Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

aaronreidsmith / pandas   python

Repository URL to install this package:

Version: 0.25.3 

/ tests / frame / test_timeseries.py

from datetime import datetime, time
from itertools import product

import numpy as np
import pytest
import pytz

import pandas as pd
from pandas import (
    DataFrame,
    DatetimeIndex,
    Index,
    MultiIndex,
    Series,
    Timestamp,
    date_range,
    period_range,
    to_datetime,
)
from pandas.tests.frame.common import TestData
import pandas.util.testing as tm
from pandas.util.testing import (
    assert_frame_equal,
    assert_index_equal,
    assert_series_equal,
)

import pandas.tseries.offsets as offsets


@pytest.fixture(params=product([True, False], [True, False]))
def close_open_fixture(request):
    return request.param


class TestDataFrameTimeSeriesMethods(TestData):
    def test_diff(self):
        the_diff = self.tsframe.diff(1)

        assert_series_equal(
            the_diff["A"], self.tsframe["A"] - self.tsframe["A"].shift(1)
        )

        # int dtype
        a = 10000000000000000
        b = a + 1
        s = Series([a, b])

        rs = DataFrame({"s": s}).diff()
        assert rs.s[1] == 1

        # mixed numeric
        tf = self.tsframe.astype("float32")
        the_diff = tf.diff(1)
        assert_series_equal(the_diff["A"], tf["A"] - tf["A"].shift(1))

        # issue 10907
        df = pd.DataFrame({"y": pd.Series([2]), "z": pd.Series([3])})
        df.insert(0, "x", 1)
        result = df.diff(axis=1)
        expected = pd.DataFrame(
            {"x": np.nan, "y": pd.Series(1), "z": pd.Series(1)}
        ).astype("float64")
        assert_frame_equal(result, expected)

    @pytest.mark.parametrize("tz", [None, "UTC"])
    def test_diff_datetime_axis0(self, tz):
        # GH 18578
        df = DataFrame(
            {
                0: date_range("2010", freq="D", periods=2, tz=tz),
                1: date_range("2010", freq="D", periods=2, tz=tz),
            }
        )

        result = df.diff(axis=0)
        expected = DataFrame(
            {
                0: pd.TimedeltaIndex(["NaT", "1 days"]),
                1: pd.TimedeltaIndex(["NaT", "1 days"]),
            }
        )
        assert_frame_equal(result, expected)

    @pytest.mark.parametrize("tz", [None, "UTC"])
    def test_diff_datetime_axis1(self, tz):
        # GH 18578
        df = DataFrame(
            {
                0: date_range("2010", freq="D", periods=2, tz=tz),
                1: date_range("2010", freq="D", periods=2, tz=tz),
            }
        )
        if tz is None:
            result = df.diff(axis=1)
            expected = DataFrame(
                {
                    0: pd.TimedeltaIndex(["NaT", "NaT"]),
                    1: pd.TimedeltaIndex(["0 days", "0 days"]),
                }
            )
            assert_frame_equal(result, expected)
        else:
            with pytest.raises(NotImplementedError):
                result = df.diff(axis=1)

    def test_diff_timedelta(self):
        # GH 4533
        df = DataFrame(
            dict(
                time=[Timestamp("20130101 9:01"), Timestamp("20130101 9:02")],
                value=[1.0, 2.0],
            )
        )

        res = df.diff()
        exp = DataFrame(
            [[pd.NaT, np.nan], [pd.Timedelta("00:01:00"), 1]], columns=["time", "value"]
        )
        assert_frame_equal(res, exp)

    def test_diff_mixed_dtype(self):
        df = DataFrame(np.random.randn(5, 3))
        df["A"] = np.array([1, 2, 3, 4, 5], dtype=object)

        result = df.diff()
        assert result[0].dtype == np.float64

    def test_diff_neg_n(self):
        rs = self.tsframe.diff(-1)
        xp = self.tsframe - self.tsframe.shift(-1)
        assert_frame_equal(rs, xp)

    def test_diff_float_n(self):
        rs = self.tsframe.diff(1.0)
        xp = self.tsframe.diff(1)
        assert_frame_equal(rs, xp)

    def test_diff_axis(self):
        # GH 9727
        df = DataFrame([[1.0, 2.0], [3.0, 4.0]])
        assert_frame_equal(df.diff(axis=1), DataFrame([[np.nan, 1.0], [np.nan, 1.0]]))
        assert_frame_equal(df.diff(axis=0), DataFrame([[np.nan, np.nan], [2.0, 2.0]]))

