from datetime import datetime
import numpy as np
import pytest
from pandas.core.dtypes.common import is_float_dtype, is_integer_dtype
from pandas.core.dtypes.dtypes import CategoricalDtype
import pandas as pd
from pandas import (
Categorical,
CategoricalIndex,
DatetimeIndex,
Index,
Interval,
IntervalIndex,
NaT,
Series,
Timestamp,
date_range,
period_range,
timedelta_range,
)
import pandas.util.testing as tm
class TestCategoricalConstructors:
def test_validate_ordered(self):
# see gh-14058
exp_msg = "'ordered' must either be 'True' or 'False'"
exp_err = TypeError
# This should be a boolean.
ordered = np.array([0, 1, 2])
with pytest.raises(exp_err, match=exp_msg):
Categorical([1, 2, 3], ordered=ordered)
with pytest.raises(exp_err, match=exp_msg):
Categorical.from_codes(
[0, 0, 1], categories=["a", "b", "c"], ordered=ordered
)
def test_constructor_empty(self):
# GH 17248
c = Categorical([])
expected = Index([])
tm.assert_index_equal(c.categories, expected)
c = Categorical([], categories=[1, 2, 3])
expected = pd.Int64Index([1, 2, 3])
tm.assert_index_equal(c.categories, expected)
def test_constructor_empty_boolean(self):
# see gh-22702
cat = pd.Categorical([], categories=[True, False])
categories = sorted(cat.categories.tolist())
assert categories == [False, True]
def test_constructor_tuples(self):
values = np.array([(1,), (1, 2), (1,), (1, 2)], dtype=object)
result = Categorical(values)
expected = Index([(1,), (1, 2)], tupleize_cols=False)
tm.assert_index_equal(result.categories, expected)
assert result.ordered is False
def test_constructor_tuples_datetimes(self):
# numpy will auto reshape when all of the tuples are the
# same len, so add an extra one with 2 items and slice it off
values = np.array(
[
(Timestamp("2010-01-01"),),
(Timestamp("2010-01-02"),),
(Timestamp("2010-01-01"),),
(Timestamp("2010-01-02"),),
("a", "b"),
],
dtype=object,
)[:-1]
result = Categorical(values)
expected = Index(
[(Timestamp("2010-01-01"),), (Timestamp("2010-01-02"),)],
tupleize_cols=False,
)
tm.assert_index_equal(result.categories, expected)
def test_constructor_unsortable(self):
# it works!
arr = np.array([1, 2, 3, datetime.now()], dtype="O")
factor = Categorical(arr, ordered=False)
assert not factor.ordered
# this however will raise as cannot be sorted
msg = (
"'values' is not ordered, please explicitly specify the "
"categories order by passing in a categories argument."
)
with pytest.raises(TypeError, match=msg):
Categorical(arr, ordered=True)
def test_constructor_interval(self):
result = Categorical(
[Interval(1, 2), Interval(2, 3), Interval(3, 6)], ordered=True
)
ii = IntervalIndex([Interval(1, 2), Interval(2, 3), Interval(3, 6)])
exp = Categorical(ii, ordered=True)
tm.assert_categorical_equal(result, exp)
tm.assert_index_equal(result.categories, ii)
def test_constructor(self):
exp_arr = np.array(["a", "b", "c", "a", "b", "c"], dtype=np.object_)
c1 = Categorical(exp_arr)
tm.assert_numpy_array_equal(c1.__array__(), exp_arr)
c2 = Categorical(exp_arr, categories=["a", "b", "c"])
tm.assert_numpy_array_equal(c2.__array__(), exp_arr)
c2 = Categorical(exp_arr, categories=["c", "b", "a"])
tm.assert_numpy_array_equal(c2.__array__(), exp_arr)
# categories must be unique
msg = "Categorical categories must be unique"
with pytest.raises(ValueError, match=msg):
Categorical([1, 2], [1, 2, 2])
with pytest.raises(ValueError, match=msg):
Categorical(["a", "b"], ["a", "b", "b"])
# The default should be unordered
c1 = Categorical(["a", "b", "c", "a"])
assert not c1.ordered
# Categorical as input
c1 = Categorical(["a", "b", "c", "a"])
c2 = Categorical(c1)
tm.assert_categorical_equal(c1, c2)
c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"])
c2 = Categorical(c1)
tm.assert_categorical_equal(c1, c2)
c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"])
c2 = Categorical(c1)
tm.assert_categorical_equal(c1, c2)
c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"])
c2 = Categorical(c1, categories=["a", "b", "c"])
tm.assert_numpy_array_equal(c1.__array__(), c2.__array__())
tm.assert_index_equal(c2.categories, Index(["a", "b", "c"]))
# Series of dtype category
c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"])
c2 = Categorical(Series(c1))
tm.assert_categorical_equal(c1, c2)
c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"])
c2 = Categorical(Series(c1))
tm.assert_categorical_equal(c1, c2)
# Series
c1 = Categorical(["a", "b", "c", "a"])
c2 = Categorical(Series(["a", "b", "c", "a"]))
tm.assert_categorical_equal(c1, c2)
c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"])
c2 = Categorical(Series(["a", "b", "c", "a"]), categories=["a", "b", "c", "d"])
tm.assert_categorical_equal(c1, c2)
