Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

aaronreidsmith / pandas   python

Repository URL to install this package:

Version: 0.25.3 

/ tests / frame / test_indexing.py

from datetime import date, datetime, time, timedelta
import re
from warnings import catch_warnings, simplefilter

import numpy as np
import pytest

from pandas._libs.tslib import iNaT

from pandas.core.dtypes.common import is_float_dtype, is_integer, is_scalar
from pandas.core.dtypes.dtypes import CategoricalDtype

import pandas as pd
from pandas import (
    Categorical,
    DataFrame,
    DatetimeIndex,
    Index,
    MultiIndex,
    Series,
    Timestamp,
    date_range,
    isna,
    notna,
)
import pandas.core.common as com
from pandas.core.indexing import IndexingError
from pandas.tests.frame.common import TestData
import pandas.util.testing as tm
from pandas.util.testing import (
    assert_almost_equal,
    assert_frame_equal,
    assert_series_equal,
)

from pandas.tseries.offsets import BDay


class TestDataFrameIndexing(TestData):
    def test_getitem(self, float_frame):
        # Slicing
        sl = float_frame[:20]
        assert len(sl.index) == 20

        # Column access
        for _, series in sl.items():
            assert len(series.index) == 20
            assert tm.equalContents(series.index, sl.index)

        for key, _ in float_frame._series.items():
            assert float_frame[key] is not None

        assert "random" not in float_frame
        with pytest.raises(KeyError, match="random"):
            float_frame["random"]

        df = float_frame.copy()
        df["$10"] = np.random.randn(len(df))

        ad = np.random.randn(len(df))
        df["@awesome_domain"] = ad

        with pytest.raises(KeyError, match=re.escape("'df[\"$10\"]'")):
            df.__getitem__('df["$10"]')

        res = df["@awesome_domain"]
        tm.assert_numpy_array_equal(ad, res.values)

    def test_getitem_dupe_cols(self):
        df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=["a", "a", "b"])
        msg = "\"None of [Index(['baf'], dtype='object')] are in the [columns]\""
        with pytest.raises(KeyError, match=re.escape(msg)):
            df[["baf"]]

    def test_get(self, float_frame):
        b = float_frame.get("B")
        assert_series_equal(b, float_frame["B"])

        assert float_frame.get("foo") is None
        assert_series_equal(float_frame.get("foo", float_frame["B"]), float_frame["B"])

    @pytest.mark.parametrize(
        "df",
        [
            DataFrame(),
            DataFrame(columns=list("AB")),
            DataFrame(columns=list("AB"), index=range(3)),
        ],
    )
    def test_get_none(self, df):
        # see gh-5652
        assert df.get(None) is None

    @pytest.mark.parametrize("key_type", [iter, np.array, Series, Index])
    def test_loc_iterable(self, float_frame, key_type):
        idx = key_type(["A", "B", "C"])
        result = float_frame.loc[:, idx]
        expected = float_frame.loc[:, ["A", "B", "C"]]
        assert_frame_equal(result, expected)

    @pytest.mark.parametrize(
        "idx_type",
        [
            list,
            iter,
            Index,
            set,
            lambda l: dict(zip(l, range(len(l)))),
            lambda l: dict(zip(l, range(len(l)))).keys(),
        ],
        ids=["list", "iter", "Index", "set", "dict", "dict_keys"],
    )
    @pytest.mark.parametrize("levels", [1, 2])
    def test_getitem_listlike(self, idx_type, levels, float_frame):
        # GH 21294

        if levels == 1:
            frame, missing = float_frame, "food"
        else:
            # MultiIndex columns
            frame = DataFrame(
                np.random.randn(8, 3),
                columns=Index(
                    [("foo", "bar"), ("baz", "qux"), ("peek", "aboo")],
                    name=("sth", "sth2"),
                ),
            )
            missing = ("good", "food")

        keys = [frame.columns[1], frame.columns[0]]
        idx = idx_type(keys)
        idx_check = list(idx_type(keys))

        result = frame[idx]

        expected = frame.loc[:, idx_check]
        expected.columns.names = frame.columns.names

        assert_frame_equal(result, expected)

        idx = idx_type(keys + [missing])
        with pytest.raises(KeyError, match="not in index"):
            frame[idx]

    @pytest.mark.parametrize(
        "val,expected", [(2 ** 63 - 1, Series([1])), (2 ** 63, Series([2]))]
    )
    def test_loc_uint64(self, val, expected):
        # see gh-19399
        df = DataFrame([1, 2], index=[2 ** 63 - 1, 2 ** 63])
        result = df.loc[val]

        expected.name = val
        tm.assert_series_equal(result, expected)

    def test_getitem_callable(self, float_frame):
        # GH 12533
        result = float_frame[lambda x: "A"]
        tm.assert_series_equal(result, float_frame.loc[:, "A"])

        result = float_frame[lambda x: ["A", "B"]]
        tm.assert_frame_equal(result, float_frame.loc[:, ["A", "B"]])

        df = float_frame[:3]
        result = df[lambda x: [True, False, True]]
        tm.assert_frame_equal(result, float_frame.iloc[[0, 2], :])

    def test_setitem_list(self, float_frame):

        float_frame["E"] = "foo"
        data = float_frame[["A", "B"]]
        float_frame[["B", "A"]] = data

        assert_series_equal(float_frame["B"], data["A"], check_names=False)
        assert_series_equal(float_frame["A"], data["B"], check_names=False)

        msg = "Columns must be same length as key"
        with pytest.raises(ValueError, match=msg):
            data[["A"]] = float_frame[["A", "B"]]

        msg = "Length of values does not match length of index"
        with pytest.raises(ValueError, match=msg):
            data["A"] = range(len(data.index) - 1)

        df = DataFrame(0, index=range(3), columns=["tt1", "tt2"], dtype=np.int_)
        df.loc[1, ["tt1", "tt2"]] = [1, 2]

        result = df.loc[df.index[1], ["tt1", "tt2"]]
        expected = Series([1, 2], df.columns, dtype=np.int_, name=1)
        assert_series_equal(result, expected)

        df["tt1"] = df["tt2"] = "0"
        df.loc[df.index[1], ["tt1", "tt2"]] = ["1", "2"]
        result = df.loc[df.index[1], ["tt1", "tt2"]]
        expected = Series(["1", "2"], df.columns, name=1)
        assert_series_equal(result, expected)

    def test_setitem_list_not_dataframe(self, float_frame):
        data = np.random.randn(len(float_frame), 2)
        float_frame[["A", "B"]] = data
        assert_almost_equal(float_frame[["A", "B"]].values, data)

    def test_setitem_list_of_tuples(self, float_frame):
        tuples = list(zip(float_frame["A"], float_frame["B"]))
        float_frame["tuples"] = tuples

        result = float_frame["tuples"]
        expected = Series(tuples, index=float_frame.index, name="tuples")
        assert_series_equal(result, expected)

    def test_setitem_mulit_index(self):
        # GH7655, test that assigning to a sub-frame of a frame
        # with multi-index columns aligns both rows and columns
        it = ["jim", "joe", "jolie"], ["first", "last"], ["left", "center", "right"]

        cols = MultiIndex.from_product(it)
        index = pd.date_range("20141006", periods=20)
        vals = np.random.randint(1, 1000, (len(index), len(cols)))
        df = pd.DataFrame(vals, columns=cols, index=index)

        i, j = df.index.values.copy(), it[-1][:]

        np.random.shuffle(i)
        df["jim"] = df["jolie"].loc[i, ::-1]
        assert_frame_equal(df["jim"], df["jolie"])

        np.random.shuffle(j)
        df[("joe", "first")] = df[("jolie", "last")].loc[i, j]
        assert_frame_equal(df[("joe", "first")], df[("jolie", "last")])

        np.random.shuffle(j)
        df[("joe", "last")] = df[("jolie", "first")].loc[i, j]
        assert_frame_equal(df[("joe", "last")], df[("jolie", "first")])

    def test_setitem_callable(self):
        # GH 12533
        df = pd.DataFrame({"A": [1, 2, 3, 4], "B": [5, 6, 7, 8]})
        df[lambda x: "A"] = [11, 12, 13, 14]

        exp = pd.DataFrame({"A": [11, 12, 13, 14], "B": [5, 6, 7, 8]})
        tm.assert_frame_equal(df, exp)

    def test_setitem_other_callable(self):
        # GH 13299
        def inc(x):
            return x + 1

        df = pd.DataFrame([[-1, 1], [1, -1]])
        df[df > 0] = inc

        expected = pd.DataFrame([[-1, inc], [inc, -1]])
        tm.assert_frame_equal(df, expected)

    def test_getitem_boolean(
        self, float_string_frame, mixed_float_frame, mixed_int_frame, datetime_frame
    ):
        # boolean indexing
        d = datetime_frame.index[10]
        indexer = datetime_frame.index > d
        indexer_obj = indexer.astype(object)

        subindex = datetime_frame.index[indexer]
        subframe = datetime_frame[indexer]

        tm.assert_index_equal(subindex, subframe.index)
        with pytest.raises(ValueError, match="Item wrong length"):
            datetime_frame[indexer[:-1]]

        subframe_obj = datetime_frame[indexer_obj]
        assert_frame_equal(subframe_obj, subframe)

        with pytest.raises(ValueError, match="boolean values only"):
            datetime_frame[datetime_frame]

        # test that Series work
        indexer_obj = Series(indexer_obj, datetime_frame.index)

        subframe_obj = datetime_frame[indexer_obj]
        assert_frame_equal(subframe_obj, subframe)

        # test that Series indexers reindex
        # we are producing a warning that since the passed boolean
        # key is not the same as the given index, we will reindex
        # not sure this is really necessary
        with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
            indexer_obj = indexer_obj.reindex(datetime_frame.index[::-1])
            subframe_obj = datetime_frame[indexer_obj]
            assert_frame_equal(subframe_obj, subframe)

        # test df[df > 0]
        for df in [
            datetime_frame,
            float_string_frame,
            mixed_float_frame,
            mixed_int_frame,
        ]:
            if df is float_string_frame:
                continue

            data = df._get_numeric_data()
            bif = df[df > 0]
            bifw = DataFrame(
                {c: np.where(data[c] > 0, data[c], np.nan) for c in data.columns},
                index=data.index,
                columns=data.columns,
            )

            # add back other columns to compare
            for c in df.columns:
                if c not in bifw:
                    bifw[c] = df[c]
            bifw = bifw.reindex(columns=df.columns)

            assert_frame_equal(bif, bifw, check_dtype=False)
            for c in df.columns:
                if bif[c].dtype != bifw[c].dtype:
                    assert bif[c].dtype == df[c].dtype

    def test_getitem_boolean_casting(self, datetime_frame):

        # don't upcast if we don't need to
        df = datetime_frame.copy()
        df["E"] = 1
        df["E"] = df["E"].astype("int32")
        df["E1"] = df["E"].copy()
        df["F"] = 1
        df["F"] = df["F"].astype("int64")
        df["F1"] = df["F"].copy()

        casted = df[df > 0]
        result = casted.dtypes
        expected = Series(
            [np.dtype("float64")] * 4
            + [np.dtype("int32")] * 2
            + [np.dtype("int64")] * 2,
            index=["A", "B", "C", "D", "E", "E1", "F", "F1"],
        )
        assert_series_equal(result, expected)

        # int block splitting
        df.loc[df.index[1:3], ["E1", "F1"]] = 0
        casted = df[df > 0]
        result = casted.dtypes
        expected = Series(
            [np.dtype("float64")] * 4
            + [np.dtype("int32")]
            + [np.dtype("float64")]
            + [np.dtype("int64")]
            + [np.dtype("float64")],
            index=["A", "B", "C", "D", "E", "E1", "F", "F1"],
        )
        assert_series_equal(result, expected)

        # where dtype conversions
        # GH 3733
        df = DataFrame(data=np.random.randn(100, 50))
        df = df.where(df > 0)  # create nans
        bools = df > 0
        mask = isna(df)
        expected = bools.astype(float).mask(mask)
        result = bools.mask(mask)
        assert_frame_equal(result, expected)

    def test_getitem_boolean_list(self):
        df = DataFrame(np.arange(12).reshape(3, 4))

        def _checkit(lst):
            result = df[lst]
            expected = df.loc[df.index[lst]]
            assert_frame_equal(result, expected)

        _checkit([True, False, True])
        _checkit([True, True, True])
        _checkit([False, False, False])

    def test_getitem_boolean_iadd(self):
        arr = np.random.randn(5, 5)

        df = DataFrame(arr.copy(), columns=["A", "B", "C", "D", "E"])

        df[df < 0] += 1
        arr[arr < 0] += 1

        assert_almost_equal(df.values, arr)

    def test_boolean_index_empty_corner(self):
        # #2096
        blah = DataFrame(np.empty([0, 1]), columns=["A"], index=DatetimeIndex([]))

        # both of these should succeed trivially
        k = np.array([], bool)

        blah[k]
        blah[k] = 0

    def test_getitem_ix_mixed_integer(self):
        df = DataFrame(
            np.random.randn(4, 3), index=[1, 10, "C", "E"], columns=[1, 2, 3]
        )

        result = df.iloc[:-1]
        expected = df.loc[df.index[:-1]]
        assert_frame_equal(result, expected)

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            result = df.ix[[1, 10]]
            expected = df.ix[Index([1, 10], dtype=object)]
        assert_frame_equal(result, expected)

        # 11320
        df = pd.DataFrame(
            {
                "rna": (1.5, 2.2, 3.2, 4.5),
                -1000: [11, 21, 36, 40],
                0: [10, 22, 43, 34],
                1000: [0, 10, 20, 30],
            },
            columns=["rna", -1000, 0, 1000],
        )
        result = df[[1000]]
        expected = df.iloc[:, [3]]
        assert_frame_equal(result, expected)
        result = df[[-1000]]
        expected = df.iloc[:, [1]]
        assert_frame_equal(result, expected)

    def test_getitem_setitem_ix_negative_integers(self, float_frame):
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            result = float_frame.ix[:, -1]
        assert_series_equal(result, float_frame["D"])

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            result = float_frame.ix[:, [-1]]
        assert_frame_equal(result, float_frame[["D"]])

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            result = float_frame.ix[:, [-1, -2]]
        assert_frame_equal(result, float_frame[["D", "C"]])

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            float_frame.ix[:, [-1]] = 0
        assert (float_frame["D"] == 0).all()

        df = DataFrame(np.random.randn(8, 4))
        # ix does label-based indexing when having an integer index
        msg = "\"None of [Int64Index([-1], dtype='int64')] are in the [index]\""
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            with pytest.raises(KeyError, match=re.escape(msg)):
                df.ix[[-1]]

        msg = "\"None of [Int64Index([-1], dtype='int64')] are in the [columns]\""
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            with pytest.raises(KeyError, match=re.escape(msg)):
                df.ix[:, [-1]]

        # #1942
        a = DataFrame(np.random.randn(20, 2), index=[chr(x + 65) for x in range(20)])
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            a.ix[-1] = a.ix[-2]

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            assert_series_equal(a.ix[-1], a.ix[-2], check_names=False)
            assert a.ix[-1].name == "T"
            assert a.ix[-2].name == "S"

    def test_getattr(self, float_frame):
        assert_series_equal(float_frame.A, float_frame["A"])
        msg = "'DataFrame' object has no attribute 'NONEXISTENT_NAME'"
        with pytest.raises(AttributeError, match=msg):
            float_frame.NONEXISTENT_NAME

    def test_setattr_column(self):
        df = DataFrame({"foobar": 1}, index=range(10))

        df.foobar = 5
        assert (df.foobar == 5).all()

    def test_setitem(self, float_frame):
        # not sure what else to do here
        series = float_frame["A"][::2]
        float_frame["col5"] = series
        assert "col5" in float_frame

        assert len(series) == 15
        assert len(float_frame) == 30

        exp = np.ravel(np.column_stack((series.values, [np.nan] * 15)))
        exp = Series(exp, index=float_frame.index, name="col5")
        tm.assert_series_equal(float_frame["col5"], exp)

        series = float_frame["A"]
        float_frame["col6"] = series
        tm.assert_series_equal(series, float_frame["col6"], check_names=False)

        msg = (
            r"\"None of \[Float64Index\(\[.*dtype='float64'\)\] are in the"
            r" \[columns\]\""
        )
        with pytest.raises(KeyError, match=msg):
            float_frame[np.random.randn(len(float_frame) + 1)] = 1