    def test_pct_change(self):
        rs = self.tsframe.pct_change(fill_method=None)
        assert_frame_equal(rs, self.tsframe / self.tsframe.shift(1) - 1)

        rs = self.tsframe.pct_change(2)
        filled = self.tsframe.fillna(method="pad")
        assert_frame_equal(rs, filled / filled.shift(2) - 1)

        rs = self.tsframe.pct_change(fill_method="bfill", limit=1)
        filled = self.tsframe.fillna(method="bfill", limit=1)
        assert_frame_equal(rs, filled / filled.shift(1) - 1)

        rs = self.tsframe.pct_change(freq="5D")
        filled = self.tsframe.fillna(method="pad")
        assert_frame_equal(
            rs, (filled / filled.shift(freq="5D") - 1).reindex_like(filled)
        )

    def test_pct_change_shift_over_nas(self):
        s = Series([1.0, 1.5, np.nan, 2.5, 3.0])

        df = DataFrame({"a": s, "b": s})

        chg = df.pct_change()
        expected = Series([np.nan, 0.5, 0.0, 2.5 / 1.5 - 1, 0.2])
        edf = DataFrame({"a": expected, "b": expected})
        assert_frame_equal(chg, edf)

    @pytest.mark.parametrize(
        "freq, periods, fill_method, limit",
        [
            ("5B", 5, None, None),
            ("3B", 3, None, None),
            ("3B", 3, "bfill", None),
            ("7B", 7, "pad", 1),
            ("7B", 7, "bfill", 3),
            ("14B", 14, None, None),
        ],
    )
    def test_pct_change_periods_freq(self, freq, periods, fill_method, limit):
        # GH 7292
        rs_freq = self.tsframe.pct_change(
            freq=freq, fill_method=fill_method, limit=limit
        )
        rs_periods = self.tsframe.pct_change(
            periods, fill_method=fill_method, limit=limit
        )
        assert_frame_equal(rs_freq, rs_periods)

        empty_ts = DataFrame(index=self.tsframe.index, columns=self.tsframe.columns)
        rs_freq = empty_ts.pct_change(freq=freq, fill_method=fill_method, limit=limit)
        rs_periods = empty_ts.pct_change(periods, fill_method=fill_method, limit=limit)
        assert_frame_equal(rs_freq, rs_periods)

    def test_frame_ctor_datetime64_column(self):
        rng = date_range("1/1/2000 00:00:00", "1/1/2000 1:59:50", freq="10s")
        dates = np.asarray(rng)

        df = DataFrame({"A": np.random.randn(len(rng)), "B": dates})
        assert np.issubdtype(df["B"].dtype, np.dtype("M8[ns]"))

    def test_frame_append_datetime64_column(self):
        rng = date_range("1/1/2000 00:00:00", "1/1/2000 1:59:50", freq="10s")
        df = DataFrame(index=np.arange(len(rng)))

        df["A"] = rng
        assert np.issubdtype(df["A"].dtype, np.dtype("M8[ns]"))

    def test_frame_datetime64_pre1900_repr(self):
        df = DataFrame({"year": date_range("1/1/1700", periods=50, freq="A-DEC")})
        # it works!
        repr(df)

    def test_frame_append_datetime64_col_other_units(self):
        n = 100

        units = ["h", "m", "s", "ms", "D", "M", "Y"]

        ns_dtype = np.dtype("M8[ns]")

        for unit in units:
            dtype = np.dtype("M8[{unit}]".format(unit=unit))
            vals = np.arange(n, dtype=np.int64).view(dtype)

            df = DataFrame({"ints": np.arange(n)}, index=np.arange(n))
            df[unit] = vals

            ex_vals = to_datetime(vals.astype("O")).values

            assert df[unit].dtype == ns_dtype
            assert (df[unit].values == ex_vals).all()