# This should result in integer categories, not float!
cat = Categorical([1, 2, 3, np.nan], categories=[1, 2, 3])
assert is_integer_dtype(cat.categories)
# https://github.com/pandas-dev/pandas/issues/3678
cat = Categorical([np.nan, 1, 2, 3])
assert is_integer_dtype(cat.categories)
# this should result in floats
cat = Categorical([np.nan, 1, 2.0, 3])
assert is_float_dtype(cat.categories)
cat = Categorical([np.nan, 1.0, 2.0, 3.0])
assert is_float_dtype(cat.categories)
# This doesn't work -> this would probably need some kind of "remember
# the original type" feature to try to cast the array interface result
# to...
# vals = np.asarray(cat[cat.notna()])
# assert is_integer_dtype(vals)
# corner cases
cat = Categorical([1])
assert len(cat.categories) == 1
assert cat.categories[0] == 1
assert len(cat.codes) == 1
assert cat.codes[0] == 0
cat = Categorical(["a"])
assert len(cat.categories) == 1
assert cat.categories[0] == "a"
assert len(cat.codes) == 1
assert cat.codes[0] == 0
# Scalars should be converted to lists
cat = Categorical(1)
assert len(cat.categories) == 1
assert cat.categories[0] == 1
assert len(cat.codes) == 1
assert cat.codes[0] == 0
# two arrays
# - when the first is an integer dtype and the second is not
# - when the resulting codes are all -1/NaN
with tm.assert_produces_warning(None):
c_old = Categorical([0, 1, 2, 0, 1, 2], categories=["a", "b", "c"]) # noqa
with tm.assert_produces_warning(None):
c_old = Categorical([0, 1, 2, 0, 1, 2], categories=[3, 4, 5]) # noqa
# the next one are from the old docs
with tm.assert_produces_warning(None):
c_old2 = Categorical([0, 1, 2, 0, 1, 2], [1, 2, 3]) # noqa
cat = Categorical([1, 2], categories=[1, 2, 3])
# this is a legitimate constructor
with tm.assert_produces_warning(None):
c = Categorical( # noqa
np.array([], dtype="int64"), categories=[3, 2, 1], ordered=True
)
def test_constructor_with_existing_categories(self):
# GH25318: constructing with pd.Series used to bogusly skip recoding
# categories
c0 = Categorical(["a", "b", "c", "a"])
c1 = Categorical(["a", "b", "c", "a"], categories=["b", "c"])
c2 = Categorical(c0, categories=c1.categories)
tm.assert_categorical_equal(c1, c2)
c3 = Categorical(Series(c0), categories=c1.categories)
tm.assert_categorical_equal(c1, c3)
def test_constructor_not_sequence(self):
# https://github.com/pandas-dev/pandas/issues/16022
msg = r"^Parameter 'categories' must be list-like, was"
with pytest.raises(TypeError, match=msg):
Categorical(["a", "b"], categories="a")
def test_constructor_with_null(self):
# Cannot have NaN in categories
msg = "Categorial categories cannot be null"
with pytest.raises(ValueError, match=msg):
Categorical([np.nan, "a", "b", "c"], categories=[np.nan, "a", "b", "c"])
with pytest.raises(ValueError, match=msg):
Categorical([None, "a", "b", "c"], categories=[None, "a", "b", "c"])
with pytest.raises(ValueError, match=msg):
Categorical(
DatetimeIndex(["nat", "20160101"]),
categories=[NaT, Timestamp("20160101")],
)
def test_constructor_with_index(self):
ci = CategoricalIndex(list("aabbca"), categories=list("cab"))
tm.assert_categorical_equal(ci.values, Categorical(ci))
ci = CategoricalIndex(list("aabbca"), categories=list("cab"))
tm.assert_categorical_equal(
ci.values, Categorical(ci.astype(object), categories=ci.categories)
)
def test_constructor_with_generator(self):