        # set ndarray
        arr = np.random.randn(len(float_frame))
        float_frame["col9"] = arr
        assert (float_frame["col9"] == arr).all()

        float_frame["col7"] = 5
        assert (float_frame["col7"] == 5).all()

        float_frame["col0"] = 3.14
        assert (float_frame["col0"] == 3.14).all()

        float_frame["col8"] = "foo"
        assert (float_frame["col8"] == "foo").all()

        # this is partially a view (e.g. some blocks are view)
        # so raise/warn
        smaller = float_frame[:2]

        with pytest.raises(com.SettingWithCopyError):
            smaller["col10"] = ["1", "2"]

        assert smaller["col10"].dtype == np.object_
        assert (smaller["col10"] == ["1", "2"]).all()

        # dtype changing GH4204
        df = DataFrame([[0, 0]])
        df.iloc[0] = np.nan
        expected = DataFrame([[np.nan, np.nan]])
        assert_frame_equal(df, expected)

        df = DataFrame([[0, 0]])
        df.loc[0] = np.nan
        assert_frame_equal(df, expected)

    @pytest.mark.parametrize("dtype", ["int32", "int64", "float32", "float64"])
    def test_setitem_dtype(self, dtype, float_frame):
        arr = np.random.randn(len(float_frame))

        float_frame[dtype] = np.array(arr, dtype=dtype)
        assert float_frame[dtype].dtype.name == dtype

    def test_setitem_tuple(self, float_frame):
        float_frame["A", "B"] = float_frame["A"]
        assert_series_equal(float_frame["A", "B"], float_frame["A"], check_names=False)

    def test_setitem_always_copy(self, float_frame):
        s = float_frame["A"].copy()
        float_frame["E"] = s

        float_frame["E"][5:10] = np.nan
        assert notna(s[5:10]).all()

    def test_setitem_boolean(self, float_frame):
        df = float_frame.copy()
        values = float_frame.values

        df[df["A"] > 0] = 4
        values[values[:, 0] > 0] = 4
        assert_almost_equal(df.values, values)

        # test that column reindexing works
        series = df["A"] == 4
        series = series.reindex(df.index[::-1])
        df[series] = 1
        values[values[:, 0] == 4] = 1
        assert_almost_equal(df.values, values)

        df[df > 0] = 5
        values[values > 0] = 5
        assert_almost_equal(df.values, values)

        df[df == 5] = 0
        values[values == 5] = 0
        assert_almost_equal(df.values, values)

        # a df that needs alignment first
        df[df[:-1] < 0] = 2
        np.putmask(values[:-1], values[:-1] < 0, 2)
        assert_almost_equal(df.values, values)

        # indexed with same shape but rows-reversed df
        df[df[::-1] == 2] = 3
        values[values == 2] = 3
        assert_almost_equal(df.values, values)

        msg = "Must pass DataFrame or 2-d ndarray with boolean values only"
        with pytest.raises(TypeError, match=msg):
            df[df * 0] = 2

        # index with DataFrame
        mask = df > np.abs(df)
        expected = df.copy()
        df[df > np.abs(df)] = np.nan
        expected.values[mask.values] = np.nan
        assert_frame_equal(df, expected)

        # set from DataFrame
        expected = df.copy()
        df[df > np.abs(df)] = df * 2
        np.putmask(expected.values, mask.values, df.values * 2)
        assert_frame_equal(df, expected)

    @pytest.mark.parametrize(
        "mask_type",
        [lambda df: df > np.abs(df) / 2, lambda df: (df > np.abs(df) / 2).values],
        ids=["dataframe", "array"],
    )
    def test_setitem_boolean_mask(self, mask_type, float_frame):

        # Test for issue #18582
        df = float_frame.copy()
        mask = mask_type(df)

        # index with boolean mask
        result = df.copy()
        result[mask] = np.nan

        expected = df.copy()
        expected.values[np.array(mask)] = np.nan
        assert_frame_equal(result, expected)

    def test_setitem_cast(self, float_frame):
        float_frame["D"] = float_frame["D"].astype("i8")
        assert float_frame["D"].dtype == np.int64

        # #669, should not cast?
        # this is now set to int64, which means a replacement of the column to
        # the value dtype (and nothing to do with the existing dtype)
        float_frame["B"] = 0
        assert float_frame["B"].dtype == np.int64

        # cast if pass array of course
        float_frame["B"] = np.arange(len(float_frame))
        assert issubclass(float_frame["B"].dtype.type, np.integer)

        float_frame["foo"] = "bar"
        float_frame["foo"] = 0
        assert float_frame["foo"].dtype == np.int64

        float_frame["foo"] = "bar"
        float_frame["foo"] = 2.5
        assert float_frame["foo"].dtype == np.float64

        float_frame["something"] = 0
        assert float_frame["something"].dtype == np.int64
        float_frame["something"] = 2
        assert float_frame["something"].dtype == np.int64
        float_frame["something"] = 2.5
        assert float_frame["something"].dtype == np.float64

        # GH 7704
        # dtype conversion on setting
        df = DataFrame(np.random.rand(30, 3), columns=tuple("ABC"))
        df["event"] = np.nan
        df.loc[10, "event"] = "foo"
        result = df.dtypes
        expected = Series(
            [np.dtype("float64")] * 3 + [np.dtype("object")],
            index=["A", "B", "C", "event"],
        )
        assert_series_equal(result, expected)

        # Test that data type is preserved . #5782
        df = DataFrame({"one": np.arange(6, dtype=np.int8)})
        df.loc[1, "one"] = 6
        assert df.dtypes.one == np.dtype(np.int8)
        df.one = np.int8(7)
        assert df.dtypes.one == np.dtype(np.int8)

    def test_setitem_boolean_column(self, float_frame):
        expected = float_frame.copy()
        mask = float_frame["A"] > 0

        float_frame.loc[mask, "B"] = 0
        expected.values[mask.values, 1] = 0

        assert_frame_equal(float_frame, expected)

    def test_frame_setitem_timestamp(self):
        # GH#2155
        columns = date_range(start="1/1/2012", end="2/1/2012", freq=BDay())
        data = DataFrame(columns=columns, index=range(10))
        t = datetime(2012, 11, 1)
        ts = Timestamp(t)
        data[ts] = np.nan  # works, mostly a smoke-test
        assert np.isnan(data[ts]).all()

    def test_setitem_corner(self, float_frame):
        # corner case
        df = DataFrame({"B": [1.0, 2.0, 3.0], "C": ["a", "b", "c"]}, index=np.arange(3))
        del df["B"]
        df["B"] = [1.0, 2.0, 3.0]
        assert "B" in df
        assert len(df.columns) == 2

        df["A"] = "beginning"
        df["E"] = "foo"
        df["D"] = "bar"
        df[datetime.now()] = "date"
        df[datetime.now()] = 5.0

        # what to do when empty frame with index
        dm = DataFrame(index=float_frame.index)
        dm["A"] = "foo"
        dm["B"] = "bar"
        assert len(dm.columns) == 2
        assert dm.values.dtype == np.object_

        # upcast
        dm["C"] = 1
        assert dm["C"].dtype == np.int64

        dm["E"] = 1.0
        assert dm["E"].dtype == np.float64

        # set existing column
        dm["A"] = "bar"
        assert "bar" == dm["A"][0]

        dm = DataFrame(index=np.arange(3))
        dm["A"] = 1
        dm["foo"] = "bar"
        del dm["foo"]
        dm["foo"] = "bar"
        assert dm["foo"].dtype == np.object_

        dm["coercable"] = ["1", "2", "3"]
        assert dm["coercable"].dtype == np.object_

    def test_setitem_corner2(self):
        data = {
            "title": ["foobar", "bar", "foobar"] + ["foobar"] * 17,
            "cruft": np.random.random(20),
        }

        df = DataFrame(data)
        ix = df[df["title"] == "bar"].index

        df.loc[ix, ["title"]] = "foobar"
        df.loc[ix, ["cruft"]] = 0

        assert df.loc[1, "title"] == "foobar"
        assert df.loc[1, "cruft"] == 0

    def test_setitem_ambig(self):
        # Difficulties with mixed-type data
        from decimal import Decimal

        # Created as float type
        dm = DataFrame(index=range(3), columns=range(3))

        coercable_series = Series([Decimal(1) for _ in range(3)], index=range(3))
        uncoercable_series = Series(["foo", "bzr", "baz"], index=range(3))

        dm[0] = np.ones(3)
        assert len(dm.columns) == 3

        dm[1] = coercable_series
        assert len(dm.columns) == 3

        dm[2] = uncoercable_series
        assert len(dm.columns) == 3
        assert dm[2].dtype == np.object_

    def test_setitem_clear_caches(self):
        # see gh-304
        df = DataFrame(
            {"x": [1.1, 2.1, 3.1, 4.1], "y": [5.1, 6.1, 7.1, 8.1]}, index=[0, 1, 2, 3]
        )
        df.insert(2, "z", np.nan)

        # cache it
        foo = df["z"]
        df.loc[df.index[2:], "z"] = 42

        expected = Series([np.nan, np.nan, 42, 42], index=df.index, name="z")

        assert df["z"] is not foo
        tm.assert_series_equal(df["z"], expected)

    def test_setitem_None(self, float_frame):
        # GH #766
        float_frame[None] = float_frame["A"]
        assert_series_equal(
            float_frame.iloc[:, -1], float_frame["A"], check_names=False
        )
        assert_series_equal(
            float_frame.loc[:, None], float_frame["A"], check_names=False
        )
        assert_series_equal(float_frame[None], float_frame["A"], check_names=False)
        repr(float_frame)

    def test_setitem_empty(self):
        # GH 9596
        df = pd.DataFrame(
            {"a": ["1", "2", "3"], "b": ["11", "22", "33"], "c": ["111", "222", "333"]}
        )

        result = df.copy()
        result.loc[result.b.isna(), "a"] = result.a
        assert_frame_equal(result, df)

    @pytest.mark.parametrize("dtype", ["float", "int64"])
    @pytest.mark.parametrize("kwargs", [dict(), dict(index=[1]), dict(columns=["A"])])
    def test_setitem_empty_frame_with_boolean(self, dtype, kwargs):
        # see gh-10126
        kwargs["dtype"] = dtype
        df = DataFrame(**kwargs)

        df2 = df.copy()
        df[df > df2] = 47
        assert_frame_equal(df, df2)

    def test_setitem_scalars_no_index(self):
        # GH16823 / 17894
        df = DataFrame()
        df["foo"] = 1
        expected = DataFrame(columns=["foo"]).astype(np.int64)
        assert_frame_equal(df, expected)

    def test_getitem_empty_frame_with_boolean(self):
        # Test for issue #11859

        df = pd.DataFrame()
        df2 = df[df > 0]
        assert_frame_equal(df, df2)

    def test_delitem_corner(self, float_frame):
        f = float_frame.copy()
        del f["D"]
        assert len(f.columns) == 3
        with pytest.raises(KeyError, match=r"^'D'$"):
            del f["D"]
        del f["B"]
        assert len(f.columns) == 2

    def test_getitem_fancy_2d(self, float_frame):
        f = float_frame

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            assert_frame_equal(f.ix[:, ["B", "A"]], f.reindex(columns=["B", "A"]))

        subidx = float_frame.index[[5, 4, 1]]
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            assert_frame_equal(
                f.ix[subidx, ["B", "A"]], f.reindex(index=subidx, columns=["B", "A"])
            )

        # slicing rows, etc.
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            assert_frame_equal(f.ix[5:10], f[5:10])
            assert_frame_equal(f.ix[5:10, :], f[5:10])
            assert_frame_equal(
                f.ix[:5, ["A", "B"]], f.reindex(index=f.index[:5], columns=["A", "B"])
            )

        # slice rows with labels, inclusive!
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            expected = f.ix[5:11]
            result = f.ix[f.index[5] : f.index[10]]
        assert_frame_equal(expected, result)

        # slice columns
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            assert_frame_equal(f.ix[:, :2], f.reindex(columns=["A", "B"]))

        # get view
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            exp = f.copy()
            f.ix[5:10].values[:] = 5
            exp.values[5:10] = 5
            assert_frame_equal(f, exp)

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            msg = "Cannot index with multidimensional key"
            with pytest.raises(ValueError, match=msg):
                f.ix[f > 0.5]

    def test_slice_floats(self):
        index = [52195.504153, 52196.303147, 52198.369883]
        df = DataFrame(np.random.rand(3, 2), index=index)

        s1 = df.loc[52195.1:52196.5]
        assert len(s1) == 2

        s1 = df.loc[52195.1:52196.6]
        assert len(s1) == 2

        s1 = df.loc[52195.1:52198.9]
        assert len(s1) == 3

    def test_getitem_fancy_slice_integers_step(self):
        df = DataFrame(np.random.randn(10, 5))

        # this is OK
        result = df.iloc[:8:2]  # noqa
        df.iloc[:8:2] = np.nan
        assert isna(df.iloc[:8:2]).values.all()

    def test_getitem_setitem_integer_slice_keyerrors(self):
        df = DataFrame(np.random.randn(10, 5), index=range(0, 20, 2))

        # this is OK
        cp = df.copy()
        cp.iloc[4:10] = 0
        assert (cp.iloc[4:10] == 0).values.all()

        # so is this
        cp = df.copy()
        cp.iloc[3:11] = 0
        assert (cp.iloc[3:11] == 0).values.all()

        result = df.iloc[2:6]
        result2 = df.loc[3:11]
        expected = df.reindex([4, 6, 8, 10])

        assert_frame_equal(result, expected)
        assert_frame_equal(result2, expected)

        # non-monotonic, raise KeyError
        df2 = df.iloc[list(range(5)) + list(range(5, 10))[::-1]]
        with pytest.raises(KeyError, match=r"^3$"):
            df2.loc[3:11]
        with pytest.raises(KeyError, match=r"^3$"):
            df2.loc[3:11] = 0

    def test_setitem_fancy_2d(self, float_frame):

        # case 1
        frame = float_frame.copy()
        expected = frame.copy()

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            frame.ix[:, ["B", "A"]] = 1
        expected["B"] = 1.0
        expected["A"] = 1.0
        assert_frame_equal(frame, expected)

        # case 2
        frame = float_frame.copy()
        frame2 = float_frame.copy()

        expected = frame.copy()

        subidx = float_frame.index[[5, 4, 1]]
        values = np.random.randn(3, 2)

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            frame.ix[subidx, ["B", "A"]] = values
            frame2.ix[[5, 4, 1], ["B", "A"]] = values

            expected["B"].ix[subidx] = values[:, 0]
            expected["A"].ix[subidx] = values[:, 1]

        assert_frame_equal(frame, expected)
        assert_frame_equal(frame2, expected)

        # case 3: slicing rows, etc.
        frame = float_frame.copy()

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            expected1 = float_frame.copy()
            frame.ix[5:10] = 1.0
            expected1.values[5:10] = 1.0
        assert_frame_equal(frame, expected1)

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            expected2 = float_frame.copy()
            arr = np.random.randn(5, len(frame.columns))
            frame.ix[5:10] = arr
            expected2.values[5:10] = arr
        assert_frame_equal(frame, expected2)

        # case 4
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            frame = float_frame.copy()
            frame.ix[5:10, :] = 1.0
            assert_frame_equal(frame, expected1)
            frame.ix[5:10, :] = arr
        assert_frame_equal(frame, expected2)

        # case 5
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            frame = float_frame.copy()
            frame2 = float_frame.copy()

            expected = float_frame.copy()
            values = np.random.randn(5, 2)

            frame.ix[:5, ["A", "B"]] = values
            expected["A"][:5] = values[:, 0]
            expected["B"][:5] = values[:, 1]
        assert_frame_equal(frame, expected)

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            frame2.ix[:5, [0, 1]] = values
        assert_frame_equal(frame2, expected)

