import re
import numpy as np
import pytest
from pandas.compat import PY36
from pandas import DataFrame, Index, MultiIndex, Series
import pandas.util.testing as tm
from pandas.util.testing import assert_frame_equal
# Column add, remove, delete.
class TestDataFrameMutateColumns:
def test_assign(self):
df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
original = df.copy()
result = df.assign(C=df.B / df.A)
expected = df.copy()
expected["C"] = [4, 2.5, 2]
assert_frame_equal(result, expected)
# lambda syntax
result = df.assign(C=lambda x: x.B / x.A)
assert_frame_equal(result, expected)
# original is unmodified
assert_frame_equal(df, original)
# Non-Series array-like
result = df.assign(C=[4, 2.5, 2])
assert_frame_equal(result, expected)
# original is unmodified
assert_frame_equal(df, original)
result = df.assign(B=df.B / df.A)
expected = expected.drop("B", axis=1).rename(columns={"C": "B"})
assert_frame_equal(result, expected)
# overwrite
result = df.assign(A=df.A + df.B)
expected = df.copy()
expected["A"] = [5, 7, 9]
assert_frame_equal(result, expected)
# lambda
result = df.assign(A=lambda x: x.A + x.B)
assert_frame_equal(result, expected)
def test_assign_multiple(self):
df = DataFrame([[1, 4], [2, 5], [3, 6]], columns=["A", "B"])
result = df.assign(C=[7, 8, 9], D=df.A, E=lambda x: x.B)
expected = DataFrame(
[[1, 4, 7, 1, 4], [2, 5, 8, 2, 5], [3, 6, 9, 3, 6]], columns=list("ABCDE")
)
assert_frame_equal(result, expected)
def test_assign_order(self):
# GH 9818
df = DataFrame([[1, 2], [3, 4]], columns=["A", "B"])
result = df.assign(D=df.A + df.B, C=df.A - df.B)
if PY36:
expected = DataFrame([[1, 2, 3, -1], [3, 4, 7, -1]], columns=list("ABDC"))
else:
expected = DataFrame([[1, 2, -1, 3], [3, 4, -1, 7]], columns=list("ABCD"))
assert_frame_equal(result, expected)
result = df.assign(C=df.A - df.B, D=df.A + df.B)
expected = DataFrame([[1, 2, -1, 3], [3, 4, -1, 7]], columns=list("ABCD"))
assert_frame_equal(result, expected)
def test_assign_bad(self):
df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
# non-keyword argument
with pytest.raises(TypeError):
df.assign(lambda x: x.A)
with pytest.raises(AttributeError):
df.assign(C=df.A, D=df.A + df.C)
@pytest.mark.skipif(
PY36,
reason="""Issue #14207: valid for python
3.6 and above""",
)
def test_assign_dependent_old_python(self):
df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
# Key C does not exist at definition time of df
with pytest.raises(KeyError, match="^'C'$"):
df.assign(C=lambda df: df.A, D=lambda df: df["A"] + df["C"])
with pytest.raises(KeyError, match="^'C'$"):
df.assign(C=df.A, D=lambda x: x["A"] + x["C"])
@pytest.mark.skipif(
not PY36,
reason="""Issue #14207: not valid for
python 3.5 and below""",
)
def test_assign_dependent(self):
df = DataFrame({"A": [1, 2], "B": [3, 4]})
result = df.assign(C=df.A, D=lambda x: x["A"] + x["C"])
expected = DataFrame([[1, 3, 1, 2], [2, 4, 2, 4]], columns=list("ABCD"))
assert_frame_equal(result, expected)
result = df.assign(C=lambda df: df.A, D=lambda df: df["A"] + df["C"])
expected = DataFrame([[1, 3, 1, 2], [2, 4, 2, 4]], columns=list("ABCD"))
assert_frame_equal(result, expected)
def test_insert_error_msmgs(self):
# GH 7432
df = DataFrame(
{"foo": ["a", "b", "c"], "bar": [1, 2, 3], "baz": ["d", "e", "f"]}
).set_index("foo")
s = DataFrame(
{"foo": ["a", "b", "c", "a"], "fiz": ["g", "h", "i", "j"]}
).set_index("foo")
msg = "cannot reindex from a duplicate axis"
with pytest.raises(ValueError, match=msg):
df["newcol"] = s
# GH 4107, more descriptive error message
df = DataFrame(np.random.randint(0, 2, (4, 4)), columns=["a", "b", "c", "d"])
msg = "incompatible index of inserted column with frame index"
with pytest.raises(TypeError, match=msg):
df["gr"] = df.groupby(["b", "c"]).count()
def test_insert_benchmark(self):
# from the vb_suite/frame_methods/frame_insert_columns
N = 10
K = 5
df = DataFrame(index=range(N))
new_col = np.random.randn(N)
for i in range(K):
df[i] = new_col
expected = DataFrame(np.repeat(new_col, K).reshape(N, K), index=range(N))