# This was raising an Error in isna(single_val).any() because isna
# returned a scalar for a generator
xrange = range
exp = Categorical([0, 1, 2])
cat = Categorical((x for x in [0, 1, 2]))
tm.assert_categorical_equal(cat, exp)
cat = Categorical(xrange(3))
tm.assert_categorical_equal(cat, exp)
# This uses xrange internally
from pandas.core.index import MultiIndex
MultiIndex.from_product([range(5), ["a", "b", "c"]])
# check that categories accept generators and sequences
cat = Categorical([0, 1, 2], categories=(x for x in [0, 1, 2]))
tm.assert_categorical_equal(cat, exp)
cat = Categorical([0, 1, 2], categories=xrange(3))
tm.assert_categorical_equal(cat, exp)
@pytest.mark.parametrize(
"dtl",
[
date_range("1995-01-01 00:00:00", periods=5, freq="s"),
date_range("1995-01-01 00:00:00", periods=5, freq="s", tz="US/Eastern"),
timedelta_range("1 day", periods=5, freq="s"),
],
)
def test_constructor_with_datetimelike(self, dtl):
# see gh-12077
# constructor with a datetimelike and NaT
s = Series(dtl)
c = Categorical(s)
expected = type(dtl)(s)
expected.freq = None
tm.assert_index_equal(c.categories, expected)
tm.assert_numpy_array_equal(c.codes, np.arange(5, dtype="int8"))
# with NaT
s2 = s.copy()
s2.iloc[-1] = NaT
c = Categorical(s2)
expected = type(dtl)(s2.dropna())
expected.freq = None
tm.assert_index_equal(c.categories, expected)
exp = np.array([0, 1, 2, 3, -1], dtype=np.int8)
tm.assert_numpy_array_equal(c.codes, exp)
result = repr(c)
assert "NaT" in result
def test_constructor_from_index_series_datetimetz(self):
idx = date_range("2015-01-01 10:00", freq="D", periods=3, tz="US/Eastern")
result = Categorical(idx)
tm.assert_index_equal(result.categories, idx)
result = Categorical(Series(idx))
tm.assert_index_equal(result.categories, idx)
def test_constructor_from_index_series_timedelta(self):
idx = timedelta_range("1 days", freq="D", periods=3)
result = Categorical(idx)
tm.assert_index_equal(result.categories, idx)
result = Categorical(Series(idx))
tm.assert_index_equal(result.categories, idx)
def test_constructor_from_index_series_period(self):
idx = period_range("2015-01-01", freq="D", periods=3)
result = Categorical(idx)
tm.assert_index_equal(result.categories, idx)
result = Categorical(Series(idx))
tm.assert_index_equal(result.categories, idx)
def test_constructor_invariant(self):
# GH 14190
vals = [
np.array([1.0, 1.2, 1.8, np.nan]),
np.array([1, 2, 3], dtype="int64"),
["a", "b", "c", np.nan],
[pd.Period("2014-01"), pd.Period("2014-02"), NaT],
[Timestamp("2014-01-01"), Timestamp("2014-01-02"), NaT],
[
Timestamp("2014-01-01", tz="US/Eastern"),
Timestamp("2014-01-02", tz="US/Eastern"),
NaT,
],
]
for val in vals:
c = Categorical(val)
c2 = Categorical(c)
tm.assert_categorical_equal(c, c2)
@pytest.mark.parametrize("ordered", [True, False])
def test_constructor_with_dtype(self, ordered):
categories = ["b", "a", "c"]
dtype = CategoricalDtype(categories, ordered=ordered)
result = Categorical(["a", "b", "a", "c"], dtype=dtype)
expected = Categorical(
["a", "b", "a", "c"], categories=categories, ordered=ordered
)
tm.assert_categorical_equal(result, expected)
assert result.ordered is ordered
def test_constructor_dtype_and_others_raises(self):
dtype = CategoricalDtype(["a", "b"], ordered=True)
msg = "Cannot specify `categories` or `ordered` together with `dtype`."