        # Test insertion into existing datetime64 column
        df = DataFrame({"ints": np.arange(n)}, index=np.arange(n))
        df["dates"] = np.arange(n, dtype=np.int64).view(ns_dtype)

        for unit in units:
            dtype = np.dtype("M8[{unit}]".format(unit=unit))
            vals = np.arange(n, dtype=np.int64).view(dtype)

            tmp = df.copy()

            tmp["dates"] = vals
            ex_vals = to_datetime(vals.astype("O")).values

            assert (tmp["dates"].values == ex_vals).all()

    def test_shift(self):
        # naive shift
        shiftedFrame = self.tsframe.shift(5)
        tm.assert_index_equal(shiftedFrame.index, self.tsframe.index)

        shiftedSeries = self.tsframe["A"].shift(5)
        assert_series_equal(shiftedFrame["A"], shiftedSeries)

        shiftedFrame = self.tsframe.shift(-5)
        tm.assert_index_equal(shiftedFrame.index, self.tsframe.index)

        shiftedSeries = self.tsframe["A"].shift(-5)
        assert_series_equal(shiftedFrame["A"], shiftedSeries)

        # shift by 0
        unshifted = self.tsframe.shift(0)
        assert_frame_equal(unshifted, self.tsframe)

        # shift by DateOffset
        shiftedFrame = self.tsframe.shift(5, freq=offsets.BDay())
        assert len(shiftedFrame) == len(self.tsframe)

        shiftedFrame2 = self.tsframe.shift(5, freq="B")
        assert_frame_equal(shiftedFrame, shiftedFrame2)

        d = self.tsframe.index[0]
        shifted_d = d + offsets.BDay(5)
        assert_series_equal(
            self.tsframe.xs(d), shiftedFrame.xs(shifted_d), check_names=False
        )

        # shift int frame
        int_shifted = self.intframe.shift(1)  # noqa

        # Shifting with PeriodIndex
        ps = tm.makePeriodFrame()
        shifted = ps.shift(1)
        unshifted = shifted.shift(-1)
        tm.assert_index_equal(shifted.index, ps.index)
        tm.assert_index_equal(unshifted.index, ps.index)
        tm.assert_numpy_array_equal(
            unshifted.iloc[:, 0].dropna().values, ps.iloc[:-1, 0].values
        )

        shifted2 = ps.shift(1, "B")
        shifted3 = ps.shift(1, offsets.BDay())
        assert_frame_equal(shifted2, shifted3)
        assert_frame_equal(ps, shifted2.shift(-1, "B"))

        msg = "does not match PeriodIndex freq"
        with pytest.raises(ValueError, match=msg):
            ps.shift(freq="D")

        # shift other axis
        # GH 6371
        df = DataFrame(np.random.rand(10, 5))
        expected = pd.concat(
            [DataFrame(np.nan, index=df.index, columns=[0]), df.iloc[:, 0:-1]],
            ignore_index=True,
            axis=1,
        )
        result = df.shift(1, axis=1)
        assert_frame_equal(result, expected)

        # shift named axis
        df = DataFrame(np.random.rand(10, 5))
        expected = pd.concat(
            [DataFrame(np.nan, index=df.index, columns=[0]), df.iloc[:, 0:-1]],
            ignore_index=True,
            axis=1,
        )
        result = df.shift(1, axis="columns")
        assert_frame_equal(result, expected)

    def test_shift_bool(self):
        df = DataFrame({"high": [True, False], "low": [False, False]})
        rs = df.shift(1)
        xp = DataFrame(
            np.array([[np.nan, np.nan], [True, False]], dtype=object),
            columns=["high", "low"],
        )
        assert_frame_equal(rs, xp)

    def test_shift_categorical(self):
        # GH 9416
        s1 = pd.Series(["a", "b", "c"], dtype="category")
        s2 = pd.Series(["A", "B", "C"], dtype="category")
        df = DataFrame({"one": s1, "two": s2})
        rs = df.shift(1)
        xp = DataFrame({"one": s1.shift(1), "two": s2.shift(1)})
        assert_frame_equal(rs, xp)

    def test_shift_fill_value(self):
        # GH #24128
        df = DataFrame(
            [1, 2, 3, 4, 5], index=date_range("1/1/2000", periods=5, freq="H")
        )
        exp = DataFrame(
            [0, 1, 2, 3, 4], index=date_range("1/1/2000", periods=5, freq="H")
        )
        result = df.shift(1, fill_value=0)
        assert_frame_equal(result, exp)

        exp = DataFrame(
            [0, 0, 1, 2, 3], index=date_range("1/1/2000", periods=5, freq="H")
        )
        result = df.shift(2, fill_value=0)
        assert_frame_equal(result, exp)

    def test_shift_empty(self):
        # Regression test for #8019
        df = DataFrame({"foo": []})
        rs = df.shift(-1)

        assert_frame_equal(df, rs)

    def test_shift_duplicate_columns(self):
        # GH 9092; verify that position-based shifting works
        # in the presence of duplicate columns
        column_lists = [list(range(5)), [1] * 5, [1, 1, 2, 2, 1]]
        data = np.random.randn(20, 5)

        shifted = []
        for columns in column_lists:
            df = pd.DataFrame(data.copy(), columns=columns)
            for s in range(5):
                df.iloc[:, s] = df.iloc[:, s].shift(s + 1)
            df.columns = range(5)
            shifted.append(df)