        # case 6: slice rows with labels, inclusive!
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            frame = float_frame.copy()
            expected = float_frame.copy()

            frame.ix[frame.index[5] : frame.index[10]] = 5.0
            expected.values[5:11] = 5
        assert_frame_equal(frame, expected)

        # case 7: slice columns
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            frame = float_frame.copy()
            frame2 = float_frame.copy()
            expected = float_frame.copy()

            # slice indices
            frame.ix[:, 1:3] = 4.0
            expected.values[:, 1:3] = 4.0
            assert_frame_equal(frame, expected)

            # slice with labels
            frame.ix[:, "B":"C"] = 4.0
            assert_frame_equal(frame, expected)

        # new corner case of boolean slicing / setting
        frame = DataFrame(zip([2, 3, 9, 6, 7], [np.nan] * 5), columns=["a", "b"])
        lst = [100]
        lst.extend([np.nan] * 4)
        expected = DataFrame(zip([100, 3, 9, 6, 7], lst), columns=["a", "b"])
        frame[frame["a"] == 2] = 100
        assert_frame_equal(frame, expected)

    def test_fancy_getitem_slice_mixed(self, float_frame, float_string_frame):
        sliced = float_string_frame.iloc[:, -3:]
        assert sliced["D"].dtype == np.float64

        # get view with single block
        # setting it triggers setting with copy
        sliced = float_frame.iloc[:, -3:]

        with pytest.raises(com.SettingWithCopyError):
            sliced["C"] = 4.0

        assert (float_frame["C"] == 4).all()

    def test_fancy_setitem_int_labels(self):
        # integer index defers to label-based indexing

        df = DataFrame(np.random.randn(10, 5), index=np.arange(0, 20, 2))

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            tmp = df.copy()
            exp = df.copy()
            tmp.ix[[0, 2, 4]] = 5
            exp.values[:3] = 5
        assert_frame_equal(tmp, exp)

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            tmp = df.copy()
            exp = df.copy()
            tmp.ix[6] = 5
            exp.values[3] = 5
        assert_frame_equal(tmp, exp)

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            tmp = df.copy()
            exp = df.copy()
            tmp.ix[:, 2] = 5

        # tmp correctly sets the dtype
        # so match the exp way
        exp[2] = 5
        assert_frame_equal(tmp, exp)

    def test_fancy_getitem_int_labels(self):
        df = DataFrame(np.random.randn(10, 5), index=np.arange(0, 20, 2))

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            result = df.ix[[4, 2, 0], [2, 0]]
            expected = df.reindex(index=[4, 2, 0], columns=[2, 0])
        assert_frame_equal(result, expected)

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            result = df.ix[[4, 2, 0]]
            expected = df.reindex(index=[4, 2, 0])
        assert_frame_equal(result, expected)

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            result = df.ix[4]
            expected = df.xs(4)
        assert_series_equal(result, expected)

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            result = df.ix[:, 3]
            expected = df[3]
        assert_series_equal(result, expected)

    def test_fancy_index_int_labels_exceptions(self, float_frame):
        df = DataFrame(np.random.randn(10, 5), index=np.arange(0, 20, 2))

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)

            # labels that aren't contained
            with pytest.raises(KeyError, match=r"\[1\] not in index"):
                df.ix[[0, 1, 2], [2, 3, 4]] = 5

            # try to set indices not contained in frame
            msg = (
                r"None of \[Index\(\['foo', 'bar', 'baz'\],"
                r" dtype='object'\)\] are in the \[index\]"
            )
            with pytest.raises(KeyError, match=msg):
                float_frame.ix[["foo", "bar", "baz"]] = 1
            msg = (
                r"None of \[Index\(\['E'\], dtype='object'\)\] are in the"
                r" \[columns\]"
            )
            with pytest.raises(KeyError, match=msg):
                float_frame.ix[:, ["E"]] = 1

            # partial setting now allows this GH2578
            # pytest.raises(KeyError, float_frame.ix.__setitem__,
            #               (slice(None, None), 'E'), 1)

    def test_setitem_fancy_mixed_2d(self, float_string_frame):

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            self.mixed_frame.ix[:5, ["C", "B", "A"]] = 5
            result = self.mixed_frame.ix[:5, ["C", "B", "A"]]
            assert (result.values == 5).all()

            float_string_frame.ix[5] = np.nan
            assert isna(float_string_frame.ix[5]).all()

            float_string_frame.ix[5] = float_string_frame.ix[6]
            assert_series_equal(
                float_string_frame.ix[5], float_string_frame.ix[6], check_names=False
            )

        # #1432
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            df = DataFrame({1: [1.0, 2.0, 3.0], 2: [3, 4, 5]})
            assert df._is_mixed_type

            df.ix[1] = [5, 10]

            expected = DataFrame({1: [1.0, 5.0, 3.0], 2: [3, 10, 5]})

            assert_frame_equal(df, expected)

    def test_ix_align(self):
        b = Series(np.random.randn(10), name=0).sort_values()
        df_orig = DataFrame(np.random.randn(10, 4))
        df = df_orig.copy()

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            df.ix[:, 0] = b
            assert_series_equal(df.ix[:, 0].reindex(b.index), b)

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            dft = df_orig.T
            dft.ix[0, :] = b
            assert_series_equal(dft.ix[0, :].reindex(b.index), b)

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            df = df_orig.copy()
            df.ix[:5, 0] = b
            s = df.ix[:5, 0]
            assert_series_equal(s, b.reindex(s.index))

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            dft = df_orig.T
            dft.ix[0, :5] = b
            s = dft.ix[0, :5]
            assert_series_equal(s, b.reindex(s.index))

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            df = df_orig.copy()
            idx = [0, 1, 3, 5]
            df.ix[idx, 0] = b
            s = df.ix[idx, 0]
            assert_series_equal(s, b.reindex(s.index))

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            dft = df_orig.T
            dft.ix[0, idx] = b
            s = dft.ix[0, idx]
            assert_series_equal(s, b.reindex(s.index))

    def test_ix_frame_align(self):
        b = DataFrame(np.random.randn(3, 4))
        df_orig = DataFrame(np.random.randn(10, 4))
        df = df_orig.copy()

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            df.ix[:3] = b
            out = b.ix[:3]
            assert_frame_equal(out, b)

        b.sort_index(inplace=True)

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            df = df_orig.copy()
            df.ix[[0, 1, 2]] = b
            out = df.ix[[0, 1, 2]].reindex(b.index)
            assert_frame_equal(out, b)

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            df = df_orig.copy()
            df.ix[:3] = b
            out = df.ix[:3]
            assert_frame_equal(out, b.reindex(out.index))

    def test_getitem_setitem_non_ix_labels(self):
        df = tm.makeTimeDataFrame()

        start, end = df.index[[5, 10]]

        result = df.loc[start:end]
        result2 = df[start:end]
        expected = df[5:11]
        assert_frame_equal(result, expected)
        assert_frame_equal(result2, expected)

        result = df.copy()
        result.loc[start:end] = 0
        result2 = df.copy()
        result2[start:end] = 0
        expected = df.copy()
        expected[5:11] = 0
        assert_frame_equal(result, expected)
        assert_frame_equal(result2, expected)

    def test_ix_multi_take(self):
        df = DataFrame(np.random.randn(3, 2))
        rs = df.loc[df.index == 0, :]
        xp = df.reindex([0])
        assert_frame_equal(rs, xp)

        """ #1321
        df = DataFrame(np.random.randn(3, 2))
        rs = df.loc[df.index==0, df.columns==1]
        xp = df.reindex([0], [1])
        assert_frame_equal(rs, xp)
        """

    def test_ix_multi_take_nonint_index(self):
        df = DataFrame(np.random.randn(3, 2), index=["x", "y", "z"], columns=["a", "b"])
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            rs = df.ix[[0], [0]]
        xp = df.reindex(["x"], columns=["a"])
        assert_frame_equal(rs, xp)

    def test_ix_multi_take_multiindex(self):
        df = DataFrame(
            np.random.randn(3, 2),
            index=["x", "y", "z"],
            columns=[["a", "b"], ["1", "2"]],
        )
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            rs = df.ix[[0], [0]]
        xp = df.reindex(["x"], columns=[("a", "1")])
        assert_frame_equal(rs, xp)

    def test_ix_dup(self):
        idx = Index(["a", "a", "b", "c", "d", "d"])
        df = DataFrame(np.random.randn(len(idx), 3), idx)

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            sub = df.ix[:"d"]
            assert_frame_equal(sub, df)

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            sub = df.ix["a":"c"]
            assert_frame_equal(sub, df.ix[0:4])

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            sub = df.ix["b":"d"]
            assert_frame_equal(sub, df.ix[2:])

    def test_getitem_fancy_1d(self, float_frame, float_string_frame):
        f = float_frame

        # return self if no slicing...for now
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            assert f.ix[:, :] is f

        # low dimensional slice
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            xs1 = f.ix[2, ["C", "B", "A"]]
        xs2 = f.xs(f.index[2]).reindex(["C", "B", "A"])
        tm.assert_series_equal(xs1, xs2)

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            ts1 = f.ix[5:10, 2]
        ts2 = f[f.columns[2]][5:10]
        tm.assert_series_equal(ts1, ts2)

        # positional xs
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            xs1 = f.ix[0]
        xs2 = f.xs(f.index[0])
        tm.assert_series_equal(xs1, xs2)

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            xs1 = f.ix[f.index[5]]
        xs2 = f.xs(f.index[5])
        tm.assert_series_equal(xs1, xs2)

        # single column
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            assert_series_equal(f.ix[:, "A"], f["A"])

        # return view
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            exp = f.copy()
            exp.values[5] = 4
            f.ix[5][:] = 4
        tm.assert_frame_equal(exp, f)

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            exp.values[:, 1] = 6
            f.ix[:, 1][:] = 6
        tm.assert_frame_equal(exp, f)

        # slice of mixed-frame
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            xs = float_string_frame.ix[5]
        exp = float_string_frame.xs(float_string_frame.index[5])
        tm.assert_series_equal(xs, exp)

    def test_setitem_fancy_1d(self, float_frame):

        # case 1: set cross-section for indices
        frame = float_frame.copy()
        expected = float_frame.copy()

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            frame.ix[2, ["C", "B", "A"]] = [1.0, 2.0, 3.0]
        expected["C"][2] = 1.0
        expected["B"][2] = 2.0
        expected["A"][2] = 3.0
        assert_frame_equal(frame, expected)

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            frame2 = float_frame.copy()
            frame2.ix[2, [3, 2, 1]] = [1.0, 2.0, 3.0]
        assert_frame_equal(frame, expected)

        # case 2, set a section of a column
        frame = float_frame.copy()
        expected = float_frame.copy()

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            vals = np.random.randn(5)
            expected.values[5:10, 2] = vals
            frame.ix[5:10, 2] = vals
        assert_frame_equal(frame, expected)

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            frame2 = float_frame.copy()
            frame2.ix[5:10, "B"] = vals
        assert_frame_equal(frame, expected)

        # case 3: full xs
        frame = float_frame.copy()
        expected = float_frame.copy()

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            frame.ix[4] = 5.0
            expected.values[4] = 5.0
        assert_frame_equal(frame, expected)

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            frame.ix[frame.index[4]] = 6.0
            expected.values[4] = 6.0
        assert_frame_equal(frame, expected)

        # single column
        frame = float_frame.copy()
        expected = float_frame.copy()

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            frame.ix[:, "A"] = 7.0
            expected["A"] = 7.0
        assert_frame_equal(frame, expected)

    def test_getitem_fancy_scalar(self, float_frame):
        f = float_frame
        ix = f.loc

        # individual value
        for col in f.columns:
            ts = f[col]
            for idx in f.index[::5]:
                assert ix[idx, col] == ts[idx]

    def test_setitem_fancy_scalar(self, float_frame):
        f = float_frame
        expected = float_frame.copy()
        ix = f.loc

        # individual value
        for j, col in enumerate(f.columns):
            ts = f[col]  # noqa
            for idx in f.index[::5]:
                i = f.index.get_loc(idx)
                val = np.random.randn()
                expected.values[i, j] = val

                ix[idx, col] = val
                assert_frame_equal(f, expected)

    def test_getitem_fancy_boolean(self, float_frame):
        f = float_frame
        ix = f.loc

        expected = f.reindex(columns=["B", "D"])
        result = ix[:, [False, True, False, True]]
        assert_frame_equal(result, expected)

        expected = f.reindex(index=f.index[5:10], columns=["B", "D"])
        result = ix[f.index[5:10], [False, True, False, True]]
        assert_frame_equal(result, expected)

        boolvec = f.index > f.index[7]
        expected = f.reindex(index=f.index[boolvec])
        result = ix[boolvec]
        assert_frame_equal(result, expected)
        result = ix[boolvec, :]
        assert_frame_equal(result, expected)

        result = ix[boolvec, f.columns[2:]]
        expected = f.reindex(index=f.index[boolvec], columns=["C", "D"])
        assert_frame_equal(result, expected)

    def test_setitem_fancy_boolean(self, float_frame):
        # from 2d, set with booleans
        frame = float_frame.copy()
        expected = float_frame.copy()

        mask = frame["A"] > 0
        frame.loc[mask] = 0.0
        expected.values[mask.values] = 0.0
        assert_frame_equal(frame, expected)

        frame = float_frame.copy()
        expected = float_frame.copy()
        frame.loc[mask, ["A", "B"]] = 0.0
        expected.values[mask.values, :2] = 0.0
        assert_frame_equal(frame, expected)

    def test_getitem_fancy_ints(self, float_frame):
        result = float_frame.iloc[[1, 4, 7]]
        expected = float_frame.loc[float_frame.index[[1, 4, 7]]]
        assert_frame_equal(result, expected)

        result = float_frame.iloc[:, [2, 0, 1]]
        expected = float_frame.loc[:, float_frame.columns[[2, 0, 1]]]
        assert_frame_equal(result, expected)

    def test_getitem_setitem_fancy_exceptions(self, float_frame):
        ix = float_frame.iloc
        with pytest.raises(IndexingError, match="Too many indexers"):
            ix[:, :, :]

        with pytest.raises(IndexingError):
            ix[:, :, :] = 1

    def test_getitem_setitem_boolean_misaligned(self, float_frame):
        # boolean index misaligned labels
        mask = float_frame["A"][::-1] > 1

        result = float_frame.loc[mask]
        expected = float_frame.loc[mask[::-1]]
        assert_frame_equal(result, expected)

        cp = float_frame.copy()
        expected = float_frame.copy()
        cp.loc[mask] = 0
        expected.loc[mask] = 0
        assert_frame_equal(cp, expected)

    def test_getitem_setitem_boolean_multi(self):
        df = DataFrame(np.random.randn(3, 2))

        # get
        k1 = np.array([True, False, True])
        k2 = np.array([False, True])
        result = df.loc[k1, k2]
        expected = df.loc[[0, 2], [1]]
        assert_frame_equal(result, expected)

        expected = df.copy()
        df.loc[np.array([True, False, True]), np.array([False, True])] = 5
        expected.loc[[0, 2], [1]] = 5
        assert_frame_equal(df, expected)

    def test_getitem_setitem_float_labels(self):
        index = Index([1.5, 2, 3, 4, 5])
        df = DataFrame(np.random.randn(5, 5), index=index)

        result = df.loc[1.5:4]
        expected = df.reindex([1.5, 2, 3, 4])
        assert_frame_equal(result, expected)
        assert len(result) == 4

        result = df.loc[4:5]
        expected = df.reindex([4, 5])  # reindex with int
        assert_frame_equal(result, expected, check_index_type=False)
        assert len(result) == 2

        result = df.loc[4:5]
        expected = df.reindex([4.0, 5.0])  # reindex with float
        assert_frame_equal(result, expected)
        assert len(result) == 2

        # loc_float changes this to work properly
        result = df.loc[1:2]
        expected = df.iloc[0:2]
        assert_frame_equal(result, expected)

        df.loc[1:2] = 0
        result = df[1:2]
        assert (result == 0).all().all()