with pytest.raises(ValueError, match=msg):
Categorical(["a", "b"], categories=["a", "b"], dtype=dtype)
with pytest.raises(ValueError, match=msg):
Categorical(["a", "b"], ordered=True, dtype=dtype)
with pytest.raises(ValueError, match=msg):
Categorical(["a", "b"], ordered=False, dtype=dtype)
@pytest.mark.parametrize("categories", [None, ["a", "b"], ["a", "c"]])
@pytest.mark.parametrize("ordered", [True, False])
def test_constructor_str_category(self, categories, ordered):
result = Categorical(
["a", "b"], categories=categories, ordered=ordered, dtype="category"
)
expected = Categorical(["a", "b"], categories=categories, ordered=ordered)
tm.assert_categorical_equal(result, expected)
def test_constructor_str_unknown(self):
with pytest.raises(ValueError, match="Unknown dtype"):
Categorical([1, 2], dtype="foo")
def test_constructor_from_categorical_with_dtype(self):
dtype = CategoricalDtype(["a", "b", "c"], ordered=True)
values = Categorical(["a", "b", "d"])
result = Categorical(values, dtype=dtype)
# We use dtype.categories, not values.categories
expected = Categorical(
["a", "b", "d"], categories=["a", "b", "c"], ordered=True
)
tm.assert_categorical_equal(result, expected)
def test_constructor_from_categorical_with_unknown_dtype(self):
dtype = CategoricalDtype(None, ordered=True)
values = Categorical(["a", "b", "d"])
result = Categorical(values, dtype=dtype)
# We use values.categories, not dtype.categories
expected = Categorical(
["a", "b", "d"], categories=["a", "b", "d"], ordered=True
)
tm.assert_categorical_equal(result, expected)
def test_constructor_from_categorical_string(self):
values = Categorical(["a", "b", "d"])
# use categories, ordered
result = Categorical(
values, categories=["a", "b", "c"], ordered=True, dtype="category"
)
expected = Categorical(
["a", "b", "d"], categories=["a", "b", "c"], ordered=True
)
tm.assert_categorical_equal(result, expected)
# No string
result = Categorical(values, categories=["a", "b", "c"], ordered=True)
tm.assert_categorical_equal(result, expected)
def test_constructor_with_categorical_categories(self):
# GH17884
expected = Categorical(["a", "b"], categories=["a", "b", "c"])
result = Categorical(["a", "b"], categories=Categorical(["a", "b", "c"]))
tm.assert_categorical_equal(result, expected)
result = Categorical(["a", "b"], categories=CategoricalIndex(["a", "b", "c"]))
tm.assert_categorical_equal(result, expected)
def test_from_codes(self):
# too few categories
dtype = CategoricalDtype(categories=[1, 2])
msg = "codes need to be between "
with pytest.raises(ValueError, match=msg):
Categorical.from_codes([1, 2], categories=dtype.categories)
with pytest.raises(ValueError, match=msg):
Categorical.from_codes([1, 2], dtype=dtype)
# no int codes
msg = "codes need to be array-like integers"
with pytest.raises(ValueError, match=msg):
Categorical.from_codes(["a"], categories=dtype.categories)
with pytest.raises(ValueError, match=msg):
Categorical.from_codes(["a"], dtype=dtype)
# no unique categories
with pytest.raises(ValueError, match="Categorical categories must be unique"):
Categorical.from_codes([0, 1, 2], categories=["a", "a", "b"])
# NaN categories included
with pytest.raises(ValueError, match="Categorial categories cannot be null"):
Categorical.from_codes([0, 1, 2], categories=["a", "b", np.nan])
# too negative
dtype = CategoricalDtype(categories=["a", "b", "c"])
msg = r"codes need to be between -1 and len\(categories\)-1"
with pytest.raises(ValueError, match=msg):
Categorical.from_codes([-2, 1, 2], categories=dtype.categories)
with pytest.raises(ValueError, match=msg):
Categorical.from_codes([-2, 1, 2], dtype=dtype)
exp = Categorical(["a", "b", "c"], ordered=False)
res = Categorical.from_codes([0, 1, 2], categories=dtype.categories)
tm.assert_categorical_equal(exp, res)
res = Categorical.from_codes([0, 1, 2], dtype=dtype)
tm.assert_categorical_equal(exp, res)
def test_from_codes_with_categorical_categories(self):