        # sanity check the base case
        nulls = shifted[0].isna().sum()
        assert_series_equal(nulls, Series(range(1, 6), dtype="int64"))

        # check all answers are the same
        assert_frame_equal(shifted[0], shifted[1])
        assert_frame_equal(shifted[0], shifted[2])

    def test_tshift(self):
        # PeriodIndex
        ps = tm.makePeriodFrame()
        shifted = ps.tshift(1)
        unshifted = shifted.tshift(-1)

        assert_frame_equal(unshifted, ps)

        shifted2 = ps.tshift(freq="B")
        assert_frame_equal(shifted, shifted2)

        shifted3 = ps.tshift(freq=offsets.BDay())
        assert_frame_equal(shifted, shifted3)

        with pytest.raises(ValueError, match="does not match"):
            ps.tshift(freq="M")

        # DatetimeIndex
        shifted = self.tsframe.tshift(1)
        unshifted = shifted.tshift(-1)

        assert_frame_equal(self.tsframe, unshifted)

        shifted2 = self.tsframe.tshift(freq=self.tsframe.index.freq)
        assert_frame_equal(shifted, shifted2)

        inferred_ts = DataFrame(
            self.tsframe.values,
            Index(np.asarray(self.tsframe.index)),
            columns=self.tsframe.columns,
        )
        shifted = inferred_ts.tshift(1)
        unshifted = shifted.tshift(-1)
        assert_frame_equal(shifted, self.tsframe.tshift(1))
        assert_frame_equal(unshifted, inferred_ts)

        no_freq = self.tsframe.iloc[[0, 5, 7], :]
        msg = "Freq was not given and was not set in the index"
        with pytest.raises(ValueError, match=msg):
            no_freq.tshift()

    def test_truncate(self):
        ts = self.tsframe[::3]

        start, end = self.tsframe.index[3], self.tsframe.index[6]

        start_missing = self.tsframe.index[2]
        end_missing = self.tsframe.index[7]

        # neither specified
        truncated = ts.truncate()
        assert_frame_equal(truncated, ts)

        # both specified
        expected = ts[1:3]

        truncated = ts.truncate(start, end)
        assert_frame_equal(truncated, expected)

        truncated = ts.truncate(start_missing, end_missing)
        assert_frame_equal(truncated, expected)

        # start specified
        expected = ts[1:]

        truncated = ts.truncate(before=start)
        assert_frame_equal(truncated, expected)

        truncated = ts.truncate(before=start_missing)
        assert_frame_equal(truncated, expected)

        # end specified
        expected = ts[:3]

        truncated = ts.truncate(after=end)
        assert_frame_equal(truncated, expected)

        truncated = ts.truncate(after=end_missing)
        assert_frame_equal(truncated, expected)

        msg = "Truncate: 2000-01-06 00:00:00 must be after 2000-02-04 00:00:00"
        with pytest.raises(ValueError, match=msg):
            ts.truncate(
                before=ts.index[-1] - ts.index.freq, after=ts.index[0] + ts.index.freq
            )

    def test_truncate_copy(self):
        index = self.tsframe.index
        truncated = self.tsframe.truncate(index[5], index[10])
        truncated.values[:] = 5.0
        assert not (self.tsframe.values[5:11] == 5).any()

    def test_truncate_nonsortedindex(self):
        # GH 17935

        df = pd.DataFrame({"A": ["a", "b", "c", "d", "e"]}, index=[5, 3, 2, 9, 0])
        msg = "truncate requires a sorted index"
        with pytest.raises(ValueError, match=msg):
            df.truncate(before=3, after=9)

        rng = pd.date_range("2011-01-01", "2012-01-01", freq="W")
        ts = pd.DataFrame(
            {"A": np.random.randn(len(rng)), "B": np.random.randn(len(rng))}, index=rng
        )
        msg = "truncate requires a sorted index"
        with pytest.raises(ValueError, match=msg):
            ts.sort_values("A", ascending=False).truncate(
                before="2011-11", after="2011-12"
            )

