Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

aaronreidsmith / pandas   python

Repository URL to install this package:

Version: 0.25.3 

/ tests / groupby / test_timegrouper.py

""" test with the TimeGrouper / grouping with datetimes """

from datetime import datetime
from io import StringIO

import numpy as np
from numpy import nan
import pytest
import pytz

import pandas as pd
from pandas import DataFrame, Index, MultiIndex, Series, Timestamp, date_range
from pandas.core.groupby.grouper import Grouper
from pandas.core.groupby.ops import BinGrouper
from pandas.util import testing as tm
from pandas.util.testing import assert_frame_equal, assert_series_equal


class TestGroupBy:
    def test_groupby_with_timegrouper(self):
        # GH 4161
        # TimeGrouper requires a sorted index
        # also verifies that the resultant index has the correct name
        df_original = DataFrame(
            {
                "Buyer": "Carl Carl Carl Carl Joe Carl".split(),
                "Quantity": [18, 3, 5, 1, 9, 3],
                "Date": [
                    datetime(2013, 9, 1, 13, 0),
                    datetime(2013, 9, 1, 13, 5),
                    datetime(2013, 10, 1, 20, 0),
                    datetime(2013, 10, 3, 10, 0),
                    datetime(2013, 12, 2, 12, 0),
                    datetime(2013, 9, 2, 14, 0),
                ],
            }
        )

        # GH 6908 change target column's order
        df_reordered = df_original.sort_values(by="Quantity")

        for df in [df_original, df_reordered]:
            df = df.set_index(["Date"])

            expected = DataFrame(
                {"Quantity": 0},
                index=date_range(
                    "20130901", "20131205", freq="5D", name="Date", closed="left"
                ),
            )
            expected.iloc[[0, 6, 18], 0] = np.array([24, 6, 9], dtype="int64")

            result1 = df.resample("5D").sum()
            assert_frame_equal(result1, expected)

            df_sorted = df.sort_index()
            result2 = df_sorted.groupby(pd.Grouper(freq="5D")).sum()
            assert_frame_equal(result2, expected)

            result3 = df.groupby(pd.Grouper(freq="5D")).sum()
            assert_frame_equal(result3, expected)

    @pytest.mark.parametrize("should_sort", [True, False])
    def test_groupby_with_timegrouper_methods(self, should_sort):
        # GH 3881
        # make sure API of timegrouper conforms

        df = pd.DataFrame(
            {
                "Branch": "A A A A A B".split(),
                "Buyer": "Carl Mark Carl Joe Joe Carl".split(),
                "Quantity": [1, 3, 5, 8, 9, 3],
                "Date": [
                    datetime(2013, 1, 1, 13, 0),
                    datetime(2013, 1, 1, 13, 5),
                    datetime(2013, 10, 1, 20, 0),
                    datetime(2013, 10, 2, 10, 0),
                    datetime(2013, 12, 2, 12, 0),
                    datetime(2013, 12, 2, 14, 0),
                ],
            }
        )

        if should_sort:
            df = df.sort_values(by="Quantity", ascending=False)

        df = df.set_index("Date", drop=False)
        g = df.groupby(pd.Grouper(freq="6M"))
        assert g.group_keys

        assert isinstance(g.grouper, BinGrouper)
        groups = g.groups
        assert isinstance(groups, dict)
        assert len(groups) == 3

    def test_timegrouper_with_reg_groups(self):

        # GH 3794
        # allow combination of timegrouper/reg groups

        df_original = DataFrame(
            {
                "Branch": "A A A A A A A B".split(),
                "Buyer": "Carl Mark Carl Carl Joe Joe Joe Carl".split(),
                "Quantity": [1, 3, 5, 1, 8, 1, 9, 3],
                "Date": [
                    datetime(2013, 1, 1, 13, 0),
                    datetime(2013, 1, 1, 13, 5),
                    datetime(2013, 10, 1, 20, 0),
                    datetime(2013, 10, 2, 10, 0),
                    datetime(2013, 10, 1, 20, 0),
                    datetime(2013, 10, 2, 10, 0),
                    datetime(2013, 12, 2, 12, 0),
                    datetime(2013, 12, 2, 14, 0),
                ],
            }
        ).set_index("Date")

