacking_id] = np.zeros(n)
ax._stacker_neg_prior[stacking_id] = np.zeros(n)
@classmethod
def _get_stacked_values(cls, ax, stacking_id, values, label):
if stacking_id is None:
return values
if not hasattr(ax, "_stacker_pos_prior"):
# stacker may not be initialized for subplots
cls._initialize_stacker(ax, stacking_id, len(values))
if (values >= 0).all():
return ax._stacker_pos_prior[stacking_id] + values
elif (values <= 0).all():
return ax._stacker_neg_prior[stacking_id] + values
raise ValueError(
"When stacked is True, each column must be either "
"all positive or negative."
"{0} contains both positive and negative values".format(label)
)
@classmethod
def _update_stacker(cls, ax, stacking_id, values):
if stacking_id is None:
return
if (values >= 0).all():
ax._stacker_pos_prior[stacking_id] += values
elif (values <= 0).all():
ax._stacker_neg_prior[stacking_id] += values
def _post_plot_logic(self, ax, data):
from matplotlib.ticker import FixedLocator
def get_label(i):
try:
return pprint_thing(data.index[i])
except Exception:
return ""
if self._need_to_set_index:
xticks = ax.get_xticks()
xticklabels = [get_label(x) for x in xticks]
ax.set_xticklabels(xticklabels)
ax.xaxis.set_major_locator(FixedLocator(xticks))
condition = (
not self._use_dynamic_x()
and data.index.is_all_dates
and not self.subplots
or (self.subplots and self.sharex)
)
index_name = self._get_index_name()
if condition:
# irregular TS rotated 30 deg. by default
# probably a better place to check / set this.
if not self._rot_set:
self.rot = 30
format_date_labels(ax, rot=self.rot)
if index_name is not None and self.use_index:
ax.set_xlabel(index_name)
class AreaPlot(LinePlot):
_kind = "area"
def __init__(self, data, **kwargs):
kwargs.setdefault("stacked", True)
data = data.fillna(value=0)
LinePlot.__init__(self, data, **kwargs)
if not self.stacked:
# use smaller alpha to distinguish overlap
self.kwds.setdefault("alpha", 0.5)
if self.logy or self.loglog:
raise ValueError("Log-y scales are not supported in area plot")
@classmethod
def _plot(
cls,
ax,
x,
y,
style=None,
column_num=None,
stacking_id=None,
is_errorbar=False,
**kwds
):
if column_num == 0:
cls._initialize_stacker(ax, stacking_id, len(y))
y_values = cls._get_stacked_values(ax, stacking_id, y, kwds["label"])
# need to remove label, because subplots uses mpl legend as it is
line_kwds = kwds.copy()
line_kwds.pop("label")
lines = MPLPlot._plot(ax, x, y_values, style=style, **line_kwds)
# get data from the line to get coordinates for fill_between
xdata, y_values = lines[0].get_data(orig=False)
# unable to use ``_get_stacked_values`` here to get starting point
if stacking_id is None:
start = np.zeros(len(y))
elif (y >= 0).all():
start = ax._stacker_pos_prior[stacking_id]
elif (y <= 0).all():
start = ax._stacker_neg_prior[stacking_id]
else:
start = np.zeros(len(y))
if "color" not in kwds:
kwds["color"] = lines[0].get_color()
rect = ax.fill_between(xdata, start, y_values, **kwds)
cls._update_stacker(ax, stacking_id, y)
# LinePlot expects list of artists
res = [rect]
return res
def _post_plot_logic(self, ax, data):
LinePlot._post_plot_logic(self, ax, data)
if self.ylim is None:
if (data >= 0).all().all():
ax.set_ylim(0, None)
elif (data <= 0).all().all():
ax.set_ylim(None, 0)
class BarPlot(MPLPlot):
_kind = "bar"
_default_rot = 90
orientation = "vertical"
def __init__(self, data, **kwargs):
# we have to treat a series differently than a
# 1-column DataFrame w.r.t. color handling
self._is_series = isinstance(data, ABCSeries)
self.bar_width = kwargs.pop("width", 0.5)
pos = kwargs.pop("position", 0.5)
kwargs.setdefault("align", "center")
self.tick_pos = np.arange(len(data))
self.bottom = kwargs.pop("bottom", 0)
self.left = kwargs.pop("left", 0)
self.log = kwargs.pop("log", False)
MPLPlot.__init__(self, data, **kwargs)
if self.stacked or self.subplots:
self.tickoffset = self.bar_width * pos
if kwargs["align"] == "edge":
self.lim_offset = self.bar_width / 2
else:
self.lim_offset = 0
else:
if kwargs["align"] == "edge":
w = self.bar_width / self.nseries
self.tickoffset = self.bar_width * (pos - 0.5) + w * 0.5
self.lim_offset = w * 0.5
else:
self.tickoffset = self.bar_width * pos
self.lim_offset = 0
self.ax_pos = self.tick_pos - self.tickoffset
def _args_adjust(self):