        df = pd.DataFrame(
            {
                3: np.random.randn(5),
                20: np.random.randn(5),
                2: np.random.randn(5),
                0: np.random.randn(5),
            },
            columns=[3, 20, 2, 0],
        )
        msg = "truncate requires a sorted index"
        with pytest.raises(ValueError, match=msg):
            df.truncate(before=2, after=20, axis=1)

    def test_asfreq(self):
        offset_monthly = self.tsframe.asfreq(offsets.BMonthEnd())
        rule_monthly = self.tsframe.asfreq("BM")

        tm.assert_almost_equal(offset_monthly["A"], rule_monthly["A"])

        filled = rule_monthly.asfreq("B", method="pad")  # noqa
        # TODO: actually check that this worked.

        # don't forget!
        filled_dep = rule_monthly.asfreq("B", method="pad")  # noqa

        # test does not blow up on length-0 DataFrame
        zero_length = self.tsframe.reindex([])
        result = zero_length.asfreq("BM")
        assert result is not zero_length

    def test_asfreq_datetimeindex(self):
        df = DataFrame(
            {"A": [1, 2, 3]},
            index=[datetime(2011, 11, 1), datetime(2011, 11, 2), datetime(2011, 11, 3)],
        )
        df = df.asfreq("B")
        assert isinstance(df.index, DatetimeIndex)

        ts = df["A"].asfreq("B")
        assert isinstance(ts.index, DatetimeIndex)

    def test_asfreq_fillvalue(self):
        # test for fill value during upsampling, related to issue 3715

        # setup
        rng = pd.date_range("1/1/2016", periods=10, freq="2S")
        ts = pd.Series(np.arange(len(rng)), index=rng)
        df = pd.DataFrame({"one": ts})

        # insert pre-existing missing value
        df.loc["2016-01-01 00:00:08", "one"] = None

        actual_df = df.asfreq(freq="1S", fill_value=9.0)
        expected_df = df.asfreq(freq="1S").fillna(9.0)
        expected_df.loc["2016-01-01 00:00:08", "one"] = None
        assert_frame_equal(expected_df, actual_df)

        expected_series = ts.asfreq(freq="1S").fillna(9.0)
        actual_series = ts.asfreq(freq="1S", fill_value=9.0)
        assert_series_equal(expected_series, actual_series)

    @pytest.mark.parametrize(
        "data,idx,expected_first,expected_last",
        [
            ({"A": [1, 2, 3]}, [1, 1, 2], 1, 2),
            ({"A": [1, 2, 3]}, [1, 2, 2], 1, 2),
            ({"A": [1, 2, 3, 4]}, ["d", "d", "d", "d"], "d", "d"),
            ({"A": [1, np.nan, 3]}, [1, 1, 2], 1, 2),
            ({"A": [np.nan, np.nan, 3]}, [1, 1, 2], 2, 2),
            ({"A": [1, np.nan, 3]}, [1, 2, 2], 1, 2),
        ],
    )
    def test_first_last_valid(self, data, idx, expected_first, expected_last):
        N = len(self.frame.index)
        mat = np.random.randn(N)
        mat[:5] = np.nan
        mat[-5:] = np.nan

        frame = DataFrame({"foo": mat}, index=self.frame.index)
        index = frame.first_valid_index()

        assert index == frame.index[5]

        index = frame.last_valid_index()
        assert index == frame.index[-6]

        # GH12800
        empty = DataFrame()
        assert empty.last_valid_index() is None
        assert empty.first_valid_index() is None

        # GH17400: no valid entries
        frame[:] = np.nan
        assert frame.last_valid_index() is None
        assert frame.first_valid_index() is None

        # GH20499: its preserves freq with holes
        frame.index = date_range("20110101", periods=N, freq="B")
        frame.iloc[1] = 1
        frame.iloc[-2] = 1
        assert frame.first_valid_index() == frame.index[1]
        assert frame.last_valid_index() == frame.index[-2]
        assert frame.first_valid_index().freq == frame.index.freq
        assert frame.last_valid_index().freq == frame.index.freq