        # #2727
        index = Index([1.0, 2.5, 3.5, 4.5, 5.0])
        df = DataFrame(np.random.randn(5, 5), index=index)

        # positional slicing only via iloc!
        msg = (
            "cannot do slice indexing on"
            r" <class 'pandas\.core\.indexes\.numeric\.Float64Index'> with"
            r" these indexers \[1.0\] of <class 'float'>"
        )
        with pytest.raises(TypeError, match=msg):
            df.iloc[1.0:5]

        result = df.iloc[4:5]
        expected = df.reindex([5.0])
        assert_frame_equal(result, expected)
        assert len(result) == 1

        cp = df.copy()

        with pytest.raises(TypeError):
            cp.iloc[1.0:5] = 0

        with pytest.raises(TypeError):
            result = cp.iloc[1.0:5] == 0  # noqa

        assert result.values.all()
        assert (cp.iloc[0:1] == df.iloc[0:1]).values.all()

        cp = df.copy()
        cp.iloc[4:5] = 0
        assert (cp.iloc[4:5] == 0).values.all()
        assert (cp.iloc[0:4] == df.iloc[0:4]).values.all()

        # float slicing
        result = df.loc[1.0:5]
        expected = df
        assert_frame_equal(result, expected)
        assert len(result) == 5

        result = df.loc[1.1:5]
        expected = df.reindex([2.5, 3.5, 4.5, 5.0])
        assert_frame_equal(result, expected)
        assert len(result) == 4

        result = df.loc[4.51:5]
        expected = df.reindex([5.0])
        assert_frame_equal(result, expected)
        assert len(result) == 1

        result = df.loc[1.0:5.0]
        expected = df.reindex([1.0, 2.5, 3.5, 4.5, 5.0])
        assert_frame_equal(result, expected)
        assert len(result) == 5

        cp = df.copy()
        cp.loc[1.0:5.0] = 0
        result = cp.loc[1.0:5.0]
        assert (result == 0).values.all()

    def test_setitem_single_column_mixed(self):
        df = DataFrame(
            np.random.randn(5, 3),
            index=["a", "b", "c", "d", "e"],
            columns=["foo", "bar", "baz"],
        )
        df["str"] = "qux"
        df.loc[df.index[::2], "str"] = np.nan
        expected = np.array([np.nan, "qux", np.nan, "qux", np.nan], dtype=object)
        assert_almost_equal(df["str"].values, expected)

    def test_setitem_single_column_mixed_datetime(self):
        df = DataFrame(
            np.random.randn(5, 3),
            index=["a", "b", "c", "d", "e"],
            columns=["foo", "bar", "baz"],
        )

        df["timestamp"] = Timestamp("20010102")

        # check our dtypes
        result = df.dtypes
        expected = Series(
            [np.dtype("float64")] * 3 + [np.dtype("datetime64[ns]")],
            index=["foo", "bar", "baz", "timestamp"],
        )
        assert_series_equal(result, expected)

        # set an allowable datetime64 type
        df.loc["b", "timestamp"] = iNaT
        assert isna(df.loc["b", "timestamp"])

        # allow this syntax
        df.loc["c", "timestamp"] = np.nan
        assert isna(df.loc["c", "timestamp"])

        # allow this syntax
        df.loc["d", :] = np.nan
        assert not isna(df.loc["c", :]).all()

        # FIXME: don't leave commented-out
        # as of GH 3216 this will now work!
        # try to set with a list like item
        # pytest.raises(
        #    Exception, df.loc.__setitem__, ('d', 'timestamp'), [np.nan])

    def test_setitem_mixed_datetime(self):
        # GH 9336
        expected = DataFrame(
            {
                "a": [0, 0, 0, 0, 13, 14],
                "b": [
                    pd.datetime(2012, 1, 1),
                    1,
                    "x",
                    "y",
                    pd.datetime(2013, 1, 1),
                    pd.datetime(2014, 1, 1),
                ],
            }
        )
        df = pd.DataFrame(0, columns=list("ab"), index=range(6))
        df["b"] = pd.NaT
        df.loc[0, "b"] = pd.datetime(2012, 1, 1)
        df.loc[1, "b"] = 1
        df.loc[[2, 3], "b"] = "x", "y"
        A = np.array(
            [
                [13, np.datetime64("2013-01-01T00:00:00")],
                [14, np.datetime64("2014-01-01T00:00:00")],
            ]
        )
        df.loc[[4, 5], ["a", "b"]] = A
        assert_frame_equal(df, expected)

    def test_setitem_frame_float(self, float_frame):
        piece = float_frame.loc[float_frame.index[:2], ["A", "B"]]
        float_frame.loc[float_frame.index[-2] :, ["A", "B"]] = piece.values
        result = float_frame.loc[float_frame.index[-2:], ["A", "B"]].values
        expected = piece.values
        assert_almost_equal(result, expected)

    def test_setitem_frame_mixed(self, float_string_frame):
        # GH 3216

        # already aligned
        f = float_string_frame.copy()
        piece = DataFrame(
            [[1.0, 2.0], [3.0, 4.0]], index=f.index[0:2], columns=["A", "B"]
        )
        key = (slice(None, 2), ["A", "B"])
        f.loc[key] = piece
        assert_almost_equal(f.loc[f.index[0:2], ["A", "B"]].values, piece.values)

        # rows unaligned
        f = float_string_frame.copy()
        piece = DataFrame(
            [[1.0, 2.0], [3.0, 4.0], [5.0, 6.0], [7.0, 8.0]],
            index=list(f.index[0:2]) + ["foo", "bar"],
            columns=["A", "B"],
        )
        key = (slice(None, 2), ["A", "B"])
        f.loc[key] = piece
        assert_almost_equal(f.loc[f.index[0:2:], ["A", "B"]].values, piece.values[0:2])

        # key is unaligned with values
        f = float_string_frame.copy()
        piece = f.loc[f.index[:2], ["A"]]
        piece.index = f.index[-2:]
        key = (slice(-2, None), ["A", "B"])
        f.loc[key] = piece
        piece["B"] = np.nan
        assert_almost_equal(f.loc[f.index[-2:], ["A", "B"]].values, piece.values)

        # ndarray
        f = float_string_frame.copy()
        piece = float_string_frame.loc[f.index[:2], ["A", "B"]]
        key = (slice(-2, None), ["A", "B"])
        f.loc[key] = piece.values
        assert_almost_equal(f.loc[f.index[-2:], ["A", "B"]].values, piece.values)

    def test_setitem_frame_upcast(self):
        # needs upcasting
        df = DataFrame([[1, 2, "foo"], [3, 4, "bar"]], columns=["A", "B", "C"])
        df2 = df.copy()
        df2.loc[:, ["A", "B"]] = df.loc[:, ["A", "B"]] + 0.5
        expected = df.reindex(columns=["A", "B"])
        expected += 0.5
        expected["C"] = df["C"]
        assert_frame_equal(df2, expected)

    def test_setitem_frame_align(self, float_frame):
        piece = float_frame.loc[float_frame.index[:2], ["A", "B"]]
        piece.index = float_frame.index[-2:]
        piece.columns = ["A", "B"]
        float_frame.loc[float_frame.index[-2:], ["A", "B"]] = piece
        result = float_frame.loc[float_frame.index[-2:], ["A", "B"]].values
        expected = piece.values
        assert_almost_equal(result, expected)

    def test_getitem_setitem_ix_duplicates(self):
        # #1201
        df = DataFrame(np.random.randn(5, 3), index=["foo", "foo", "bar", "baz", "bar"])

        result = df.loc["foo"]
        expected = df[:2]
        assert_frame_equal(result, expected)

        result = df.loc["bar"]
        expected = df.iloc[[2, 4]]
        assert_frame_equal(result, expected)

        result = df.loc["baz"]
        expected = df.iloc[3]
        assert_series_equal(result, expected)

    def test_getitem_ix_boolean_duplicates_multiple(self):
        # #1201
        df = DataFrame(np.random.randn(5, 3), index=["foo", "foo", "bar", "baz", "bar"])

        result = df.loc[["bar"]]
        exp = df.iloc[[2, 4]]
        assert_frame_equal(result, exp)

        result = df.loc[df[1] > 0]
        exp = df[df[1] > 0]
        assert_frame_equal(result, exp)

        result = df.loc[df[0] > 0]
        exp = df[df[0] > 0]
        assert_frame_equal(result, exp)

    def test_getitem_setitem_ix_bool_keyerror(self):
        # #2199
        df = DataFrame({"a": [1, 2, 3]})

        with pytest.raises(KeyError, match=r"^False$"):
            df.loc[False]
        with pytest.raises(KeyError, match=r"^True$"):
            df.loc[True]

        msg = "cannot use a single bool to index into setitem"
        with pytest.raises(KeyError, match=msg):
            df.loc[False] = 0
        with pytest.raises(KeyError, match=msg):
            df.loc[True] = 0

    def test_getitem_list_duplicates(self):
        # #1943
        df = DataFrame(np.random.randn(4, 4), columns=list("AABC"))
        df.columns.name = "foo"

        result = df[["B", "C"]]
        assert result.columns.name == "foo"

        expected = df.iloc[:, 2:]
        assert_frame_equal(result, expected)

    def test_get_value(self, float_frame):
        for idx in float_frame.index:
            for col in float_frame.columns:
                with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
                    result = float_frame.get_value(idx, col)
                expected = float_frame[col][idx]
                assert result == expected

    def test_lookup_float(self, float_frame):
        df = float_frame
        rows = list(df.index) * len(df.columns)
        cols = list(df.columns) * len(df.index)
        result = df.lookup(rows, cols)

        expected = np.array([df.loc[r, c] for r, c in zip(rows, cols)])
        tm.assert_numpy_array_equal(result, expected)

    def test_lookup_mixed(self, float_string_frame):
        df = float_string_frame
        rows = list(df.index) * len(df.columns)
        cols = list(df.columns) * len(df.index)
        result = df.lookup(rows, cols)

        expected = np.array(
            [df.loc[r, c] for r, c in zip(rows, cols)], dtype=np.object_
        )
        tm.assert_almost_equal(result, expected)

    def test_lookup_bool(self):
        df = DataFrame(
            {
                "label": ["a", "b", "a", "c"],
                "mask_a": [True, True, False, True],
                "mask_b": [True, False, False, False],
                "mask_c": [False, True, False, True],
            }
        )
        df["mask"] = df.lookup(df.index, "mask_" + df["label"])

        exp_mask = np.array(
            [df.loc[r, c] for r, c in zip(df.index, "mask_" + df["label"])]
        )

        tm.assert_series_equal(df["mask"], pd.Series(exp_mask, name="mask"))
        assert df["mask"].dtype == np.bool_

    def test_lookup_raises(self, float_frame):
        with pytest.raises(KeyError, match="'One or more row labels was not found'"):
            float_frame.lookup(["xyz"], ["A"])

        with pytest.raises(KeyError, match="'One or more column labels was not found'"):
            float_frame.lookup([float_frame.index[0]], ["xyz"])

        with pytest.raises(ValueError, match="same size"):
            float_frame.lookup(["a", "b", "c"], ["a"])

    def test_set_value(self, float_frame):
        for idx in float_frame.index:
            for col in float_frame.columns:
                with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
                    float_frame.set_value(idx, col, 1)
                assert float_frame[col][idx] == 1

    def test_set_value_resize(self, float_frame):

        with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
            res = float_frame.set_value("foobar", "B", 0)
        assert res is float_frame
        assert res.index[-1] == "foobar"
        with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
            assert res.get_value("foobar", "B") == 0

        float_frame.loc["foobar", "qux"] = 0
        with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
            assert float_frame.get_value("foobar", "qux") == 0

        res = float_frame.copy()
        with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
            res3 = res.set_value("foobar", "baz", "sam")
        assert res3["baz"].dtype == np.object_

        res = float_frame.copy()
        with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
            res3 = res.set_value("foobar", "baz", True)
        assert res3["baz"].dtype == np.object_

        res = float_frame.copy()
        with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
            res3 = res.set_value("foobar", "baz", 5)
        assert is_float_dtype(res3["baz"])
        assert isna(res3["baz"].drop(["foobar"])).all()
        with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
            msg = "could not convert string to float: 'sam'"
            with pytest.raises(ValueError, match=msg):
                res3.set_value("foobar", "baz", "sam")

    def test_set_value_with_index_dtype_change(self):
        df_orig = DataFrame(np.random.randn(3, 3), index=range(3), columns=list("ABC"))

        # this is actually ambiguous as the 2 is interpreted as a positional
        # so column is not created
        df = df_orig.copy()
        with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
            df.set_value("C", 2, 1.0)
        assert list(df.index) == list(df_orig.index) + ["C"]
        # assert list(df.columns) == list(df_orig.columns) + [2]

        df = df_orig.copy()
        df.loc["C", 2] = 1.0
        assert list(df.index) == list(df_orig.index) + ["C"]
        # assert list(df.columns) == list(df_orig.columns) + [2]

        # create both new
        df = df_orig.copy()
        with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
            df.set_value("C", "D", 1.0)
        assert list(df.index) == list(df_orig.index) + ["C"]
        assert list(df.columns) == list(df_orig.columns) + ["D"]

        df = df_orig.copy()
        df.loc["C", "D"] = 1.0
        assert list(df.index) == list(df_orig.index) + ["C"]
        assert list(df.columns) == list(df_orig.columns) + ["D"]

    def test_get_set_value_no_partial_indexing(self):
        # partial w/ MultiIndex raise exception
        index = MultiIndex.from_tuples([(0, 1), (0, 2), (1, 1), (1, 2)])
        df = DataFrame(index=index, columns=range(4))
        with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
            with pytest.raises(KeyError, match=r"^0$"):
                df.get_value(0, 1)

    def test_single_element_ix_dont_upcast(self, float_frame):
        float_frame["E"] = 1
        assert issubclass(float_frame["E"].dtype.type, (int, np.integer))

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            result = float_frame.ix[float_frame.index[5], "E"]
            assert is_integer(result)

        result = float_frame.loc[float_frame.index[5], "E"]
        assert is_integer(result)

        # GH 11617
        df = pd.DataFrame(dict(a=[1.23]))
        df["b"] = 666

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            result = df.ix[0, "b"]
        assert is_integer(result)
        result = df.loc[0, "b"]
        assert is_integer(result)

        expected = Series([666], [0], name="b")
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            result = df.ix[[0], "b"]
        assert_series_equal(result, expected)
        result = df.loc[[0], "b"]
        assert_series_equal(result, expected)

    def test_iloc_row(self):
        df = DataFrame(np.random.randn(10, 4), index=range(0, 20, 2))

        result = df.iloc[1]
        exp = df.loc[2]
        assert_series_equal(result, exp)

        result = df.iloc[2]
        exp = df.loc[4]
        assert_series_equal(result, exp)

        # slice
        result = df.iloc[slice(4, 8)]
        expected = df.loc[8:14]
        assert_frame_equal(result, expected)

        # verify slice is view
        # setting it makes it raise/warn
        with pytest.raises(com.SettingWithCopyError):
            result[2] = 0.0

        exp_col = df[2].copy()
        exp_col[4:8] = 0.0
        assert_series_equal(df[2], exp_col)

        # list of integers
        result = df.iloc[[1, 2, 4, 6]]
        expected = df.reindex(df.index[[1, 2, 4, 6]])
        assert_frame_equal(result, expected)

    def test_iloc_col(self):

        df = DataFrame(np.random.randn(4, 10), columns=range(0, 20, 2))

        result = df.iloc[:, 1]
        exp = df.loc[:, 2]
        assert_series_equal(result, exp)

        result = df.iloc[:, 2]
        exp = df.loc[:, 4]
        assert_series_equal(result, exp)

        # slice
        result = df.iloc[:, slice(4, 8)]
        expected = df.loc[:, 8:14]
        assert_frame_equal(result, expected)

        # verify slice is view
        # and that we are setting a copy
        with pytest.raises(com.SettingWithCopyError):
            result[8] = 0.0

        assert (df[8] == 0).all()

        # list of integers
        result = df.iloc[:, [1, 2, 4, 6]]
        expected = df.reindex(columns=df.columns[[1, 2, 4, 6]])
        assert_frame_equal(result, expected)

    def test_iloc_duplicates(self):

        df = DataFrame(np.random.rand(3, 3), columns=list("ABC"), index=list("aab"))

        result = df.iloc[0]
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            result2 = df.ix[0]
        assert isinstance(result, Series)
        assert_almost_equal(result.values, df.values[0])
        assert_series_equal(result, result2)