# GH17884
expected = Categorical(["a", "b"], categories=["a", "b", "c"])
result = Categorical.from_codes([0, 1], categories=Categorical(["a", "b", "c"]))
tm.assert_categorical_equal(result, expected)
result = Categorical.from_codes(
[0, 1], categories=CategoricalIndex(["a", "b", "c"])
)
tm.assert_categorical_equal(result, expected)
# non-unique Categorical still raises
with pytest.raises(ValueError, match="Categorical categories must be unique"):
Categorical.from_codes([0, 1], Categorical(["a", "b", "a"]))
def test_from_codes_with_nan_code(self):
# GH21767
codes = [1, 2, np.nan]
dtype = CategoricalDtype(categories=["a", "b", "c"])
with pytest.raises(ValueError, match="codes need to be array-like integers"):
Categorical.from_codes(codes, categories=dtype.categories)
with pytest.raises(ValueError, match="codes need to be array-like integers"):
Categorical.from_codes(codes, dtype=dtype)
def test_from_codes_with_float(self):
# GH21767
codes = [1.0, 2.0, 0] # integer, but in float dtype
dtype = CategoricalDtype(categories=["a", "b", "c"])
with tm.assert_produces_warning(FutureWarning):
cat = Categorical.from_codes(codes, dtype.categories)
tm.assert_numpy_array_equal(cat.codes, np.array([1, 2, 0], dtype="i1"))
with tm.assert_produces_warning(FutureWarning):
cat = Categorical.from_codes(codes, dtype=dtype)
tm.assert_numpy_array_equal(cat.codes, np.array([1, 2, 0], dtype="i1"))
codes = [1.1, 2.0, 0] # non-integer
with pytest.raises(ValueError, match="codes need to be array-like integers"):
Categorical.from_codes(codes, dtype.categories)
with pytest.raises(ValueError, match="codes need to be array-like integers"):
Categorical.from_codes(codes, dtype=dtype)
def test_from_codes_with_dtype_raises(self):
msg = "Cannot specify"
with pytest.raises(ValueError, match=msg):
Categorical.from_codes(
[0, 1], categories=["a", "b"], dtype=CategoricalDtype(["a", "b"])
)
with pytest.raises(ValueError, match=msg):
Categorical.from_codes(
[0, 1], ordered=True, dtype=CategoricalDtype(["a", "b"])
)
def test_from_codes_neither(self):
msg = "Both were None"
with pytest.raises(ValueError, match=msg):
Categorical.from_codes([0, 1])
@pytest.mark.parametrize("dtype", [None, "category"])
def test_from_inferred_categories(self, dtype):
cats = ["a", "b"]
codes = np.array([0, 0, 1, 1], dtype="i8")
result = Categorical._from_inferred_categories(cats, codes, dtype)
expected = Categorical.from_codes(codes, cats)
tm.assert_categorical_equal(result, expected)
@pytest.mark.parametrize("dtype", [None, "category"])
def test_from_inferred_categories_sorts(self, dtype):
cats = ["b", "a"]
codes = np.array([0, 1, 1, 1], dtype="i8")
result = Categorical._from_inferred_categories(cats, codes, dtype)
expected = Categorical.from_codes([1, 0, 0, 0], ["a", "b"])
tm.assert_categorical_equal(result, expected)
def test_from_inferred_categories_dtype(self):
cats = ["a", "b", "d"]
codes = np.array([0, 1, 0, 2], dtype="i8")
dtype = CategoricalDtype(["c", "b", "a"], ordered=True)
result = Categorical._from_inferred_categories(cats, codes, dtype)
expected = Categorical(
["a", "b", "a", "d"], categories=["c", "b", "a"], ordered=True
)
tm.assert_categorical_equal(result, expected)
def test_from_inferred_categories_coerces(self):
cats = ["1", "2", "bad"]
codes = np.array([0, 0, 1, 2], dtype="i8")
dtype = CategoricalDtype([1, 2])
result = Categorical._from_inferred_categories(cats, codes, dtype)
expected = Categorical([1, 1, 2, np.nan])
tm.assert_categorical_equal(result, expected)
@pytest.mark.parametrize("ordered", [None, True, False])
def test_construction_with_ordered(self, ordered):
# GH 9347, 9190
cat = Categorical([0, 1, 2], ordered=ordered)
assert cat.ordered == bool(ordered)
@pytest.mark.xfail(reason="Imaginary values not supported in Categorical")
def test_constructor_imaginary(self):
values = [1, 2, 3 + 1j]
c1 = Categorical(values)
tm.assert_index_equal(c1.categories, Index(values))
tm.assert_numpy_array_equal(np.array(c1), np.array(values))