        # GH 21441
        df = DataFrame(data, index=idx)
        assert expected_first == df.first_valid_index()
        assert expected_last == df.last_valid_index()

    def test_first_subset(self):
        ts = tm.makeTimeDataFrame(freq="12h")
        result = ts.first("10d")
        assert len(result) == 20

        ts = tm.makeTimeDataFrame(freq="D")
        result = ts.first("10d")
        assert len(result) == 10

        result = ts.first("3M")
        expected = ts[:"3/31/2000"]
        assert_frame_equal(result, expected)

        result = ts.first("21D")
        expected = ts[:21]
        assert_frame_equal(result, expected)

        result = ts[:0].first("3M")
        assert_frame_equal(result, ts[:0])

    def test_first_raises(self):
        # GH20725
        df = pd.DataFrame([[1, 2, 3], [4, 5, 6]])
        with pytest.raises(TypeError):  # index is not a DatetimeIndex
            df.first("1D")

    def test_last_subset(self):
        ts = tm.makeTimeDataFrame(freq="12h")
        result = ts.last("10d")
        assert len(result) == 20

        ts = tm.makeTimeDataFrame(nper=30, freq="D")
        result = ts.last("10d")
        assert len(result) == 10

        result = ts.last("21D")
        expected = ts["2000-01-10":]
        assert_frame_equal(result, expected)

        result = ts.last("21D")
        expected = ts[-21:]
        assert_frame_equal(result, expected)

        result = ts[:0].last("3M")
        assert_frame_equal(result, ts[:0])

    def test_last_raises(self):
        # GH20725
        df = pd.DataFrame([[1, 2, 3], [4, 5, 6]])
        with pytest.raises(TypeError):  # index is not a DatetimeIndex
            df.last("1D")

    def test_at_time(self):
        rng = date_range("1/1/2000", "1/5/2000", freq="5min")
        ts = DataFrame(np.random.randn(len(rng), 2), index=rng)
        rs = ts.at_time(rng[1])
        assert (rs.index.hour == rng[1].hour).all()
        assert (rs.index.minute == rng[1].minute).all()
        assert (rs.index.second == rng[1].second).all()

        result = ts.at_time("9:30")
        expected = ts.at_time(time(9, 30))
        assert_frame_equal(result, expected)

        result = ts.loc[time(9, 30)]
        expected = ts.loc[(rng.hour == 9) & (rng.minute == 30)]

        assert_frame_equal(result, expected)

        # midnight, everything
        rng = date_range("1/1/2000", "1/31/2000")
        ts = DataFrame(np.random.randn(len(rng), 3), index=rng)

        result = ts.at_time(time(0, 0))
        assert_frame_equal(result, ts)

        # time doesn't exist
        rng = date_range("1/1/2012", freq="23Min", periods=384)
        ts = DataFrame(np.random.randn(len(rng), 2), rng)
        rs = ts.at_time("16:00")
        assert len(rs) == 0

    @pytest.mark.parametrize(
        "hour", ["1:00", "1:00AM", time(1), time(1, tzinfo=pytz.UTC)]
    )
    def test_at_time_errors(self, hour):
        # GH 24043
        dti = pd.date_range("2018", periods=3, freq="H")
        df = pd.DataFrame(list(range(len(dti))), index=dti)
        if getattr(hour, "tzinfo", None) is None:
            result = df.at_time(hour)
            expected = df.iloc[1:2]
            tm.assert_frame_equal(result, expected)
        else:
            with pytest.raises(ValueError, match="Index must be timezone"):
                df.at_time(hour)

    def test_at_time_tz(self):
        # GH 24043
        dti = pd.date_range("2018", periods=3, freq="H", tz="US/Pacific")
        df = pd.DataFrame(list(range(len(dti))), index=dti)
        result = df.at_time(time(4, tzinfo=pytz.timezone("US/Eastern")))
        expected = df.iloc[1:2]
        tm.assert_frame_equal(result, expected)

    def test_at_time_raises(self):
        # GH20725
        df = pd.DataFrame([[1, 2, 3], [4, 5, 6]])
        with pytest.raises(TypeError):  # index is not a DatetimeIndex
            df.at_time("00:00")