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            result = df.T.iloc[:, 0]
            result2 = df.T.ix[:, 0]
        assert isinstance(result, Series)
        assert_almost_equal(result.values, df.values[0])
        assert_series_equal(result, result2)

        # multiindex
        df = DataFrame(
            np.random.randn(3, 3),
            columns=[["i", "i", "j"], ["A", "A", "B"]],
            index=[["i", "i", "j"], ["X", "X", "Y"]],
        )

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            rs = df.iloc[0]
            xp = df.ix[0]
        assert_series_equal(rs, xp)

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            rs = df.iloc[:, 0]
            xp = df.T.ix[0]
        assert_series_equal(rs, xp)

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            rs = df.iloc[:, [0]]
            xp = df.ix[:, [0]]
        assert_frame_equal(rs, xp)

        # #2259
        df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=[1, 1, 2])
        result = df.iloc[:, [0]]
        expected = df.take([0], axis=1)
        assert_frame_equal(result, expected)

    def test_loc_duplicates(self):
        # gh-17105

        # insert a duplicate element to the index
        trange = pd.date_range(
            start=pd.Timestamp(year=2017, month=1, day=1),
            end=pd.Timestamp(year=2017, month=1, day=5),
        )

        trange = trange.insert(loc=5, item=pd.Timestamp(year=2017, month=1, day=5))

        df = pd.DataFrame(0, index=trange, columns=["A", "B"])
        bool_idx = np.array([False, False, False, False, False, True])

        # assignment
        df.loc[trange[bool_idx], "A"] = 6

        expected = pd.DataFrame(
            {"A": [0, 0, 0, 0, 6, 6], "B": [0, 0, 0, 0, 0, 0]}, index=trange
        )
        tm.assert_frame_equal(df, expected)

        # in-place
        df = pd.DataFrame(0, index=trange, columns=["A", "B"])
        df.loc[trange[bool_idx], "A"] += 6
        tm.assert_frame_equal(df, expected)

    @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
    def test_iloc_sparse_propegate_fill_value(self):
        from pandas.core.sparse.api import SparseDataFrame

        df = SparseDataFrame({"A": [999, 1]}, default_fill_value=999)
        assert len(df["A"].sp_values) == len(df.iloc[:, 0].sp_values)

    def test_iat(self, float_frame):

        for i, row in enumerate(float_frame.index):
            for j, col in enumerate(float_frame.columns):
                result = float_frame.iat[i, j]
                expected = float_frame.at[row, col]
                assert result == expected

    def test_nested_exception(self):
        # Ignore the strange way of triggering the problem
        # (which may get fixed), it's just a way to trigger
        # the issue or reraising an outer exception without
        # a named argument
        df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}).set_index(
            ["a", "b"]
        )
        index = list(df.index)
        index[0] = ["a", "b"]
        df.index = index

        try:
            repr(df)
        except Exception as e:
            assert type(e) != UnboundLocalError

    @pytest.mark.parametrize(
        "method,expected_values",
        [
            ("nearest", [0, 1, 1, 2]),
            ("pad", [np.nan, 0, 1, 1]),
            ("backfill", [0, 1, 2, 2]),
        ],
    )
    def test_reindex_methods(self, method, expected_values):
        df = pd.DataFrame({"x": list(range(5))})
        target = np.array([-0.1, 0.9, 1.1, 1.5])

        expected = pd.DataFrame({"x": expected_values}, index=target)
        actual = df.reindex(target, method=method)
        assert_frame_equal(expected, actual)

        actual = df.reindex_like(df, method=method, tolerance=0)
        assert_frame_equal(df, actual)
        actual = df.reindex_like(df, method=method, tolerance=[0, 0, 0, 0])
        assert_frame_equal(df, actual)

        actual = df.reindex(target, method=method, tolerance=1)
        assert_frame_equal(expected, actual)
        actual = df.reindex(target, method=method, tolerance=[1, 1, 1, 1])
        assert_frame_equal(expected, actual)

        e2 = expected[::-1]
        actual = df.reindex(target[::-1], method=method)
        assert_frame_equal(e2, actual)

        new_order = [3, 0, 2, 1]
        e2 = expected.iloc[new_order]
        actual = df.reindex(target[new_order], method=method)
        assert_frame_equal(e2, actual)

        switched_method = (
            "pad" if method == "backfill" else "backfill" if method == "pad" else method
        )
        actual = df[::-1].reindex(target, method=switched_method)
        assert_frame_equal(expected, actual)

    def test_reindex_methods_nearest_special(self):
        df = pd.DataFrame({"x": list(range(5))})
        target = np.array([-0.1, 0.9, 1.1, 1.5])

        expected = pd.DataFrame({"x": [0, 1, 1, np.nan]}, index=target)
        actual = df.reindex(target, method="nearest", tolerance=0.2)
        assert_frame_equal(expected, actual)

        expected = pd.DataFrame({"x": [0, np.nan, 1, np.nan]}, index=target)
        actual = df.reindex(target, method="nearest", tolerance=[0.5, 0.01, 0.4, 0.1])
        assert_frame_equal(expected, actual)

    def test_reindex_frame_add_nat(self):
        rng = date_range("1/1/2000 00:00:00", periods=10, freq="10s")
        df = DataFrame({"A": np.random.randn(len(rng)), "B": rng})

        result = df.reindex(range(15))
        assert np.issubdtype(result["B"].dtype, np.dtype("M8[ns]"))

        mask = com.isna(result)["B"]
        assert mask[-5:].all()
        assert not mask[:-5].any()

    def test_reindex_limit(self):
        # GH 28631
        data = [["A", "A", "A"], ["B", "B", "B"], ["C", "C", "C"], ["D", "D", "D"]]
        exp_data = [
            ["A", "A", "A"],
            ["B", "B", "B"],
            ["C", "C", "C"],
            ["D", "D", "D"],
            ["D", "D", "D"],
            [np.nan, np.nan, np.nan],
        ]
        df = DataFrame(data)
        result = df.reindex([0, 1, 2, 3, 4, 5], method="ffill", limit=1)
        expected = DataFrame(exp_data)
        tm.assert_frame_equal(result, expected)

    def test_set_dataframe_column_ns_dtype(self):
        x = DataFrame([datetime.now(), datetime.now()])
        assert x[0].dtype == np.dtype("M8[ns]")

    def test_non_monotonic_reindex_methods(self):
        dr = pd.date_range("2013-08-01", periods=6, freq="B")
        data = np.random.randn(6, 1)
        df = pd.DataFrame(data, index=dr, columns=list("A"))
        df_rev = pd.DataFrame(data, index=dr[[3, 4, 5] + [0, 1, 2]], columns=list("A"))
        # index is not monotonic increasing or decreasing
        msg = "index must be monotonic increasing or decreasing"
        with pytest.raises(ValueError, match=msg):
            df_rev.reindex(df.index, method="pad")
        with pytest.raises(ValueError, match=msg):
            df_rev.reindex(df.index, method="ffill")
        with pytest.raises(ValueError, match=msg):
            df_rev.reindex(df.index, method="bfill")
        with pytest.raises(ValueError, match=msg):
            df_rev.reindex(df.index, method="nearest")

    def test_reindex_level(self):
        from itertools import permutations

        icol = ["jim", "joe", "jolie"]

        def verify_first_level(df, level, idx, check_index_type=True):
            def f(val):
                return np.nonzero((df[level] == val).to_numpy())[0]

            i = np.concatenate(list(map(f, idx)))
            left = df.set_index(icol).reindex(idx, level=level)
            right = df.iloc[i].set_index(icol)
            assert_frame_equal(left, right, check_index_type=check_index_type)

        def verify(df, level, idx, indexer, check_index_type=True):
            left = df.set_index(icol).reindex(idx, level=level)
            right = df.iloc[indexer].set_index(icol)
            assert_frame_equal(left, right, check_index_type=check_index_type)

        df = pd.DataFrame(
            {
                "jim": list("B" * 4 + "A" * 2 + "C" * 3),
                "joe": list("abcdeabcd")[::-1],
                "jolie": [10, 20, 30] * 3,
                "joline": np.random.randint(0, 1000, 9),
            }
        )

        target = [
            ["C", "B", "A"],
            ["F", "C", "A", "D"],
            ["A"],
            ["A", "B", "C"],
            ["C", "A", "B"],
            ["C", "B"],
            ["C", "A"],
            ["A", "B"],
            ["B", "A", "C"],
        ]

        for idx in target:
            verify_first_level(df, "jim", idx)

        # reindex by these causes different MultiIndex levels
        for idx in [["D", "F"], ["A", "C", "B"]]:
            verify_first_level(df, "jim", idx, check_index_type=False)

        verify(df, "joe", list("abcde"), [3, 2, 1, 0, 5, 4, 8, 7, 6])
        verify(df, "joe", list("abcd"), [3, 2, 1, 0, 5, 8, 7, 6])
        verify(df, "joe", list("abc"), [3, 2, 1, 8, 7, 6])
        verify(df, "joe", list("eca"), [1, 3, 4, 6, 8])
        verify(df, "joe", list("edc"), [0, 1, 4, 5, 6])
        verify(df, "joe", list("eadbc"), [3, 0, 2, 1, 4, 5, 8, 7, 6])
        verify(df, "joe", list("edwq"), [0, 4, 5])
        verify(df, "joe", list("wq"), [], check_index_type=False)

        df = DataFrame(
            {
                "jim": ["mid"] * 5 + ["btm"] * 8 + ["top"] * 7,
                "joe": ["3rd"] * 2
                + ["1st"] * 3
                + ["2nd"] * 3
                + ["1st"] * 2
                + ["3rd"] * 3
                + ["1st"] * 2
                + ["3rd"] * 3
                + ["2nd"] * 2,
                # this needs to be jointly unique with jim and joe or
                # reindexing will fail ~1.5% of the time, this works
                # out to needing unique groups of same size as joe
                "jolie": np.concatenate(
                    [
                        np.random.choice(1000, x, replace=False)
                        for x in [2, 3, 3, 2, 3, 2, 3, 2]
                    ]
                ),
                "joline": np.random.randn(20).round(3) * 10,
            }
        )

        for idx in permutations(df["jim"].unique()):
            for i in range(3):
                verify_first_level(df, "jim", idx[: i + 1])

        i = [2, 3, 4, 0, 1, 8, 9, 5, 6, 7, 10, 11, 12, 13, 14, 18, 19, 15, 16, 17]
        verify(df, "joe", ["1st", "2nd", "3rd"], i)

        i = [0, 1, 2, 3, 4, 10, 11, 12, 5, 6, 7, 8, 9, 15, 16, 17, 18, 19, 13, 14]
        verify(df, "joe", ["3rd", "2nd", "1st"], i)

        i = [0, 1, 5, 6, 7, 10, 11, 12, 18, 19, 15, 16, 17]
        verify(df, "joe", ["2nd", "3rd"], i)

        i = [0, 1, 2, 3, 4, 10, 11, 12, 8, 9, 15, 16, 17, 13, 14]
        verify(df, "joe", ["3rd", "1st"], i)

    def test_getitem_ix_float_duplicates(self):
        df = pd.DataFrame(
            np.random.randn(3, 3), index=[0.1, 0.2, 0.2], columns=list("abc")
        )
        expect = df.iloc[1:]
        assert_frame_equal(df.loc[0.2], expect)
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            assert_frame_equal(df.ix[0.2], expect)

        expect = df.iloc[1:, 0]
        assert_series_equal(df.loc[0.2, "a"], expect)

        df.index = [1, 0.2, 0.2]
        expect = df.iloc[1:]
        assert_frame_equal(df.loc[0.2], expect)
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            assert_frame_equal(df.ix[0.2], expect)

        expect = df.iloc[1:, 0]
        assert_series_equal(df.loc[0.2, "a"], expect)

        df = pd.DataFrame(
            np.random.randn(4, 3), index=[1, 0.2, 0.2, 1], columns=list("abc")
        )
        expect = df.iloc[1:-1]
        assert_frame_equal(df.loc[0.2], expect)
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            assert_frame_equal(df.ix[0.2], expect)

        expect = df.iloc[1:-1, 0]
        assert_series_equal(df.loc[0.2, "a"], expect)

        df.index = [0.1, 0.2, 2, 0.2]
        expect = df.iloc[[1, -1]]
        assert_frame_equal(df.loc[0.2], expect)
        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            assert_frame_equal(df.ix[0.2], expect)

        expect = df.iloc[[1, -1], 0]
        assert_series_equal(df.loc[0.2, "a"], expect)

    def test_getitem_sparse_column(self):
        # https://github.com/pandas-dev/pandas/issues/23559
        data = pd.SparseArray([0, 1])
        df = pd.DataFrame({"A": data})
        expected = pd.Series(data, name="A")
        result = df["A"]
        tm.assert_series_equal(result, expected)

        result = df.iloc[:, 0]
        tm.assert_series_equal(result, expected)

        result = df.loc[:, "A"]
        tm.assert_series_equal(result, expected)

    def test_setitem_with_sparse_value(self):
        # GH8131
        df = pd.DataFrame({"c_1": ["a", "b", "c"], "n_1": [1.0, 2.0, 3.0]})
        sp_array = pd.SparseArray([0, 0, 1])
        df["new_column"] = sp_array
        assert_series_equal(
            df["new_column"], pd.Series(sp_array, name="new_column"), check_names=False
        )

    def test_setitem_with_unaligned_sparse_value(self):
        df = pd.DataFrame({"c_1": ["a", "b", "c"], "n_1": [1.0, 2.0, 3.0]})
        sp_series = pd.Series(pd.SparseArray([0, 0, 1]), index=[2, 1, 0])
        df["new_column"] = sp_series
        exp = pd.Series(pd.SparseArray([1, 0, 0]), name="new_column")
        assert_series_equal(df["new_column"], exp)

    def test_setitem_with_unaligned_tz_aware_datetime_column(self):
        # GH 12981
        # Assignment of unaligned offset-aware datetime series.
        # Make sure timezone isn't lost
        column = pd.Series(
            pd.date_range("2015-01-01", periods=3, tz="utc"), name="dates"
        )
        df = pd.DataFrame({"dates": column})
        df["dates"] = column[[1, 0, 2]]
        assert_series_equal(df["dates"], column)

        df = pd.DataFrame({"dates": column})
        df.loc[[0, 1, 2], "dates"] = column[[1, 0, 2]]
        assert_series_equal(df["dates"], column)

    def test_setitem_datetime_coercion(self):
        # gh-1048
        df = pd.DataFrame({"c": [pd.Timestamp("2010-10-01")] * 3})
        df.loc[0:1, "c"] = np.datetime64("2008-08-08")
        assert pd.Timestamp("2008-08-08") == df.loc[0, "c"]
        assert pd.Timestamp("2008-08-08") == df.loc[1, "c"]
        df.loc[2, "c"] = date(2005, 5, 5)
        assert pd.Timestamp("2005-05-05") == df.loc[2, "c"]

    def test_setitem_datetimelike_with_inference(self):
        # GH 7592
        # assignment of timedeltas with NaT

        one_hour = timedelta(hours=1)
        df = DataFrame(index=date_range("20130101", periods=4))
        df["A"] = np.array([1 * one_hour] * 4, dtype="m8[ns]")
        df.loc[:, "B"] = np.array([2 * one_hour] * 4, dtype="m8[ns]")
        df.loc[:3, "C"] = np.array([3 * one_hour] * 3, dtype="m8[ns]")
        df.loc[:, "D"] = np.array([4 * one_hour] * 4, dtype="m8[ns]")
        df.loc[df.index[:3], "E"] = np.array([5 * one_hour] * 3, dtype="m8[ns]")
        df["F"] = np.timedelta64("NaT")
        df.loc[df.index[:-1], "F"] = np.array([6 * one_hour] * 3, dtype="m8[ns]")
        df.loc[df.index[-3] :, "G"] = date_range("20130101", periods=3)
        df["H"] = np.datetime64("NaT")
        result = df.dtypes
        expected = Series(
            [np.dtype("timedelta64[ns]")] * 6 + [np.dtype("datetime64[ns]")] * 2,
            index=list("ABCDEFGH"),
        )
        assert_series_equal(result, expected)