if is_list_like(self.bottom):
self.bottom = np.array(self.bottom)
if is_list_like(self.left):
self.left = np.array(self.left)
@classmethod
def _plot(cls, ax, x, y, w, start=0, log=False, **kwds):
return ax.bar(x, y, w, bottom=start, log=log, **kwds)
@property
def _start_base(self):
return self.bottom
def _make_plot(self):
import matplotlib as mpl
colors = self._get_colors()
ncolors = len(colors)
pos_prior = neg_prior = np.zeros(len(self.data))
K = self.nseries
for i, (label, y) in enumerate(self._iter_data(fillna=0)):
ax = self._get_ax(i)
kwds = self.kwds.copy()
if self._is_series:
kwds["color"] = colors
else:
kwds["color"] = colors[i % ncolors]
errors = self._get_errorbars(label=label, index=i)
kwds = dict(kwds, **errors)
label = pprint_thing(label)
if (("yerr" in kwds) or ("xerr" in kwds)) and (kwds.get("ecolor") is None):
kwds["ecolor"] = mpl.rcParams["xtick.color"]
start = 0
if self.log and (y >= 1).all():
start = 1
start = start + self._start_base
if self.subplots:
w = self.bar_width / 2
rect = self._plot(
ax,
self.ax_pos + w,
y,
self.bar_width,
start=start,
label=label,
log=self.log,
**kwds
)
ax.set_title(label)
elif self.stacked:
mask = y > 0
start = np.where(mask, pos_prior, neg_prior) + self._start_base
w = self.bar_width / 2
rect = self._plot(
ax,
self.ax_pos + w,
y,
self.bar_width,
start=start,
label=label,
log=self.log,
**kwds
)
pos_prior = pos_prior + np.where(mask, y, 0)
neg_prior = neg_prior + np.where(mask, 0, y)
else:
w = self.bar_width / K
rect = self._plot(
ax,
self.ax_pos + (i + 0.5) * w,
y,
w,
start=start,
label=label,
log=self.log,
**kwds
)
self._add_legend_handle(rect, label, index=i)
def _post_plot_logic(self, ax, data):
if self.use_index:
str_index = [pprint_thing(key) for key in data.index]
else:
str_index = [pprint_thing(key) for key in range(data.shape[0])]
name = self._get_index_name()
s_edge = self.ax_pos[0] - 0.25 + self.lim_offset
e_edge = self.ax_pos[-1] + 0.25 + self.bar_width + self.lim_offset
self._decorate_ticks(ax, name, str_index, s_edge, e_edge)
def _decorate_ticks(self, ax, name, ticklabels, start_edge, end_edge):
ax.set_xlim((start_edge, end_edge))
ax.set_xticks(self.tick_pos)
ax.set_xticklabels(ticklabels)
if name is not None and self.use_index:
ax.set_xlabel(name)
class BarhPlot(BarPlot):
_kind = "barh"
_default_rot = 0
orientation = "horizontal"
@property
def _start_base(self):
return self.left
@classmethod
def _plot(cls, ax, x, y, w, start=0, log=False, **kwds):
return ax.barh(x, y, w, left=start, log=log, **kwds)
def _decorate_ticks(self, ax, name, ticklabels, start_edge, end_edge):
# horizontal bars
ax.set_ylim((start_edge, end_edge))
ax.set_yticks(self.tick_pos)
ax.set_yticklabels(ticklabels)
if name is not None and self.use_index:
ax.set_ylabel(name)
class PiePlot(MPLPlot):
_kind = "pie"
_layout_type = "horizontal"
def __init__(self, data, kind=None, **kwargs):
data = data.fillna(value=0)
if (data < 0).any().any():
raise ValueError("{0} doesn't allow negative values".format(kind))
MPLPlot.__init__(self, data, kind=kind, **kwargs)
def _args_adjust(self):
self.grid = False
self.logy = False
self.logx = False
self.loglog = False
def _validate_color_args(self):
pass
def _make_plot(self):
colors = self._get_colors(num_colors=len(self.data), color_kwds="colors")
self.kwds.setdefault("colors", colors)
for i, (label, y) in enumerate(self._iter_data()):
ax = self._get_ax(i)
if label is not None:
label = pprint_thing(label)
ax.set_ylabel(label)
kwds = self.kwds.copy()
def blank_labeler(label, value):
if value == 0:
return ""
else:
return label
idx = [pprint_thing(v) for v in self.data.index]
labels = kwds.pop("labels", idx)
# labels is used for each wedge's labels
# Blank out labels for values of 0 so they don't overlap
# with nonzero wedges
if labels is not None:
blabels = [blank_labeler(l, value) for l, value in zip(labels, y)]
else:
blabels = None
results = ax.pie(y, labels=blabels, **kwds)
if kwds.get("autopct", None) is not None:
patches, texts, autotexts = results
else:
patches, texts = results
autotexts = []
if self.fontsize is not None:
for t in texts + autotexts:
t.set_fontsize(self.fontsize)
# leglabels is used for legend labels
leglabels = labels if labels is not None else idx
for p, l in zip(patches, leglabels):
self._add_legend_handle(p, l)