    @pytest.mark.parametrize("axis", ["index", "columns", 0, 1])
    def test_at_time_axis(self, axis):
        # issue 8839
        rng = date_range("1/1/2000", "1/5/2000", freq="5min")
        ts = DataFrame(np.random.randn(len(rng), len(rng)))
        ts.index, ts.columns = rng, rng

        indices = rng[(rng.hour == 9) & (rng.minute == 30) & (rng.second == 0)]

        if axis in ["index", 0]:
            expected = ts.loc[indices, :]
        elif axis in ["columns", 1]:
            expected = ts.loc[:, indices]

        result = ts.at_time("9:30", axis=axis)
        assert_frame_equal(result, expected)

    def test_between_time(self, close_open_fixture):
        rng = date_range("1/1/2000", "1/5/2000", freq="5min")
        ts = DataFrame(np.random.randn(len(rng), 2), index=rng)
        stime = time(0, 0)
        etime = time(1, 0)
        inc_start, inc_end = close_open_fixture

        filtered = ts.between_time(stime, etime, inc_start, inc_end)
        exp_len = 13 * 4 + 1
        if not inc_start:
            exp_len -= 5
        if not inc_end:
            exp_len -= 4

        assert len(filtered) == exp_len
        for rs in filtered.index:
            t = rs.time()
            if inc_start:
                assert t >= stime
            else:
                assert t > stime

            if inc_end:
                assert t <= etime
            else:
                assert t < etime

        result = ts.between_time("00:00", "01:00")
        expected = ts.between_time(stime, etime)
        assert_frame_equal(result, expected)

        # across midnight
        rng = date_range("1/1/2000", "1/5/2000", freq="5min")
        ts = DataFrame(np.random.randn(len(rng), 2), index=rng)
        stime = time(22, 0)
        etime = time(9, 0)

        filtered = ts.between_time(stime, etime, inc_start, inc_end)
        exp_len = (12 * 11 + 1) * 4 + 1
        if not inc_start:
            exp_len -= 4
        if not inc_end:
            exp_len -= 4

        assert len(filtered) == exp_len
        for rs in filtered.index:
            t = rs.time()
            if inc_start:
                assert (t >= stime) or (t <= etime)
            else:
                assert (t > stime) or (t <= etime)

            if inc_end:
                assert (t <= etime) or (t >= stime)
            else:
                assert (t < etime) or (t >= stime)

    def test_between_time_raises(self):
        # GH20725
        df = pd.DataFrame([[1, 2, 3], [4, 5, 6]])
        with pytest.raises(TypeError):  # index is not a DatetimeIndex
            df.between_time(start_time="00:00", end_time="12:00")

    def test_between_time_axis(self, axis):
        # issue 8839
        rng = date_range("1/1/2000", periods=100, freq="10min")
        ts = DataFrame(np.random.randn(len(rng), len(rng)))
        stime, etime = ("08:00:00", "09:00:00")
        exp_len = 7

        if axis in ["index", 0]:
            ts.index = rng
            assert len(ts.between_time(stime, etime)) == exp_len
            assert len(ts.between_time(stime, etime, axis=0)) == exp_len

        if axis in ["columns", 1]:
            ts.columns = rng
            selected = ts.between_time(stime, etime, axis=1).columns
            assert len(selected) == exp_len

    def test_between_time_axis_raises(self, axis):
        # issue 8839
        rng = date_range("1/1/2000", periods=100, freq="10min")
        mask = np.arange(0, len(rng))
        rand_data = np.random.randn(len(rng), len(rng))
        ts = DataFrame(rand_data, index=rng, columns=rng)
        stime, etime = ("08:00:00", "09:00:00")

        msg = "Index must be DatetimeIndex"
        if axis in ["columns", 1]:
            ts.index = mask
            with pytest.raises(TypeError, match=msg):
                ts.between_time(stime, etime)
            with pytest.raises(TypeError, match=msg):
                ts.between_time(stime, etime, axis=0)

        if axis in ["index", 0]:
            ts.columns = mask
            with pytest.raises(TypeError, match=msg):
                ts.between_time(stime, etime, axis=1)

    def test_operation_on_NaT(self):
        # Both NaT and Timestamp are in DataFrame.
        df = pd.DataFrame({"foo": [pd.NaT, pd.NaT, pd.Timestamp("2012-05-01")]})

        res = df.min()
        exp = pd.Series([pd.Timestamp("2012-05-01")], index=["foo"])
        tm.assert_series_equal(res, exp)

        res = df.max()
        exp = pd.Series([pd.Timestamp("2012-05-01")], index=["foo"])
        tm.assert_series_equal(res, exp)