        df_sorted = df_original.sort_values(by="Quantity", ascending=False)

        for df in [df_original, df_sorted]:
            expected = DataFrame(
                {
                    "Buyer": "Carl Joe Mark".split(),
                    "Quantity": [10, 18, 3],
                    "Date": [
                        datetime(2013, 12, 31, 0, 0),
                        datetime(2013, 12, 31, 0, 0),
                        datetime(2013, 12, 31, 0, 0),
                    ],
                }
            ).set_index(["Date", "Buyer"])

            result = df.groupby([pd.Grouper(freq="A"), "Buyer"]).sum()
            assert_frame_equal(result, expected)

            expected = DataFrame(
                {
                    "Buyer": "Carl Mark Carl Joe".split(),
                    "Quantity": [1, 3, 9, 18],
                    "Date": [
                        datetime(2013, 1, 1, 0, 0),
                        datetime(2013, 1, 1, 0, 0),
                        datetime(2013, 7, 1, 0, 0),
                        datetime(2013, 7, 1, 0, 0),
                    ],
                }
            ).set_index(["Date", "Buyer"])
            result = df.groupby([pd.Grouper(freq="6MS"), "Buyer"]).sum()
            assert_frame_equal(result, expected)

        df_original = DataFrame(
            {
                "Branch": "A A A A A A A B".split(),
                "Buyer": "Carl Mark Carl Carl Joe Joe Joe Carl".split(),
                "Quantity": [1, 3, 5, 1, 8, 1, 9, 3],
                "Date": [
                    datetime(2013, 10, 1, 13, 0),
                    datetime(2013, 10, 1, 13, 5),
                    datetime(2013, 10, 1, 20, 0),
                    datetime(2013, 10, 2, 10, 0),
                    datetime(2013, 10, 1, 20, 0),
                    datetime(2013, 10, 2, 10, 0),
                    datetime(2013, 10, 2, 12, 0),
                    datetime(2013, 10, 2, 14, 0),
                ],
            }
        ).set_index("Date")

        df_sorted = df_original.sort_values(by="Quantity", ascending=False)
        for df in [df_original, df_sorted]:

            expected = DataFrame(
                {
                    "Buyer": "Carl Joe Mark Carl Joe".split(),
                    "Quantity": [6, 8, 3, 4, 10],
                    "Date": [
                        datetime(2013, 10, 1, 0, 0),
                        datetime(2013, 10, 1, 0, 0),
                        datetime(2013, 10, 1, 0, 0),
                        datetime(2013, 10, 2, 0, 0),
                        datetime(2013, 10, 2, 0, 0),
                    ],
                }
            ).set_index(["Date", "Buyer"])

            result = df.groupby([pd.Grouper(freq="1D"), "Buyer"]).sum()
            assert_frame_equal(result, expected)

            result = df.groupby([pd.Grouper(freq="1M"), "Buyer"]).sum()
            expected = DataFrame(
                {
                    "Buyer": "Carl Joe Mark".split(),
                    "Quantity": [10, 18, 3],
                    "Date": [
                        datetime(2013, 10, 31, 0, 0),
                        datetime(2013, 10, 31, 0, 0),
                        datetime(2013, 10, 31, 0, 0),
                    ],
                }
            ).set_index(["Date", "Buyer"])
            assert_frame_equal(result, expected)

            # passing the name
            df = df.reset_index()
            result = df.groupby([pd.Grouper(freq="1M", key="Date"), "Buyer"]).sum()
            assert_frame_equal(result, expected)

            with pytest.raises(KeyError, match="'The grouper name foo is not found'"):
                df.groupby([pd.Grouper(freq="1M", key="foo"), "Buyer"]).sum()

            # passing the level
            df = df.set_index("Date")
            result = df.groupby([pd.Grouper(freq="1M", level="Date"), "Buyer"]).sum()
            assert_frame_equal(result, expected)
            result = df.groupby([pd.Grouper(freq="1M", level=0), "Buyer"]).sum()
            assert_frame_equal(result, expected)

            with pytest.raises(ValueError):
                df.groupby([pd.Grouper(freq="1M", level="foo"), "Buyer"]).sum()