assert_frame_equal(df, expected)
def test_insert(self):
df = DataFrame(
np.random.randn(5, 3), index=np.arange(5), columns=["c", "b", "a"]
)
df.insert(0, "foo", df["a"])
tm.assert_index_equal(df.columns, Index(["foo", "c", "b", "a"]))
tm.assert_series_equal(df["a"], df["foo"], check_names=False)
df.insert(2, "bar", df["c"])
tm.assert_index_equal(df.columns, Index(["foo", "c", "bar", "b", "a"]))
tm.assert_almost_equal(df["c"], df["bar"], check_names=False)
# diff dtype
# new item
df["x"] = df["a"].astype("float32")
result = df.dtypes
expected = Series(
[np.dtype("float64")] * 5 + [np.dtype("float32")],
index=["foo", "c", "bar", "b", "a", "x"],
)
tm.assert_series_equal(result, expected)
# replacing current (in different block)
df["a"] = df["a"].astype("float32")
result = df.dtypes
expected = Series(
[np.dtype("float64")] * 4 + [np.dtype("float32")] * 2,
index=["foo", "c", "bar", "b", "a", "x"],
)
tm.assert_series_equal(result, expected)
df["y"] = df["a"].astype("int32")
result = df.dtypes
expected = Series(
[np.dtype("float64")] * 4 + [np.dtype("float32")] * 2 + [np.dtype("int32")],
index=["foo", "c", "bar", "b", "a", "x", "y"],
)
tm.assert_series_equal(result, expected)
with pytest.raises(ValueError, match="already exists"):
df.insert(1, "a", df["b"])
msg = "cannot insert c, already exists"
with pytest.raises(ValueError, match=msg):
df.insert(1, "c", df["b"])
df.columns.name = "some_name"
# preserve columns name field
df.insert(0, "baz", df["c"])
assert df.columns.name == "some_name"
# GH 13522
df = DataFrame(index=["A", "B", "C"])
df["X"] = df.index
df["X"] = ["x", "y", "z"]
exp = DataFrame(data={"X": ["x", "y", "z"]}, index=["A", "B", "C"])
assert_frame_equal(df, exp)
def test_delitem(self, float_frame):
del float_frame["A"]
assert "A" not in float_frame
def test_delitem_multiindex(self):
midx = MultiIndex.from_product([["A", "B"], [1, 2]])
df = DataFrame(np.random.randn(4, 4), columns=midx)
assert len(df.columns) == 4
assert ("A",) in df.columns
assert "A" in df.columns
result = df["A"]
assert isinstance(result, DataFrame)
del df["A"]
assert len(df.columns) == 2
# A still in the levels, BUT get a KeyError if trying
# to delete
assert ("A",) not in df.columns
with pytest.raises(KeyError, match=re.escape("('A',)")):
del df[("A",)]
# behavior of dropped/deleted MultiIndex levels changed from
# GH 2770 to GH 19027: MultiIndex no longer '.__contains__'
# levels which are dropped/deleted
assert "A" not in df.columns
with pytest.raises(KeyError, match=re.escape("('A',)")):
del df["A"]
def test_pop(self, float_frame):
float_frame.columns.name = "baz"
float_frame.pop("A")
assert "A" not in float_frame
float_frame["foo"] = "bar"
float_frame.pop("foo")
assert "foo" not in float_frame
assert float_frame.columns.name == "baz"
# gh-10912: inplace ops cause caching issue
a = DataFrame([[1, 2, 3], [4, 5, 6]], columns=["A", "B", "C"], index=["X", "Y"])
b = a.pop("B")
b += 1
# original frame
expected = DataFrame([[1, 3], [4, 6]], columns=["A", "C"], index=["X", "Y"])
tm.assert_frame_equal(a, expected)
# result
expected = Series([2, 5], index=["X", "Y"], name="B") + 1
tm.assert_series_equal(b, expected)
def test_pop_non_unique_cols(self):
df = DataFrame({0: [0, 1], 1: [0, 1], 2: [4, 5]})
df.columns = ["a", "b", "a"]
res = df.pop("a")
assert type(res) == DataFrame
assert len(res) == 2
assert len(df.columns) == 1
assert "b" in df.columns
assert "a" not in df.columns
assert len(df.index) == 2
def test_insert_column_bug_4032(self):
# GH4032, inserting a column and renaming causing errors
df = DataFrame({"b": [1.1, 2.2]})
df = df.rename(columns={})
df.insert(0, "a", [1, 2])
result = df.rename(columns={})
str(result)
expected = DataFrame([[1, 1.1], [2, 2.2]], columns=["a", "b"])
assert_frame_equal(result, expected)
df.insert(0, "c", [1.3, 2.3])
result = df.rename(columns={})
str(result)
expected = DataFrame([[1.3, 1, 1.1], [2.3, 2, 2.2]], columns=["c", "a", "b"])
assert_frame_equal(result, expected)