        # GH12941, only NaTs are in DataFrame.
        df = pd.DataFrame({"foo": [pd.NaT, pd.NaT]})

        res = df.min()
        exp = pd.Series([pd.NaT], index=["foo"])
        tm.assert_series_equal(res, exp)

        res = df.max()
        exp = pd.Series([pd.NaT], index=["foo"])
        tm.assert_series_equal(res, exp)

    def test_datetime_assignment_with_NaT_and_diff_time_units(self):
        # GH 7492
        data_ns = np.array([1, "nat"], dtype="datetime64[ns]")
        result = pd.Series(data_ns).to_frame()
        result["new"] = data_ns
        expected = pd.DataFrame(
            {0: [1, None], "new": [1, None]}, dtype="datetime64[ns]"
        )
        tm.assert_frame_equal(result, expected)
        # OutOfBoundsDatetime error shouldn't occur
        data_s = np.array([1, "nat"], dtype="datetime64[s]")
        result["new"] = data_s
        expected = pd.DataFrame(
            {0: [1, None], "new": [1e9, None]}, dtype="datetime64[ns]"
        )
        tm.assert_frame_equal(result, expected)

    def test_frame_to_period(self):
        K = 5

        dr = date_range("1/1/2000", "1/1/2001")
        pr = period_range("1/1/2000", "1/1/2001")
        df = DataFrame(np.random.randn(len(dr), K), index=dr)
        df["mix"] = "a"

        pts = df.to_period()
        exp = df.copy()
        exp.index = pr
        assert_frame_equal(pts, exp)

        pts = df.to_period("M")
        tm.assert_index_equal(pts.index, exp.index.asfreq("M"))

        df = df.T
        pts = df.to_period(axis=1)
        exp = df.copy()
        exp.columns = pr
        assert_frame_equal(pts, exp)

        pts = df.to_period("M", axis=1)
        tm.assert_index_equal(pts.columns, exp.columns.asfreq("M"))

        msg = "No axis named 2 for object type <class 'pandas.core.frame.DataFrame'>"
        with pytest.raises(ValueError, match=msg):
            df.to_period(axis=2)

    @pytest.mark.parametrize("fn", ["tz_localize", "tz_convert"])
    def test_tz_convert_and_localize(self, fn):
        l0 = date_range("20140701", periods=5, freq="D")
        l1 = date_range("20140701", periods=5, freq="D")

        int_idx = Index(range(5))

        if fn == "tz_convert":
            l0 = l0.tz_localize("UTC")
            l1 = l1.tz_localize("UTC")

        for idx in [l0, l1]:

            l0_expected = getattr(idx, fn)("US/Pacific")
            l1_expected = getattr(idx, fn)("US/Pacific")

            df1 = DataFrame(np.ones(5), index=l0)
            df1 = getattr(df1, fn)("US/Pacific")
            assert_index_equal(df1.index, l0_expected)

            # MultiIndex
            # GH7846
            df2 = DataFrame(np.ones(5), MultiIndex.from_arrays([l0, l1]))

            df3 = getattr(df2, fn)("US/Pacific", level=0)
            assert not df3.index.levels[0].equals(l0)
            assert_index_equal(df3.index.levels[0], l0_expected)
            assert_index_equal(df3.index.levels[1], l1)
            assert not df3.index.levels[1].equals(l1_expected)

            df3 = getattr(df2, fn)("US/Pacific", level=1)
            assert_index_equal(df3.index.levels[0], l0)
            assert not df3.index.levels[0].equals(l0_expected)
            assert_index_equal(df3.index.levels[1], l1_expected)
            assert not df3.index.levels[1].equals(l1)

            df4 = DataFrame(np.ones(5), MultiIndex.from_arrays([int_idx, l0]))

            # TODO: untested
            df5 = getattr(df4, fn)("US/Pacific", level=1)  # noqa

            assert_index_equal(df3.index.levels[0], l0)
            assert not df3.index.levels[0].equals(l0_expected)
            assert_index_equal(df3.index.levels[1], l1_expected)
            assert not df3.index.levels[1].equals(l1)

        # Bad Inputs

        # Not DatetimeIndex / PeriodIndex
        with pytest.raises(TypeError, match="DatetimeIndex"):
            df = DataFrame(index=int_idx)
            df = getattr(df, fn)("US/Pacific")

        # Not DatetimeIndex / PeriodIndex
        with pytest.raises(TypeError, match="DatetimeIndex"):
            df = DataFrame(np.ones(5), MultiIndex.from_arrays([int_idx, l0]))
            df = getattr(df, fn)("US/Pacific", level=0)

        # Invalid level
        with pytest.raises(ValueError, match="not valid"):
            df = DataFrame(index=l0)
            df = getattr(df, fn)("US/Pacific", level=1)