    @pytest.mark.parametrize("idxer", ["var", ["var"]])
    def test_setitem_datetimeindex_tz(self, idxer, tz_naive_fixture):
        # GH 11365
        tz = tz_naive_fixture
        idx = date_range(start="2015-07-12", periods=3, freq="H", tz=tz)
        expected = DataFrame(1.2, index=idx, columns=["var"])
        result = DataFrame(index=idx, columns=["var"])
        result.loc[:, idxer] = expected
        tm.assert_frame_equal(result, expected)

    def test_at_time_between_time_datetimeindex(self):
        index = date_range("2012-01-01", "2012-01-05", freq="30min")
        df = DataFrame(np.random.randn(len(index), 5), index=index)
        akey = time(12, 0, 0)
        bkey = slice(time(13, 0, 0), time(14, 0, 0))
        ainds = [24, 72, 120, 168]
        binds = [26, 27, 28, 74, 75, 76, 122, 123, 124, 170, 171, 172]

        result = df.at_time(akey)
        expected = df.loc[akey]
        expected2 = df.iloc[ainds]
        assert_frame_equal(result, expected)
        assert_frame_equal(result, expected2)
        assert len(result) == 4

        result = df.between_time(bkey.start, bkey.stop)
        expected = df.loc[bkey]
        expected2 = df.iloc[binds]
        assert_frame_equal(result, expected)
        assert_frame_equal(result, expected2)
        assert len(result) == 12

        result = df.copy()
        result.loc[akey] = 0
        result = result.loc[akey]
        expected = df.loc[akey].copy()
        expected.loc[:] = 0
        assert_frame_equal(result, expected)

        result = df.copy()
        result.loc[akey] = 0
        result.loc[akey] = df.iloc[ainds]
        assert_frame_equal(result, df)

        result = df.copy()
        result.loc[bkey] = 0
        result = result.loc[bkey]
        expected = df.loc[bkey].copy()
        expected.loc[:] = 0
        assert_frame_equal(result, expected)

        result = df.copy()
        result.loc[bkey] = 0
        result.loc[bkey] = df.iloc[binds]
        assert_frame_equal(result, df)

    def test_xs(self, float_frame, datetime_frame):
        idx = float_frame.index[5]
        xs = float_frame.xs(idx)
        for item, value in xs.items():
            if np.isnan(value):
                assert np.isnan(float_frame[item][idx])
            else:
                assert value == float_frame[item][idx]

        # mixed-type xs
        test_data = {"A": {"1": 1, "2": 2}, "B": {"1": "1", "2": "2", "3": "3"}}
        frame = DataFrame(test_data)
        xs = frame.xs("1")
        assert xs.dtype == np.object_
        assert xs["A"] == 1
        assert xs["B"] == "1"

        with pytest.raises(
            KeyError, match=re.escape("Timestamp('1999-12-31 00:00:00', freq='B')")
        ):
            datetime_frame.xs(datetime_frame.index[0] - BDay())

        # xs get column
        series = float_frame.xs("A", axis=1)
        expected = float_frame["A"]
        assert_series_equal(series, expected)

        # view is returned if possible
        series = float_frame.xs("A", axis=1)
        series[:] = 5
        assert (expected == 5).all()

    def test_xs_corner(self):
        # pathological mixed-type reordering case
        df = DataFrame(index=[0])
        df["A"] = 1.0
        df["B"] = "foo"
        df["C"] = 2.0
        df["D"] = "bar"
        df["E"] = 3.0

        xs = df.xs(0)
        exp = pd.Series([1.0, "foo", 2.0, "bar", 3.0], index=list("ABCDE"), name=0)
        tm.assert_series_equal(xs, exp)

        # no columns but Index(dtype=object)
        df = DataFrame(index=["a", "b", "c"])
        result = df.xs("a")
        expected = Series([], name="a", index=pd.Index([], dtype=object))
        assert_series_equal(result, expected)

    def test_xs_duplicates(self):
        df = DataFrame(np.random.randn(5, 2), index=["b", "b", "c", "b", "a"])

        cross = df.xs("c")
        exp = df.iloc[2]
        assert_series_equal(cross, exp)

    def test_xs_keep_level(self):
        df = DataFrame(
            {
                "day": {0: "sat", 1: "sun"},
                "flavour": {0: "strawberry", 1: "strawberry"},
                "sales": {0: 10, 1: 12},
                "year": {0: 2008, 1: 2008},
            }
        ).set_index(["year", "flavour", "day"])
        result = df.xs("sat", level="day", drop_level=False)
        expected = df[:1]
        assert_frame_equal(result, expected)

        result = df.xs([2008, "sat"], level=["year", "day"], drop_level=False)
        assert_frame_equal(result, expected)

    def test_xs_view(self):
        # in 0.14 this will return a view if possible a copy otherwise, but
        # this is numpy dependent

        dm = DataFrame(np.arange(20.0).reshape(4, 5), index=range(4), columns=range(5))

        dm.xs(2)[:] = 10
        assert (dm.xs(2) == 10).all()

    def test_index_namedtuple(self):
        from collections import namedtuple

        IndexType = namedtuple("IndexType", ["a", "b"])
        idx1 = IndexType("foo", "bar")
        idx2 = IndexType("baz", "bof")
        index = Index([idx1, idx2], name="composite_index", tupleize_cols=False)
        df = DataFrame([(1, 2), (3, 4)], index=index, columns=["A", "B"])

        with catch_warnings(record=True):
            simplefilter("ignore", FutureWarning)
            result = df.ix[IndexType("foo", "bar")]["A"]
        assert result == 1

        result = df.loc[IndexType("foo", "bar")]["A"]
        assert result == 1

    def test_boolean_indexing(self):
        idx = list(range(3))
        cols = ["A", "B", "C"]
        df1 = DataFrame(
            index=idx,
            columns=cols,
            data=np.array(
                [[0.0, 0.5, 1.0], [1.5, 2.0, 2.5], [3.0, 3.5, 4.0]], dtype=float
            ),
        )
        df2 = DataFrame(index=idx, columns=cols, data=np.ones((len(idx), len(cols))))

        expected = DataFrame(
            index=idx,
            columns=cols,
            data=np.array([[0.0, 0.5, 1.0], [1.5, 2.0, -1], [-1, -1, -1]], dtype=float),
        )

        df1[df1 > 2.0 * df2] = -1
        assert_frame_equal(df1, expected)
        with pytest.raises(ValueError, match="Item wrong length"):
            df1[df1.index[:-1] > 2] = -1

    def test_boolean_indexing_mixed(self):
        df = DataFrame(
            {
                0: {35: np.nan, 40: np.nan, 43: np.nan, 49: np.nan, 50: np.nan},
                1: {
                    35: np.nan,
                    40: 0.32632316859446198,
                    43: np.nan,
                    49: 0.32632316859446198,
                    50: 0.39114724480578139,
                },
                2: {
                    35: np.nan,
                    40: np.nan,
                    43: 0.29012581014105987,
                    49: np.nan,
                    50: np.nan,
                },
                3: {35: np.nan, 40: np.nan, 43: np.nan, 49: np.nan, 50: np.nan},
                4: {
                    35: 0.34215328467153283,
                    40: np.nan,
                    43: np.nan,
                    49: np.nan,
                    50: np.nan,
                },
                "y": {35: 0, 40: 0, 43: 0, 49: 0, 50: 1},
            }
        )

        # mixed int/float ok
        df2 = df.copy()
        df2[df2 > 0.3] = 1
        expected = df.copy()
        expected.loc[40, 1] = 1
        expected.loc[49, 1] = 1
        expected.loc[50, 1] = 1
        expected.loc[35, 4] = 1
        assert_frame_equal(df2, expected)

        df["foo"] = "test"
        msg = "not supported between instances|unorderable types"

        with pytest.raises(TypeError, match=msg):
            df[df > 0.3] = 1

    def test_where(self, float_string_frame, mixed_float_frame, mixed_int_frame):
        default_frame = DataFrame(np.random.randn(5, 3), columns=["A", "B", "C"])

        def _safe_add(df):
            # only add to the numeric items
            def is_ok(s):
                return (
                    issubclass(s.dtype.type, (np.integer, np.floating))
                    and s.dtype != "uint8"
                )

            return DataFrame(
                dict((c, s + 1) if is_ok(s) else (c, s) for c, s in df.items())
            )

        def _check_get(df, cond, check_dtypes=True):
            other1 = _safe_add(df)
            rs = df.where(cond, other1)
            rs2 = df.where(cond.values, other1)
            for k, v in rs.items():
                exp = Series(np.where(cond[k], df[k], other1[k]), index=v.index)
                assert_series_equal(v, exp, check_names=False)
            assert_frame_equal(rs, rs2)

            # dtypes
            if check_dtypes:
                assert (rs.dtypes == df.dtypes).all()

        # check getting
        for df in [
            default_frame,
            float_string_frame,
            mixed_float_frame,
            mixed_int_frame,
        ]:
            if df is float_string_frame:
                with pytest.raises(TypeError):
                    df > 0
                continue
            cond = df > 0
            _check_get(df, cond)

        # upcasting case (GH # 2794)
        df = DataFrame(
            {
                c: Series([1] * 3, dtype=c)
                for c in ["float32", "float64", "int32", "int64"]
            }
        )
        df.iloc[1, :] = 0
        result = df.dtypes
        expected = Series(
            [
                np.dtype("float32"),
                np.dtype("float64"),
                np.dtype("int32"),
                np.dtype("int64"),
            ],
            index=["float32", "float64", "int32", "int64"],
        )

        # when we don't preserve boolean casts
        #
        # expected = Series({ 'float32' : 1, 'float64' : 3 })

        assert_series_equal(result, expected)

        # aligning
        def _check_align(df, cond, other, check_dtypes=True):
            rs = df.where(cond, other)
            for i, k in enumerate(rs.columns):
                result = rs[k]
                d = df[k].values
                c = cond[k].reindex(df[k].index).fillna(False).values

                if is_scalar(other):
                    o = other
                else:
                    if isinstance(other, np.ndarray):
                        o = Series(other[:, i], index=result.index).values
                    else:
                        o = other[k].values

                new_values = d if c.all() else np.where(c, d, o)
                expected = Series(new_values, index=result.index, name=k)

                # since we can't always have the correct numpy dtype
                # as numpy doesn't know how to downcast, don't check
                assert_series_equal(result, expected, check_dtype=False)

            # dtypes
            # can't check dtype when other is an ndarray

            if check_dtypes and not isinstance(other, np.ndarray):
                assert (rs.dtypes == df.dtypes).all()

        for df in [float_string_frame, mixed_float_frame, mixed_int_frame]:
            if df is float_string_frame:
                with pytest.raises(TypeError):
                    df > 0
                continue

            # other is a frame
            cond = (df > 0)[1:]
            _check_align(df, cond, _safe_add(df))

            # check other is ndarray
            cond = df > 0
            _check_align(df, cond, (_safe_add(df).values))

            # integers are upcast, so don't check the dtypes
            cond = df > 0
            check_dtypes = all(not issubclass(s.type, np.integer) for s in df.dtypes)
            _check_align(df, cond, np.nan, check_dtypes=check_dtypes)

        # invalid conditions
        df = default_frame
        err1 = (df + 1).values[0:2, :]
        msg = "other must be the same shape as self when an ndarray"
        with pytest.raises(ValueError, match=msg):
            df.where(cond, err1)

        err2 = cond.iloc[:2, :].values
        other1 = _safe_add(df)
        msg = "Array conditional must be same shape as self"
        with pytest.raises(ValueError, match=msg):
            df.where(err2, other1)

        with pytest.raises(ValueError, match=msg):
            df.mask(True)
        with pytest.raises(ValueError, match=msg):
            df.mask(0)

        # where inplace
        def _check_set(df, cond, check_dtypes=True):
            dfi = df.copy()
            econd = cond.reindex_like(df).fillna(True)
            expected = dfi.mask(~econd)

            dfi.where(cond, np.nan, inplace=True)
            assert_frame_equal(dfi, expected)

            # dtypes (and confirm upcasts)x
            if check_dtypes:
                for k, v in df.dtypes.items():
                    if issubclass(v.type, np.integer) and not cond[k].all():
                        v = np.dtype("float64")
                    assert dfi[k].dtype == v

        for df in [
            default_frame,
            float_string_frame,
            mixed_float_frame,
            mixed_int_frame,
        ]:
            if df is float_string_frame:
                with pytest.raises(TypeError):
                    df > 0
                continue

            cond = df > 0
            _check_set(df, cond)

            cond = df >= 0
            _check_set(df, cond)

            # aligning
            cond = (df >= 0)[1:]
            _check_set(df, cond)

        # GH 10218
        # test DataFrame.where with Series slicing
        df = DataFrame({"a": range(3), "b": range(4, 7)})
        result = df.where(df["a"] == 1)
        expected = df[df["a"] == 1].reindex(df.index)
        assert_frame_equal(result, expected)

    @pytest.mark.parametrize("klass", [list, tuple, np.array])
    def test_where_array_like(self, klass):
        # see gh-15414
        df = DataFrame({"a": [1, 2, 3]})
        cond = [[False], [True], [True]]
        expected = DataFrame({"a": [np.nan, 2, 3]})

        result = df.where(klass(cond))
        assert_frame_equal(result, expected)

        df["b"] = 2
        expected["b"] = [2, np.nan, 2]
        cond = [[False, True], [True, False], [True, True]]

        result = df.where(klass(cond))
        assert_frame_equal(result, expected)

    @pytest.mark.parametrize(
        "cond",
        [
            [[1], [0], [1]],
            Series([[2], [5], [7]]),
            DataFrame({"a": [2, 5, 7]}),
            [["True"], ["False"], ["True"]],
            [[Timestamp("2017-01-01")], [pd.NaT], [Timestamp("2017-01-02")]],
        ],
    )
    def test_where_invalid_input_single(self, cond):
        # see gh-15414: only boolean arrays accepted
        df = DataFrame({"a": [1, 2, 3]})
        msg = "Boolean array expected for the condition"

        with pytest.raises(ValueError, match=msg):
            df.where(cond)

    @pytest.mark.parametrize(
        "cond",
        [
            [[0, 1], [1, 0], [1, 1]],
            Series([[0, 2], [5, 0], [4, 7]]),
            [["False", "True"], ["True", "False"], ["True", "True"]],
            DataFrame({"a": [2, 5, 7], "b": [4, 8, 9]}),
            [
                [pd.NaT, Timestamp("2017-01-01")],
                [Timestamp("2017-01-02"), pd.NaT],
                [Timestamp("2017-01-03"), Timestamp("2017-01-03")],
            ],
        ],
    )
    def test_where_invalid_input_multiple(self, cond):
        # see gh-15414: only boolean arrays accepted
        df = DataFrame({"a": [1, 2, 3], "b": [2, 2, 2]})
        msg = "Boolean array expected for the condition"

        with pytest.raises(ValueError, match=msg):
            df.where(cond)

    def test_where_dataframe_col_match(self):
        df = DataFrame([[1, 2, 3], [4, 5, 6]])
        cond = DataFrame([[True, False, True], [False, False, True]])

        result = df.where(cond)
        expected = DataFrame([[1.0, np.nan, 3], [np.nan, np.nan, 6]])
        tm.assert_frame_equal(result, expected)

