import sys
import numpy as np
import pytest
from pandas.compat import PYPY
from pandas import Categorical, Index, Series
from pandas.api.types import is_scalar
import pandas.util.testing as tm
class TestCategoricalAnalytics:
def test_min_max(self):
# unordered cats have no min/max
cat = Categorical(["a", "b", "c", "d"], ordered=False)
msg = "Categorical is not ordered for operation {}"
with pytest.raises(TypeError, match=msg.format("min")):
cat.min()
with pytest.raises(TypeError, match=msg.format("max")):
cat.max()
cat = Categorical(["a", "b", "c", "d"], ordered=True)
_min = cat.min()
_max = cat.max()
assert _min == "a"
assert _max == "d"
cat = Categorical(
["a", "b", "c", "d"], categories=["d", "c", "b", "a"], ordered=True
)
_min = cat.min()
_max = cat.max()
assert _min == "d"
assert _max == "a"
cat = Categorical(
[np.nan, "b", "c", np.nan], categories=["d", "c", "b", "a"], ordered=True
)
_min = cat.min()
_max = cat.max()
assert np.isnan(_min)
assert _max == "b"
_min = cat.min(numeric_only=True)
assert _min == "c"
_max = cat.max(numeric_only=True)
assert _max == "b"
cat = Categorical(
[np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], ordered=True
)
_min = cat.min()
_max = cat.max()
assert np.isnan(_min)
assert _max == 1
_min = cat.min(numeric_only=True)
assert _min == 2
_max = cat.max(numeric_only=True)
assert _max == 1
@pytest.mark.parametrize(
"values,categories,exp_mode",
[
([1, 1, 2, 4, 5, 5, 5], [5, 4, 3, 2, 1], [5]),
([1, 1, 1, 4, 5, 5, 5], [5, 4, 3, 2, 1], [5, 1]),
([1, 2, 3, 4, 5], [5, 4, 3, 2, 1], [5, 4, 3, 2, 1]),
([np.nan, np.nan, np.nan, 4, 5], [5, 4, 3, 2, 1], [5, 4]),
([np.nan, np.nan, np.nan, 4, 5, 4], [5, 4, 3, 2, 1], [4]),
([np.nan, np.nan, 4, 5, 4], [5, 4, 3, 2, 1], [4]),
],
)
def test_mode(self, values, categories, exp_mode):
s = Categorical(values, categories=categories, ordered=True)
res = s.mode()
exp = Categorical(exp_mode, categories=categories, ordered=True)
tm.assert_categorical_equal(res, exp)
def test_searchsorted(self):
# https://github.com/pandas-dev/pandas/issues/8420
# https://github.com/pandas-dev/pandas/issues/14522
c1 = Categorical(
["cheese", "milk", "apple", "bread", "bread"],
categories=["cheese", "milk", "apple", "bread"],
ordered=True,
)
s1 = Series(c1)
c2 = Categorical(
["cheese", "milk", "apple", "bread", "bread"],
categories=["cheese", "milk", "apple", "bread"],
ordered=False,
)
s2 = Series(c2)
# Searching for single item argument, side='left' (default)
res_cat = c1.searchsorted("apple")
assert res_cat == 2
assert is_scalar(res_cat)
res_ser = s1.searchsorted("apple")
assert res_ser == 2
assert is_scalar(res_ser)
# Searching for single item array, side='left' (default)
res_cat = c1.searchsorted(["bread"])
res_ser = s1.searchsorted(["bread"])
exp = np.array([3], dtype=np.intp)
tm.assert_numpy_array_equal(res_cat, exp)
tm.assert_numpy_array_equal(res_ser, exp)
# Searching for several items array, side='right'
res_cat = c1.searchsorted(["apple", "bread"], side="right")
res_ser = s1.searchsorted(["apple", "bread"], side="right")
exp = np.array([3, 5], dtype=np.intp)
tm.assert_numpy_array_equal(res_cat, exp)
tm.assert_numpy_array_equal(res_ser, exp)