            # multi names
            df = df.copy()
            df["Date"] = df.index + pd.offsets.MonthEnd(2)
            result = df.groupby([pd.Grouper(freq="1M", key="Date"), "Buyer"]).sum()
            expected = DataFrame(
                {
                    "Buyer": "Carl Joe Mark".split(),
                    "Quantity": [10, 18, 3],
                    "Date": [
                        datetime(2013, 11, 30, 0, 0),
                        datetime(2013, 11, 30, 0, 0),
                        datetime(2013, 11, 30, 0, 0),
                    ],
                }
            ).set_index(["Date", "Buyer"])
            assert_frame_equal(result, expected)

            # error as we have both a level and a name!
            with pytest.raises(ValueError):
                df.groupby(
                    [pd.Grouper(freq="1M", key="Date", level="Date"), "Buyer"]
                ).sum()

            # single groupers
            expected = DataFrame(
                {"Quantity": [31], "Date": [datetime(2013, 10, 31, 0, 0)]}
            ).set_index("Date")
            result = df.groupby(pd.Grouper(freq="1M")).sum()
            assert_frame_equal(result, expected)

            result = df.groupby([pd.Grouper(freq="1M")]).sum()
            assert_frame_equal(result, expected)

            expected = DataFrame(
                {"Quantity": [31], "Date": [datetime(2013, 11, 30, 0, 0)]}
            ).set_index("Date")
            result = df.groupby(pd.Grouper(freq="1M", key="Date")).sum()
            assert_frame_equal(result, expected)

            result = df.groupby([pd.Grouper(freq="1M", key="Date")]).sum()
            assert_frame_equal(result, expected)

    @pytest.mark.parametrize("freq", ["D", "M", "A", "Q-APR"])
    def test_timegrouper_with_reg_groups_freq(self, freq):
        # GH 6764 multiple grouping with/without sort
        df = DataFrame(
            {
                "date": pd.to_datetime(
                    [
                        "20121002",
                        "20121007",
                        "20130130",
                        "20130202",
                        "20130305",
                        "20121002",
                        "20121207",
                        "20130130",
                        "20130202",
                        "20130305",
                        "20130202",
                        "20130305",
                    ]
                ),
                "user_id": [1, 1, 1, 1, 1, 3, 3, 3, 5, 5, 5, 5],
                "whole_cost": [
                    1790,
                    364,
                    280,
                    259,
                    201,
                    623,
                    90,
                    312,
                    359,
                    301,
                    359,
                    801,
                ],
                "cost1": [12, 15, 10, 24, 39, 1, 0, 90, 45, 34, 1, 12],
            }
        ).set_index("date")

        expected = (
            df.groupby("user_id")["whole_cost"]
            .resample(freq)
            .sum(min_count=1)  # XXX
            .dropna()
            .reorder_levels(["date", "user_id"])
            .sort_index()
            .astype("int64")
        )
        expected.name = "whole_cost"

        result1 = (
            df.sort_index()
            .groupby([pd.Grouper(freq=freq), "user_id"])["whole_cost"]
            .sum()
        )
        assert_series_equal(result1, expected)

        result2 = df.groupby([pd.Grouper(freq=freq), "user_id"])["whole_cost"].sum()
        assert_series_equal(result2, expected)

    def test_timegrouper_get_group(self):
        # GH 6914

        df_original = DataFrame(
            {
                "Buyer": "Carl Joe Joe Carl Joe Carl".split(),
                "Quantity": [18, 3, 5, 1, 9, 3],
                "Date": [
                    datetime(2013, 9, 1, 13, 0),
                    datetime(2013, 9, 1, 13, 5),
                    datetime(2013, 10, 1, 20, 0),
                    datetime(2013, 10, 3, 10, 0),
                    datetime(2013, 12, 2, 12, 0),
                    datetime(2013, 9, 2, 14, 0),
                ],
            }
        )
        df_reordered = df_original.sort_values(by="Quantity")