        # this *does* align, though has no matching columns
        cond.columns = ["a", "b", "c"]
        result = df.where(cond)
        expected = DataFrame(np.nan, index=df.index, columns=df.columns)
        tm.assert_frame_equal(result, expected)

    def test_where_ndframe_align(self):
        msg = "Array conditional must be same shape as self"
        df = DataFrame([[1, 2, 3], [4, 5, 6]])

        cond = [True]
        with pytest.raises(ValueError, match=msg):
            df.where(cond)

        expected = DataFrame([[1, 2, 3], [np.nan, np.nan, np.nan]])

        out = df.where(Series(cond))
        tm.assert_frame_equal(out, expected)

        cond = np.array([False, True, False, True])
        with pytest.raises(ValueError, match=msg):
            df.where(cond)

        expected = DataFrame([[np.nan, np.nan, np.nan], [4, 5, 6]])

        out = df.where(Series(cond))
        tm.assert_frame_equal(out, expected)

    def test_where_bug(self):
        # see gh-2793
        df = DataFrame(
            {"a": [1.0, 2.0, 3.0, 4.0], "b": [4.0, 3.0, 2.0, 1.0]}, dtype="float64"
        )
        expected = DataFrame(
            {"a": [np.nan, np.nan, 3.0, 4.0], "b": [4.0, 3.0, np.nan, np.nan]},
            dtype="float64",
        )
        result = df.where(df > 2, np.nan)
        assert_frame_equal(result, expected)

        result = df.copy()
        result.where(result > 2, np.nan, inplace=True)
        assert_frame_equal(result, expected)

    def test_where_bug_mixed(self, sint_dtype):
        # see gh-2793
        df = DataFrame(
            {
                "a": np.array([1, 2, 3, 4], dtype=sint_dtype),
                "b": np.array([4.0, 3.0, 2.0, 1.0], dtype="float64"),
            }
        )

        expected = DataFrame(
            {"a": [np.nan, np.nan, 3.0, 4.0], "b": [4.0, 3.0, np.nan, np.nan]},
            dtype="float64",
        )

        result = df.where(df > 2, np.nan)
        assert_frame_equal(result, expected)

        result = df.copy()
        result.where(result > 2, np.nan, inplace=True)
        assert_frame_equal(result, expected)

    def test_where_bug_transposition(self):
        # see gh-7506
        a = DataFrame({0: [1, 2], 1: [3, 4], 2: [5, 6]})
        b = DataFrame({0: [np.nan, 8], 1: [9, np.nan], 2: [np.nan, np.nan]})
        do_not_replace = b.isna() | (a > b)

        expected = a.copy()
        expected[~do_not_replace] = b

        result = a.where(do_not_replace, b)
        assert_frame_equal(result, expected)

        a = DataFrame({0: [4, 6], 1: [1, 0]})
        b = DataFrame({0: [np.nan, 3], 1: [3, np.nan]})
        do_not_replace = b.isna() | (a > b)

        expected = a.copy()
        expected[~do_not_replace] = b

        result = a.where(do_not_replace, b)
        assert_frame_equal(result, expected)

    def test_where_datetime(self):

        # GH 3311
        df = DataFrame(
            dict(
                A=date_range("20130102", periods=5),
                B=date_range("20130104", periods=5),
                C=np.random.randn(5),
            )
        )

        stamp = datetime(2013, 1, 3)
        with pytest.raises(TypeError):
            df > stamp

        result = df[df.iloc[:, :-1] > stamp]

        expected = df.copy()
        expected.loc[[0, 1], "A"] = np.nan
        expected.loc[:, "C"] = np.nan
        assert_frame_equal(result, expected)

    def test_where_none(self):
        # GH 4667
        # setting with None changes dtype
        df = DataFrame({"series": Series(range(10))}).astype(float)
        df[df > 7] = None
        expected = DataFrame(
            {"series": Series([0, 1, 2, 3, 4, 5, 6, 7, np.nan, np.nan])}
        )
        assert_frame_equal(df, expected)

        # GH 7656
        df = DataFrame(
            [
                {"A": 1, "B": np.nan, "C": "Test"},
                {"A": np.nan, "B": "Test", "C": np.nan},
            ]
        )
        msg = "boolean setting on mixed-type"

        with pytest.raises(TypeError, match=msg):
            df.where(~isna(df), None, inplace=True)

    def test_where_empty_df_and_empty_cond_having_non_bool_dtypes(self):
        # see gh-21947
        df = pd.DataFrame(columns=["a"])
        cond = df.applymap(lambda x: x > 0)

        result = df.where(cond)
        tm.assert_frame_equal(result, df)

    def test_where_align(self):
        def create():
            df = DataFrame(np.random.randn(10, 3))
            df.iloc[3:5, 0] = np.nan
            df.iloc[4:6, 1] = np.nan
            df.iloc[5:8, 2] = np.nan
            return df

        # series
        df = create()
        expected = df.fillna(df.mean())
        result = df.where(pd.notna(df), df.mean(), axis="columns")
        assert_frame_equal(result, expected)

        df.where(pd.notna(df), df.mean(), inplace=True, axis="columns")
        assert_frame_equal(df, expected)

        df = create().fillna(0)
        expected = df.apply(lambda x, y: x.where(x > 0, y), y=df[0])
        result = df.where(df > 0, df[0], axis="index")
        assert_frame_equal(result, expected)
        result = df.where(df > 0, df[0], axis="rows")
        assert_frame_equal(result, expected)

        # frame
        df = create()
        expected = df.fillna(1)
        result = df.where(
            pd.notna(df), DataFrame(1, index=df.index, columns=df.columns)
        )
        assert_frame_equal(result, expected)

    def test_where_complex(self):
        # GH 6345
        expected = DataFrame([[1 + 1j, 2], [np.nan, 4 + 1j]], columns=["a", "b"])
        df = DataFrame([[1 + 1j, 2], [5 + 1j, 4 + 1j]], columns=["a", "b"])
        df[df.abs() >= 5] = np.nan
        assert_frame_equal(df, expected)

    def test_where_axis(self):
        # GH 9736
        df = DataFrame(np.random.randn(2, 2))
        mask = DataFrame([[False, False], [False, False]])
        s = Series([0, 1])

        expected = DataFrame([[0, 0], [1, 1]], dtype="float64")
        result = df.where(mask, s, axis="index")
        assert_frame_equal(result, expected)

        result = df.copy()
        result.where(mask, s, axis="index", inplace=True)
        assert_frame_equal(result, expected)

        expected = DataFrame([[0, 1], [0, 1]], dtype="float64")
        result = df.where(mask, s, axis="columns")
        assert_frame_equal(result, expected)

        result = df.copy()
        result.where(mask, s, axis="columns", inplace=True)
        assert_frame_equal(result, expected)

        # Upcast needed
        df = DataFrame([[1, 2], [3, 4]], dtype="int64")
        mask = DataFrame([[False, False], [False, False]])
        s = Series([0, np.nan])

        expected = DataFrame([[0, 0], [np.nan, np.nan]], dtype="float64")
        result = df.where(mask, s, axis="index")
        assert_frame_equal(result, expected)

        result = df.copy()
        result.where(mask, s, axis="index", inplace=True)
        assert_frame_equal(result, expected)

        expected = DataFrame([[0, np.nan], [0, np.nan]])
        result = df.where(mask, s, axis="columns")
        assert_frame_equal(result, expected)

        expected = DataFrame(
            {
                0: np.array([0, 0], dtype="int64"),
                1: np.array([np.nan, np.nan], dtype="float64"),
            }
        )
        result = df.copy()
        result.where(mask, s, axis="columns", inplace=True)
        assert_frame_equal(result, expected)

        # Multiple dtypes (=> multiple Blocks)
        df = pd.concat(
            [
                DataFrame(np.random.randn(10, 2)),
                DataFrame(np.random.randint(0, 10, size=(10, 2)), dtype="int64"),
            ],
            ignore_index=True,
            axis=1,
        )
        mask = DataFrame(False, columns=df.columns, index=df.index)
        s1 = Series(1, index=df.columns)
        s2 = Series(2, index=df.index)

        result = df.where(mask, s1, axis="columns")
        expected = DataFrame(1.0, columns=df.columns, index=df.index)
        expected[2] = expected[2].astype("int64")
        expected[3] = expected[3].astype("int64")
        assert_frame_equal(result, expected)

        result = df.copy()
        result.where(mask, s1, axis="columns", inplace=True)
        assert_frame_equal(result, expected)

        result = df.where(mask, s2, axis="index")
        expected = DataFrame(2.0, columns=df.columns, index=df.index)
        expected[2] = expected[2].astype("int64")
        expected[3] = expected[3].astype("int64")
        assert_frame_equal(result, expected)

        result = df.copy()
        result.where(mask, s2, axis="index", inplace=True)
        assert_frame_equal(result, expected)

        # DataFrame vs DataFrame
        d1 = df.copy().drop(1, axis=0)
        expected = df.copy()
        expected.loc[1, :] = np.nan

        result = df.where(mask, d1)
        assert_frame_equal(result, expected)
        result = df.where(mask, d1, axis="index")
        assert_frame_equal(result, expected)
        result = df.copy()
        result.where(mask, d1, inplace=True)
        assert_frame_equal(result, expected)
        result = df.copy()
        result.where(mask, d1, inplace=True, axis="index")
        assert_frame_equal(result, expected)

        d2 = df.copy().drop(1, axis=1)
        expected = df.copy()
        expected.loc[:, 1] = np.nan

        result = df.where(mask, d2)
        assert_frame_equal(result, expected)
        result = df.where(mask, d2, axis="columns")
        assert_frame_equal(result, expected)
        result = df.copy()
        result.where(mask, d2, inplace=True)
        assert_frame_equal(result, expected)
        result = df.copy()
        result.where(mask, d2, inplace=True, axis="columns")
        assert_frame_equal(result, expected)

    def test_where_callable(self):
        # GH 12533
        df = DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
        result = df.where(lambda x: x > 4, lambda x: x + 1)
        exp = DataFrame([[2, 3, 4], [5, 5, 6], [7, 8, 9]])
        tm.assert_frame_equal(result, exp)
        tm.assert_frame_equal(result, df.where(df > 4, df + 1))

        # return ndarray and scalar
        result = df.where(lambda x: (x % 2 == 0).values, lambda x: 99)
        exp = DataFrame([[99, 2, 99], [4, 99, 6], [99, 8, 99]])
        tm.assert_frame_equal(result, exp)
        tm.assert_frame_equal(result, df.where(df % 2 == 0, 99))

        # chain
        result = (df + 2).where(lambda x: x > 8, lambda x: x + 10)
        exp = DataFrame([[13, 14, 15], [16, 17, 18], [9, 10, 11]])
        tm.assert_frame_equal(result, exp)
        tm.assert_frame_equal(result, (df + 2).where((df + 2) > 8, (df + 2) + 10))

    def test_where_tz_values(self, tz_naive_fixture):
        df1 = DataFrame(
            DatetimeIndex(["20150101", "20150102", "20150103"], tz=tz_naive_fixture),
            columns=["date"],
        )
        df2 = DataFrame(
            DatetimeIndex(["20150103", "20150104", "20150105"], tz=tz_naive_fixture),
            columns=["date"],
        )
        mask = DataFrame([True, True, False], columns=["date"])
        exp = DataFrame(
            DatetimeIndex(["20150101", "20150102", "20150105"], tz=tz_naive_fixture),
            columns=["date"],
        )
        result = df1.where(mask, df2)
        assert_frame_equal(exp, result)

    def test_mask(self):
        df = DataFrame(np.random.randn(5, 3))
        cond = df > 0

        rs = df.where(cond, np.nan)
        assert_frame_equal(rs, df.mask(df <= 0))
        assert_frame_equal(rs, df.mask(~cond))

        other = DataFrame(np.random.randn(5, 3))
        rs = df.where(cond, other)
        assert_frame_equal(rs, df.mask(df <= 0, other))
        assert_frame_equal(rs, df.mask(~cond, other))

        # see gh-21891
        df = DataFrame([1, 2])
        res = df.mask([[True], [False]])

        exp = DataFrame([np.nan, 2])
        tm.assert_frame_equal(res, exp)

    def test_mask_inplace(self):
        # GH8801
        df = DataFrame(np.random.randn(5, 3))
        cond = df > 0

        rdf = df.copy()

        rdf.where(cond, inplace=True)
        assert_frame_equal(rdf, df.where(cond))
        assert_frame_equal(rdf, df.mask(~cond))

        rdf = df.copy()
        rdf.where(cond, -df, inplace=True)
        assert_frame_equal(rdf, df.where(cond, -df))
        assert_frame_equal(rdf, df.mask(~cond, -df))

    def test_mask_edge_case_1xN_frame(self):
        # GH4071
        df = DataFrame([[1, 2]])
        res = df.mask(DataFrame([[True, False]]))
        expec = DataFrame([[np.nan, 2]])
        assert_frame_equal(res, expec)

    def test_mask_callable(self):
        # GH 12533
        df = DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
        result = df.mask(lambda x: x > 4, lambda x: x + 1)
        exp = DataFrame([[1, 2, 3], [4, 6, 7], [8, 9, 10]])
        tm.assert_frame_equal(result, exp)
        tm.assert_frame_equal(result, df.mask(df > 4, df + 1))

        # return ndarray and scalar
        result = df.mask(lambda x: (x % 2 == 0).values, lambda x: 99)
        exp = DataFrame([[1, 99, 3], [99, 5, 99], [7, 99, 9]])
        tm.assert_frame_equal(result, exp)
        tm.assert_frame_equal(result, df.mask(df % 2 == 0, 99))

        # chain
        result = (df + 2).mask(lambda x: x > 8, lambda x: x + 10)
        exp = DataFrame([[3, 4, 5], [6, 7, 8], [19, 20, 21]])
        tm.assert_frame_equal(result, exp)
        tm.assert_frame_equal(result, (df + 2).mask((df + 2) > 8, (df + 2) + 10))

    def test_head_tail(self, float_frame):
        assert_frame_equal(float_frame.head(), float_frame[:5])
        assert_frame_equal(float_frame.tail(), float_frame[-5:])

        assert_frame_equal(float_frame.head(0), float_frame[0:0])
        assert_frame_equal(float_frame.tail(0), float_frame[0:0])

        assert_frame_equal(float_frame.head(-1), float_frame[:-1])
        assert_frame_equal(float_frame.tail(-1), float_frame[1:])
        assert_frame_equal(float_frame.head(1), float_frame[:1])
        assert_frame_equal(float_frame.tail(1), float_frame[-1:])
        # with a float index
        df = float_frame.copy()
        df.index = np.arange(len(float_frame)) + 0.1
        assert_frame_equal(df.head(), df.iloc[:5])
        assert_frame_equal(df.tail(), df.iloc[-5:])
        assert_frame_equal(df.head(0), df[0:0])
        assert_frame_equal(df.tail(0), df[0:0])
        assert_frame_equal(df.head(-1), df.iloc[:-1])
        assert_frame_equal(df.tail(-1), df.iloc[1:])
        # test empty dataframe
        empty_df = DataFrame()
        assert_frame_equal(empty_df.tail(), empty_df)
        assert_frame_equal(empty_df.head(), empty_df)

    def test_type_error_multiindex(self):
        # See gh-12218
        df = DataFrame(
            columns=["i", "c", "x", "y"],
            data=[[0, 0, 1, 2], [1, 0, 3, 4], [0, 1, 1, 2], [1, 1, 3, 4]],
        )
        dg = df.pivot_table(index="i", columns="c", values=["x", "y"])

        with pytest.raises(TypeError, match="is an invalid key"):
            str(dg[:, 0])

        index = Index(range(2), name="i")
        columns = MultiIndex(
            levels=[["x", "y"], [0, 1]], codes=[[0, 1], [0, 0]], names=[None, "c"]
        )
        expected = DataFrame([[1, 2], [3, 4]], columns=columns, index=index)

        result = dg.loc[:, (slice(None), 0)]
        assert_frame_equal(result, expected)

        name = ("x", 0)
        index = Index(range(2), name="i")
        expected = Series([1, 3], index=index, name=name)

        result = dg["x", 0]
        assert_series_equal(result, expected)

    def test_interval_index(self):
        # GH 19977
        index = pd.interval_range(start=0, periods=3)
        df = pd.DataFrame(
            [[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=index, columns=["A", "B", "C"]
        )

        expected = 1
        result = df.loc[0.5, "A"]
        assert_almost_equal(result, expected)

        index = pd.interval_range(start=0, periods=3, closed="both")
        df = pd.DataFrame(
            [[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=index, columns=["A", "B", "C"]
        )

        index_exp = pd.interval_range(start=0, periods=2, freq=1, closed="both")
        expected = pd.Series([1, 4], index=index_exp, name="A")
        result = df.loc[1, "A"]
        assert_series_equal(result, expected)


class TestDataFrameIndexingDatetimeWithTZ(TestData):
    def test_setitem(self, timezone_frame):

        df = timezone_frame
        idx = df["B"].rename("foo")