# Searching for a single value that is not from the Categorical
msg = r"Value\(s\) to be inserted must be in categories"
with pytest.raises(KeyError, match=msg):
c1.searchsorted("cucumber")
with pytest.raises(KeyError, match=msg):
s1.searchsorted("cucumber")
# Searching for multiple values one of each is not from the Categorical
with pytest.raises(KeyError, match=msg):
c1.searchsorted(["bread", "cucumber"])
with pytest.raises(KeyError, match=msg):
s1.searchsorted(["bread", "cucumber"])
# searchsorted call for unordered Categorical
msg = "Categorical not ordered"
with pytest.raises(ValueError, match=msg):
c2.searchsorted("apple")
with pytest.raises(ValueError, match=msg):
s2.searchsorted("apple")
def test_unique(self):
# categories are reordered based on value when ordered=False
cat = Categorical(["a", "b"])
exp = Index(["a", "b"])
res = cat.unique()
tm.assert_index_equal(res.categories, exp)
tm.assert_categorical_equal(res, cat)
cat = Categorical(["a", "b", "a", "a"], categories=["a", "b", "c"])
res = cat.unique()
tm.assert_index_equal(res.categories, exp)
tm.assert_categorical_equal(res, Categorical(exp))
cat = Categorical(["c", "a", "b", "a", "a"], categories=["a", "b", "c"])
exp = Index(["c", "a", "b"])
res = cat.unique()
tm.assert_index_equal(res.categories, exp)
exp_cat = Categorical(exp, categories=["c", "a", "b"])
tm.assert_categorical_equal(res, exp_cat)
# nan must be removed
cat = Categorical(["b", np.nan, "b", np.nan, "a"], categories=["a", "b", "c"])
res = cat.unique()
exp = Index(["b", "a"])
tm.assert_index_equal(res.categories, exp)
exp_cat = Categorical(["b", np.nan, "a"], categories=["b", "a"])
tm.assert_categorical_equal(res, exp_cat)
def test_unique_ordered(self):
# keep categories order when ordered=True
cat = Categorical(["b", "a", "b"], categories=["a", "b"], ordered=True)
res = cat.unique()
exp_cat = Categorical(["b", "a"], categories=["a", "b"], ordered=True)
tm.assert_categorical_equal(res, exp_cat)
cat = Categorical(
["c", "b", "a", "a"], categories=["a", "b", "c"], ordered=True
)
res = cat.unique()
exp_cat = Categorical(["c", "b", "a"], categories=["a", "b", "c"], ordered=True)
tm.assert_categorical_equal(res, exp_cat)
cat = Categorical(["b", "a", "a"], categories=["a", "b", "c"], ordered=True)
res = cat.unique()
exp_cat = Categorical(["b", "a"], categories=["a", "b"], ordered=True)
tm.assert_categorical_equal(res, exp_cat)
cat = Categorical(
["b", "b", np.nan, "a"], categories=["a", "b", "c"], ordered=True
)
res = cat.unique()
exp_cat = Categorical(["b", np.nan, "a"], categories=["a", "b"], ordered=True)
tm.assert_categorical_equal(res, exp_cat)
def test_unique_index_series(self):
c = Categorical([3, 1, 2, 2, 1], categories=[3, 2, 1])
# Categorical.unique sorts categories by appearance order
# if ordered=False
exp = Categorical([3, 1, 2], categories=[3, 1, 2])
tm.assert_categorical_equal(c.unique(), exp)
tm.assert_index_equal(Index(c).unique(), Index(exp))
tm.assert_categorical_equal(Series(c).unique(), exp)
c = Categorical([1, 1, 2, 2], categories=[3, 2, 1])
exp = Categorical([1, 2], categories=[1, 2])
tm.assert_categorical_equal(c.unique(), exp)
tm.assert_index_equal(Index(c).unique(), Index(exp))
tm.assert_categorical_equal(Series(c).unique(), exp)