        # single grouping
        expected_list = [
            df_original.iloc[[0, 1, 5]],
            df_original.iloc[[2, 3]],
            df_original.iloc[[4]],
        ]
        dt_list = ["2013-09-30", "2013-10-31", "2013-12-31"]

        for df in [df_original, df_reordered]:
            grouped = df.groupby(pd.Grouper(freq="M", key="Date"))
            for t, expected in zip(dt_list, expected_list):
                dt = pd.Timestamp(t)
                result = grouped.get_group(dt)
                assert_frame_equal(result, expected)

        # multiple grouping
        expected_list = [
            df_original.iloc[[1]],
            df_original.iloc[[3]],
            df_original.iloc[[4]],
        ]
        g_list = [("Joe", "2013-09-30"), ("Carl", "2013-10-31"), ("Joe", "2013-12-31")]

        for df in [df_original, df_reordered]:
            grouped = df.groupby(["Buyer", pd.Grouper(freq="M", key="Date")])
            for (b, t), expected in zip(g_list, expected_list):
                dt = pd.Timestamp(t)
                result = grouped.get_group((b, dt))
                assert_frame_equal(result, expected)

        # with index
        df_original = df_original.set_index("Date")
        df_reordered = df_original.sort_values(by="Quantity")

        expected_list = [
            df_original.iloc[[0, 1, 5]],
            df_original.iloc[[2, 3]],
            df_original.iloc[[4]],
        ]

        for df in [df_original, df_reordered]:
            grouped = df.groupby(pd.Grouper(freq="M"))
            for t, expected in zip(dt_list, expected_list):
                dt = pd.Timestamp(t)
                result = grouped.get_group(dt)
                assert_frame_equal(result, expected)

    def test_timegrouper_apply_return_type_series(self):
        # Using `apply` with the `TimeGrouper` should give the
        # same return type as an `apply` with a `Grouper`.
        # Issue #11742
        df = pd.DataFrame({"date": ["10/10/2000", "11/10/2000"], "value": [10, 13]})
        df_dt = df.copy()
        df_dt["date"] = pd.to_datetime(df_dt["date"])

        def sumfunc_series(x):
            return pd.Series([x["value"].sum()], ("sum",))

        expected = df.groupby(pd.Grouper(key="date")).apply(sumfunc_series)
        result = df_dt.groupby(pd.Grouper(freq="M", key="date")).apply(sumfunc_series)
        assert_frame_equal(
            result.reset_index(drop=True), expected.reset_index(drop=True)
        )

    def test_timegrouper_apply_return_type_value(self):
        # Using `apply` with the `TimeGrouper` should give the
        # same return type as an `apply` with a `Grouper`.
        # Issue #11742
        df = pd.DataFrame({"date": ["10/10/2000", "11/10/2000"], "value": [10, 13]})
        df_dt = df.copy()
        df_dt["date"] = pd.to_datetime(df_dt["date"])

        def sumfunc_value(x):
            return x.value.sum()

        expected = df.groupby(pd.Grouper(key="date")).apply(sumfunc_value)
        result = df_dt.groupby(Grouper(freq="M", key="date")).apply(sumfunc_value)
        assert_series_equal(
            result.reset_index(drop=True), expected.reset_index(drop=True)
        )

    def test_groupby_groups_datetimeindex(self):
        # GH#1430
        periods = 1000
        ind = pd.date_range(start="2012/1/1", freq="5min", periods=periods)
        df = DataFrame(
            {"high": np.arange(periods), "low": np.arange(periods)}, index=ind
        )
        grouped = df.groupby(lambda x: datetime(x.year, x.month, x.day))

