import numpy as np
from numpy import nan
import pytest
from pandas._libs import groupby, lib, reduction
from pandas.core.dtypes.common import ensure_int64
from pandas import Index, isna
from pandas.core.groupby.ops import generate_bins_generic
import pandas.util.testing as tm
from pandas.util.testing import assert_almost_equal
def test_series_grouper():
from pandas import Series
obj = Series(np.random.randn(10))
dummy = obj[:0]
labels = np.array([-1, -1, -1, 0, 0, 0, 1, 1, 1, 1], dtype=np.int64)
grouper = reduction.SeriesGrouper(obj, np.mean, labels, 2, dummy)
result, counts = grouper.get_result()
expected = np.array([obj[3:6].mean(), obj[6:].mean()])
assert_almost_equal(result, expected)
exp_counts = np.array([3, 4], dtype=np.int64)
assert_almost_equal(counts, exp_counts)
def test_series_bin_grouper():
from pandas import Series
obj = Series(np.random.randn(10))
dummy = obj[:0]
bins = np.array([3, 6])
grouper = reduction.SeriesBinGrouper(obj, np.mean, bins, dummy)
result, counts = grouper.get_result()
expected = np.array([obj[:3].mean(), obj[3:6].mean(), obj[6:].mean()])
assert_almost_equal(result, expected)
exp_counts = np.array([3, 3, 4], dtype=np.int64)
assert_almost_equal(counts, exp_counts)
class TestBinGroupers:
def setup_method(self, method):
self.obj = np.random.randn(10, 1)
self.labels = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 2], dtype=np.int64)
self.bins = np.array([3, 6], dtype=np.int64)
def test_generate_bins(self):
values = np.array([1, 2, 3, 4, 5, 6], dtype=np.int64)
binner = np.array([0, 3, 6, 9], dtype=np.int64)
for func in [lib.generate_bins_dt64, generate_bins_generic]:
bins = func(values, binner, closed="left")
assert (bins == np.array([2, 5, 6])).all()
bins = func(values, binner, closed="right")
assert (bins == np.array([3, 6, 6])).all()
for func in [lib.generate_bins_dt64, generate_bins_generic]:
values = np.array([1, 2, 3, 4, 5, 6], dtype=np.int64)
binner = np.array([0, 3, 6], dtype=np.int64)
bins = func(values, binner, closed="right")
assert (bins == np.array([3, 6])).all()
msg = "Invalid length for values or for binner"
with pytest.raises(ValueError, match=msg):
generate_bins_generic(values, [], "right")
with pytest.raises(ValueError, match=msg):
generate_bins_generic(values[:0], binner, "right")
msg = "Values falls before first bin"
with pytest.raises(ValueError, match=msg):
generate_bins_generic(values, [4], "right")
msg = "Values falls after last bin"
with pytest.raises(ValueError, match=msg):
generate_bins_generic(values, [-3, -1], "right")
def test_group_ohlc():
def _check(dtype):
obj = np.array(np.random.randn(20), dtype=dtype)
bins = np.array([6, 12, 20])
out = np.zeros((3, 4), dtype)
counts = np.zeros(len(out), dtype=np.int64)
labels = ensure_int64(np.repeat(np.arange(3), np.diff(np.r_[0, bins])))
func = getattr(groupby, "group_ohlc_{dtype}".format(dtype=dtype))
func(out, counts, obj[:, None], labels)
def _ohlc(group):
if isna(group).all():
return np.repeat(nan, 4)
return [group[0], group.max(), group.min(), group[-1]]
expected = np.array([_ohlc(obj[:6]), _ohlc(obj[6:12]), _ohlc(obj[12:])])
assert_almost_equal(out, expected)
tm.assert_numpy_array_equal(counts, np.array([6, 6, 8], dtype=np.int64))
obj[:6] = nan
func(out, counts, obj[:, None], labels)
expected[0] = nan
assert_almost_equal(out, expected)
_check("float32")
_check("float64")
class TestMoments:
pass
class TestReducer:
def test_int_index(self):
from pandas.core.series import Series
arr = np.random.randn(100, 4)
result = reduction.reduce(arr, np.sum, labels=Index(np.arange(4)))
expected = arr.sum(0)
assert_almost_equal(result, expected)
result = reduction.reduce(arr, np.sum, axis=1, labels=Index(np.arange(100)))
expected = arr.sum(1)
assert_almost_equal(result, expected)
dummy = Series(0.0, index=np.arange(100))
result = reduction.reduce(arr, np.sum, dummy=dummy, labels=Index(np.arange(4)))
expected = arr.sum(0)
assert_almost_equal(result, expected)
dummy = Series(0.0, index=np.arange(4))
result = reduction.reduce(
arr, np.sum, axis=1, dummy=dummy, labels=Index(np.arange(100))
)
expected = arr.sum(1)
assert_almost_equal(result, expected)
result = reduction.reduce(
arr, np.sum, axis=1, dummy=dummy, labels=Index(np.arange(100))
)
assert_almost_equal(result, expected)