        # setitem
        df["C"] = idx
        assert_series_equal(df["C"], Series(idx, name="C"))

        df["D"] = "foo"
        df["D"] = idx
        assert_series_equal(df["D"], Series(idx, name="D"))
        del df["D"]

        # assert that A & C are not sharing the same base (e.g. they
        # are copies)
        b1 = df._data.blocks[1]
        b2 = df._data.blocks[2]
        tm.assert_extension_array_equal(b1.values, b2.values)
        assert id(b1.values._data.base) != id(b2.values._data.base)

        # with nan
        df2 = df.copy()
        df2.iloc[1, 1] = pd.NaT
        df2.iloc[1, 2] = pd.NaT
        result = df2["B"]
        assert_series_equal(notna(result), Series([True, False, True], name="B"))
        assert_series_equal(df2.dtypes, df.dtypes)

    def test_set_reset(self):

        idx = Index(date_range("20130101", periods=3, tz="US/Eastern"), name="foo")

        # set/reset
        df = DataFrame({"A": [0, 1, 2]}, index=idx)
        result = df.reset_index()
        assert result["foo"].dtype, "M8[ns, US/Eastern"

        df = result.set_index("foo")
        tm.assert_index_equal(df.index, idx)

    def test_transpose(self, timezone_frame):

        result = timezone_frame.T
        expected = DataFrame(timezone_frame.values.T)
        expected.index = ["A", "B", "C"]
        assert_frame_equal(result, expected)

    def test_scalar_assignment(self):
        # issue #19843
        df = pd.DataFrame(index=(0, 1, 2))
        df["now"] = pd.Timestamp("20130101", tz="UTC")
        expected = pd.DataFrame(
            {"now": pd.Timestamp("20130101", tz="UTC")}, index=[0, 1, 2]
        )
        tm.assert_frame_equal(df, expected)


class TestDataFrameIndexingUInt64(TestData):
    def test_setitem(self, uint64_frame):

        df = uint64_frame
        idx = df["A"].rename("foo")

        # setitem
        df["C"] = idx
        assert_series_equal(df["C"], Series(idx, name="C"))

        df["D"] = "foo"
        df["D"] = idx
        assert_series_equal(df["D"], Series(idx, name="D"))
        del df["D"]

        # With NaN: because uint64 has no NaN element,
        # the column should be cast to object.
        df2 = df.copy()
        df2.iloc[1, 1] = pd.NaT
        df2.iloc[1, 2] = pd.NaT
        result = df2["B"]
        assert_series_equal(notna(result), Series([True, False, True], name="B"))
        assert_series_equal(
            df2.dtypes,
            Series(
                [np.dtype("uint64"), np.dtype("O"), np.dtype("O")],
                index=["A", "B", "C"],
            ),
        )

    def test_set_reset(self):

        idx = Index([2 ** 63, 2 ** 63 + 5, 2 ** 63 + 10], name="foo")

        # set/reset
        df = DataFrame({"A": [0, 1, 2]}, index=idx)
        result = df.reset_index()
        assert result["foo"].dtype == np.dtype("uint64")

        df = result.set_index("foo")
        tm.assert_index_equal(df.index, idx)

    def test_transpose(self, uint64_frame):

        result = uint64_frame.T
        expected = DataFrame(uint64_frame.values.T)
        expected.index = ["A", "B"]
        assert_frame_equal(result, expected)


class TestDataFrameIndexingCategorical:
    def test_assignment(self):
        # assignment
        df = DataFrame(
            {"value": np.array(np.random.randint(0, 10000, 100), dtype="int32")}
        )
        labels = Categorical(
            ["{0} - {1}".format(i, i + 499) for i in range(0, 10000, 500)]
        )

        df = df.sort_values(by=["value"], ascending=True)
        s = pd.cut(df.value, range(0, 10500, 500), right=False, labels=labels)
        d = s.values
        df["D"] = d
        str(df)

        result = df.dtypes
        expected = Series(
            [np.dtype("int32"), CategoricalDtype(categories=labels, ordered=False)],
            index=["value", "D"],
        )
        tm.assert_series_equal(result, expected)

        df["E"] = s
        str(df)

        result = df.dtypes
        expected = Series(
            [
                np.dtype("int32"),
                CategoricalDtype(categories=labels, ordered=False),
                CategoricalDtype(categories=labels, ordered=False),
            ],
            index=["value", "D", "E"],
        )
        tm.assert_series_equal(result, expected)

        result1 = df["D"]
        result2 = df["E"]
        tm.assert_categorical_equal(result1._data._block.values, d)

        # sorting
        s.name = "E"
        tm.assert_series_equal(result2.sort_index(), s.sort_index())

        cat = Categorical([1, 2, 3, 10], categories=[1, 2, 3, 4, 10])
        df = DataFrame(Series(cat))

    def test_assigning_ops(self):
        # systematically test the assigning operations:
        # for all slicing ops:
        #  for value in categories and value not in categories:

        #   - assign a single value -> exp_single_cats_value

        #   - assign a complete row (mixed values) -> exp_single_row

        # assign multiple rows (mixed values) (-> array) -> exp_multi_row

        # assign a part of a column with dtype == categorical ->
        # exp_parts_cats_col

        # assign a part of a column with dtype != categorical ->
        # exp_parts_cats_col

        cats = Categorical(["a", "a", "a", "a", "a", "a", "a"], categories=["a", "b"])
        idx = Index(["h", "i", "j", "k", "l", "m", "n"])
        values = [1, 1, 1, 1, 1, 1, 1]
        orig = DataFrame({"cats": cats, "values": values}, index=idx)

        # the expected values
        # changed single row
        cats1 = Categorical(["a", "a", "b", "a", "a", "a", "a"], categories=["a", "b"])
        idx1 = Index(["h", "i", "j", "k", "l", "m", "n"])
        values1 = [1, 1, 2, 1, 1, 1, 1]
        exp_single_row = DataFrame({"cats": cats1, "values": values1}, index=idx1)

        # changed multiple rows
        cats2 = Categorical(["a", "a", "b", "b", "a", "a", "a"], categories=["a", "b"])
        idx2 = Index(["h", "i", "j", "k", "l", "m", "n"])
        values2 = [1, 1, 2, 2, 1, 1, 1]
        exp_multi_row = DataFrame({"cats": cats2, "values": values2}, index=idx2)

        # changed part of the cats column
        cats3 = Categorical(["a", "a", "b", "b", "a", "a", "a"], categories=["a", "b"])
        idx3 = Index(["h", "i", "j", "k", "l", "m", "n"])
        values3 = [1, 1, 1, 1, 1, 1, 1]
        exp_parts_cats_col = DataFrame({"cats": cats3, "values": values3}, index=idx3)

        # changed single value in cats col
        cats4 = Categorical(["a", "a", "b", "a", "a", "a", "a"], categories=["a", "b"])
        idx4 = Index(["h", "i", "j", "k", "l", "m", "n"])
        values4 = [1, 1, 1, 1, 1, 1, 1]
        exp_single_cats_value = DataFrame(
            {"cats": cats4, "values": values4}, index=idx4
        )

        #  iloc
        # ###############
        #   - assign a single value -> exp_single_cats_value
        df = orig.copy()
        df.iloc[2, 0] = "b"
        tm.assert_frame_equal(df, exp_single_cats_value)

        df = orig.copy()
        df.iloc[df.index == "j", 0] = "b"
        tm.assert_frame_equal(df, exp_single_cats_value)

        #   - assign a single value not in the current categories set
        with pytest.raises(ValueError):
            df = orig.copy()
            df.iloc[2, 0] = "c"

        #   - assign a complete row (mixed values) -> exp_single_row
        df = orig.copy()
        df.iloc[2, :] = ["b", 2]
        tm.assert_frame_equal(df, exp_single_row)

        #   - assign a complete row (mixed values) not in categories set
        with pytest.raises(ValueError):
            df = orig.copy()
            df.iloc[2, :] = ["c", 2]

        #   - assign multiple rows (mixed values) -> exp_multi_row
        df = orig.copy()
        df.iloc[2:4, :] = [["b", 2], ["b", 2]]
        tm.assert_frame_equal(df, exp_multi_row)

        with pytest.raises(ValueError):
            df = orig.copy()
            df.iloc[2:4, :] = [["c", 2], ["c", 2]]

        # assign a part of a column with dtype == categorical ->
        # exp_parts_cats_col
        df = orig.copy()
        df.iloc[2:4, 0] = Categorical(["b", "b"], categories=["a", "b"])
        tm.assert_frame_equal(df, exp_parts_cats_col)

        with pytest.raises(ValueError):
            # different categories -> not sure if this should fail or pass
            df = orig.copy()
            df.iloc[2:4, 0] = Categorical(list("bb"), categories=list("abc"))

        with pytest.raises(ValueError):
            # different values
            df = orig.copy()
            df.iloc[2:4, 0] = Categorical(list("cc"), categories=list("abc"))

        # assign a part of a column with dtype != categorical ->
        # exp_parts_cats_col
        df = orig.copy()
        df.iloc[2:4, 0] = ["b", "b"]
        tm.assert_frame_equal(df, exp_parts_cats_col)

        with pytest.raises(ValueError):
            df.iloc[2:4, 0] = ["c", "c"]

        #  loc
        # ##############
        #   - assign a single value -> exp_single_cats_value
        df = orig.copy()
        df.loc["j", "cats"] = "b"
        tm.assert_frame_equal(df, exp_single_cats_value)

        df = orig.copy()
        df.loc[df.index == "j", "cats"] = "b"
        tm.assert_frame_equal(df, exp_single_cats_value)

        #   - assign a single value not in the current categories set
        with pytest.raises(ValueError):
            df = orig.copy()
            df.loc["j", "cats"] = "c"

        #   - assign a complete row (mixed values) -> exp_single_row
        df = orig.copy()
        df.loc["j", :] = ["b", 2]
        tm.assert_frame_equal(df, exp_single_row)

        #   - assign a complete row (mixed values) not in categories set
        with pytest.raises(ValueError):
            df = orig.copy()
            df.loc["j", :] = ["c", 2]

        #   - assign multiple rows (mixed values) -> exp_multi_row
        df = orig.copy()
        df.loc["j":"k", :] = [["b", 2], ["b", 2]]
        tm.assert_frame_equal(df, exp_multi_row)

        with pytest.raises(ValueError):
            df = orig.copy()
            df.loc["j":"k", :] = [["c", 2], ["c", 2]]

        # assign a part of a column with dtype == categorical ->
        # exp_parts_cats_col
        df = orig.copy()
        df.loc["j":"k", "cats"] = Categorical(["b", "b"], categories=["a", "b"])
        tm.assert_frame_equal(df, exp_parts_cats_col)

        with pytest.raises(ValueError):
            # different categories -> not sure if this should fail or pass
            df = orig.copy()
            df.loc["j":"k", "cats"] = Categorical(
                ["b", "b"], categories=["a", "b", "c"]
            )

        with pytest.raises(ValueError):
            # different values
            df = orig.copy()
            df.loc["j":"k", "cats"] = Categorical(
                ["c", "c"], categories=["a", "b", "c"]
            )

        # assign a part of a column with dtype != categorical ->
        # exp_parts_cats_col
        df = orig.copy()
        df.loc["j":"k", "cats"] = ["b", "b"]
        tm.assert_frame_equal(df, exp_parts_cats_col)

        with pytest.raises(ValueError):
            df.loc["j":"k", "cats"] = ["c", "c"]

        #  loc
        # ##############
        #   - assign a single value -> exp_single_cats_value
        df = orig.copy()
        df.loc["j", df.columns[0]] = "b"
        tm.assert_frame_equal(df, exp_single_cats_value)

        df = orig.copy()
        df.loc[df.index == "j", df.columns[0]] = "b"
        tm.assert_frame_equal(df, exp_single_cats_value)

        #   - assign a single value not in the current categories set
        with pytest.raises(ValueError):
            df = orig.copy()
            df.loc["j", df.columns[0]] = "c"

        #   - assign a complete row (mixed values) -> exp_single_row
        df = orig.copy()
        df.loc["j", :] = ["b", 2]
        tm.assert_frame_equal(df, exp_single_row)

        #   - assign a complete row (mixed values) not in categories set
        with pytest.raises(ValueError):
            df = orig.copy()
            df.loc["j", :] = ["c", 2]

        #   - assign multiple rows (mixed values) -> exp_multi_row
        df = orig.copy()
        df.loc["j":"k", :] = [["b", 2], ["b", 2]]
        tm.assert_frame_equal(df, exp_multi_row)

        with pytest.raises(ValueError):
            df = orig.copy()
            df.loc["j":"k", :] = [["c", 2], ["c", 2]]

        # assign a part of a column with dtype == categorical ->
        # exp_parts_cats_col
        df = orig.copy()
        df.loc["j":"k", df.columns[0]] = Categorical(["b", "b"], categories=["a", "b"])
        tm.assert_frame_equal(df, exp_parts_cats_col)

        with pytest.raises(ValueError):
            # different categories -> not sure if this should fail or pass
            df = orig.copy()
            df.loc["j":"k", df.columns[0]] = Categorical(
                ["b", "b"], categories=["a", "b", "c"]
            )

        with pytest.raises(ValueError):
            # different values
            df = orig.copy()
            df.loc["j":"k", df.columns[0]] = Categorical(
                ["c", "c"], categories=["a", "b", "c"]
            )

        # assign a part of a column with dtype != categorical ->
        # exp_parts_cats_col
        df = orig.copy()
        df.loc["j":"k", df.columns[0]] = ["b", "b"]
        tm.assert_frame_equal(df, exp_parts_cats_col)

        with pytest.raises(ValueError):
            df.loc["j":"k", df.columns[0]] = ["c", "c"]

        # iat
        df = orig.copy()
        df.iat[2, 0] = "b"
        tm.assert_frame_equal(df, exp_single_cats_value)

        #   - assign a single value not in the current categories set
        with pytest.raises(ValueError):
            df = orig.copy()
            df.iat[2, 0] = "c"

        # at
        #   - assign a single value -> exp_single_cats_value
        df = orig.copy()
        df.at["j", "cats"] = "b"
        tm.assert_frame_equal(df, exp_single_cats_value)

        #   - assign a single value not in the current categories set
        with pytest.raises(ValueError):
            df = orig.copy()
            df.at["j", "cats"] = "c"

        # fancy indexing
        catsf = Categorical(
            ["a", "a", "c", "c", "a", "a", "a"], categories=["a", "b", "c"]
        )
        idxf = Index(["h", "i", "j", "k", "l", "m", "n"])
        valuesf = [1, 1, 3, 3, 1, 1, 1]
        df = DataFrame({"cats": catsf, "values": valuesf}, index=idxf)

        exp_fancy = exp_multi_row.copy()
        exp_fancy["cats"].cat.set_categories(["a", "b", "c"], inplace=True)

        df[df["cats"] == "c"] = ["b", 2]
        # category c is kept in .categories
        tm.assert_frame_equal(df, exp_fancy)

        # set_value
        df = orig.copy()
        df.at["j", "cats"] = "b"
        tm.assert_frame_equal(df, exp_single_cats_value)

        with pytest.raises(ValueError):
            df = orig.copy()
            df.at["j", "cats"] = "c"

        # Assigning a Category to parts of a int/... column uses the values of
        # the Categorical
        df = DataFrame({"a": [1, 1, 1, 1, 1], "b": list("aaaaa")})
        exp = DataFrame({"a": [1, "b", "b", 1, 1], "b": list("aabba")})
        df.loc[1:2, "a"] = Categorical(["b", "b"], categories=["a", "b"])
        df.loc[2:3, "b"] = Categorical(["b", "b"], categories=["a", "b"])
        tm.assert_frame_equal(df, exp)

    def test_functions_no_warnings(self):
        df = DataFrame({"value": np.random.randint(0, 100, 20)})
        labels = ["{0} - {1}".format(i, i + 9) for i in range(0, 100, 10)]
        with tm.assert_produces_warning(False):
            df["group"] = pd.cut(
                df.value, range(0, 105, 10), right=False, labels=labels
            )