c = Categorical([3, 1, 2, 2, 1], categories=[3, 2, 1], ordered=True)
# Categorical.unique keeps categories order if ordered=True
exp = Categorical([3, 1, 2], categories=[3, 2, 1], ordered=True)
tm.assert_categorical_equal(c.unique(), exp)
tm.assert_index_equal(Index(c).unique(), Index(exp))
tm.assert_categorical_equal(Series(c).unique(), exp)
def test_shift(self):
# GH 9416
cat = Categorical(["a", "b", "c", "d", "a"])
# shift forward
sp1 = cat.shift(1)
xp1 = Categorical([np.nan, "a", "b", "c", "d"])
tm.assert_categorical_equal(sp1, xp1)
tm.assert_categorical_equal(cat[:-1], sp1[1:])
# shift back
sn2 = cat.shift(-2)
xp2 = Categorical(
["c", "d", "a", np.nan, np.nan], categories=["a", "b", "c", "d"]
)
tm.assert_categorical_equal(sn2, xp2)
tm.assert_categorical_equal(cat[2:], sn2[:-2])
# shift by zero
tm.assert_categorical_equal(cat, cat.shift(0))
def test_nbytes(self):
cat = Categorical([1, 2, 3])
exp = 3 + 3 * 8 # 3 int8s for values + 3 int64s for categories
assert cat.nbytes == exp
def test_memory_usage(self):
cat = Categorical([1, 2, 3])
# .categories is an index, so we include the hashtable
assert 0 < cat.nbytes <= cat.memory_usage()
assert 0 < cat.nbytes <= cat.memory_usage(deep=True)
cat = Categorical(["foo", "foo", "bar"])
assert cat.memory_usage(deep=True) > cat.nbytes
if not PYPY:
# sys.getsizeof will call the .memory_usage with
# deep=True, and add on some GC overhead
diff = cat.memory_usage(deep=True) - sys.getsizeof(cat)
assert abs(diff) < 100
def test_map(self):
c = Categorical(list("ABABC"), categories=list("CBA"), ordered=True)
result = c.map(lambda x: x.lower())
exp = Categorical(list("ababc"), categories=list("cba"), ordered=True)
tm.assert_categorical_equal(result, exp)
c = Categorical(list("ABABC"), categories=list("ABC"), ordered=False)
result = c.map(lambda x: x.lower())
exp = Categorical(list("ababc"), categories=list("abc"), ordered=False)
tm.assert_categorical_equal(result, exp)
result = c.map(lambda x: 1)
# GH 12766: Return an index not an array
tm.assert_index_equal(result, Index(np.array([1] * 5, dtype=np.int64)))
def test_validate_inplace(self):
cat = Categorical(["A", "B", "B", "C", "A"])
invalid_values = [1, "True", [1, 2, 3], 5.0]
for value in invalid_values:
with pytest.raises(ValueError):
cat.set_ordered(value=True, inplace=value)
with pytest.raises(ValueError):
cat.as_ordered(inplace=value)
with pytest.raises(ValueError):
cat.as_unordered(inplace=value)
with pytest.raises(ValueError):
cat.set_categories(["X", "Y", "Z"], rename=True, inplace=value)
with pytest.raises(ValueError):
cat.rename_categories(["X", "Y", "Z"], inplace=value)
with pytest.raises(ValueError):
cat.reorder_categories(["X", "Y", "Z"], ordered=True, inplace=value)
with pytest.raises(ValueError):
cat.add_categories(new_categories=["D", "E", "F"], inplace=value)
with pytest.raises(ValueError):
cat.remove_categories(removals=["D", "E", "F"], inplace=value)
with pytest.raises(ValueError):
cat.remove_unused_categories(inplace=value)
with pytest.raises(ValueError):
cat.sort_values(inplace=value)
def test_isna(self):
exp = np.array([False, False, True])
c = Categorical(["a", "b", np.nan])
res = c.isna()
tm.assert_numpy_array_equal(res, exp)