        # it works!
        groups = grouped.groups
        assert isinstance(list(groups.keys())[0], datetime)

        # GH#11442
        index = pd.date_range("2015/01/01", periods=5, name="date")
        df = pd.DataFrame({"A": [5, 6, 7, 8, 9], "B": [1, 2, 3, 4, 5]}, index=index)
        result = df.groupby(level="date").groups
        dates = ["2015-01-05", "2015-01-04", "2015-01-03", "2015-01-02", "2015-01-01"]
        expected = {
            pd.Timestamp(date): pd.DatetimeIndex([date], name="date") for date in dates
        }
        tm.assert_dict_equal(result, expected)

        grouped = df.groupby(level="date")
        for date in dates:
            result = grouped.get_group(date)
            data = [[df.loc[date, "A"], df.loc[date, "B"]]]
            expected_index = pd.DatetimeIndex([date], name="date")
            expected = pd.DataFrame(data, columns=list("AB"), index=expected_index)
            tm.assert_frame_equal(result, expected)

    def test_groupby_groups_datetimeindex_tz(self):
        # GH 3950
        dates = [
            "2011-07-19 07:00:00",
            "2011-07-19 08:00:00",
            "2011-07-19 09:00:00",
            "2011-07-19 07:00:00",
            "2011-07-19 08:00:00",
            "2011-07-19 09:00:00",
        ]
        df = DataFrame(
            {
                "label": ["a", "a", "a", "b", "b", "b"],
                "datetime": dates,
                "value1": np.arange(6, dtype="int64"),
                "value2": [1, 2] * 3,
            }
        )
        df["datetime"] = df["datetime"].apply(lambda d: Timestamp(d, tz="US/Pacific"))

        exp_idx1 = pd.DatetimeIndex(
            [
                "2011-07-19 07:00:00",
                "2011-07-19 07:00:00",
                "2011-07-19 08:00:00",
                "2011-07-19 08:00:00",
                "2011-07-19 09:00:00",
                "2011-07-19 09:00:00",
            ],
            tz="US/Pacific",
            name="datetime",
        )
        exp_idx2 = Index(["a", "b"] * 3, name="label")
        exp_idx = MultiIndex.from_arrays([exp_idx1, exp_idx2])
        expected = DataFrame(
            {"value1": [0, 3, 1, 4, 2, 5], "value2": [1, 2, 2, 1, 1, 2]},
            index=exp_idx,
            columns=["value1", "value2"],
        )

        result = df.groupby(["datetime", "label"]).sum()
        assert_frame_equal(result, expected)

        # by level
        didx = pd.DatetimeIndex(dates, tz="Asia/Tokyo")
        df = DataFrame(
            {"value1": np.arange(6, dtype="int64"), "value2": [1, 2, 3, 1, 2, 3]},
            index=didx,
        )

        exp_idx = pd.DatetimeIndex(
            ["2011-07-19 07:00:00", "2011-07-19 08:00:00", "2011-07-19 09:00:00"],
            tz="Asia/Tokyo",
        )
        expected = DataFrame(
            {"value1": [3, 5, 7], "value2": [2, 4, 6]},
            index=exp_idx,
            columns=["value1", "value2"],
        )

        result = df.groupby(level=0).sum()
        assert_frame_equal(result, expected)

    def test_frame_datetime64_handling_groupby(self):
        # it works!
        df = DataFrame(
            [(3, np.datetime64("2012-07-03")), (3, np.datetime64("2012-07-04"))],
            columns=["a", "date"],
        )
        result = df.groupby("a").first()
        assert result["date"][3] == Timestamp("2012-07-03")

    def test_groupby_multi_timezone(self):

        # combining multiple / different timezones yields UTC

        data = """0,2000-01-28 16:47:00,America/Chicago
1,2000-01-29 16:48:00,America/Chicago
2,2000-01-30 16:49:00,America/Los_Angeles
3,2000-01-31 16:50:00,America/Chicago
4,2000-01-01 16:50:00,America/New_York"""

        df = pd.read_csv(StringIO(data), header=None, names=["value", "date", "tz"])
        result = df.groupby("tz").date.apply(
            lambda x: pd.to_datetime(x).dt.tz_localize(x.name)
        )

        expected = Series(
            [
                Timestamp("2000-01-28 16:47:00-0600", tz="America/Chicago"),
                Timestamp("2000-01-29 16:48:00-0600", tz="America/Chicago"),
                Timestamp("2000-01-30 16:49:00-0800", tz="America/Los_Angeles"),
                Timestamp("2000-01-31 16:50:00-0600", tz="America/Chicago"),
                Timestamp("2000-01-01 16:50:00-0500", tz="America/New_York"),
            ],
            name="date",
            dtype=object,
        )
        assert_series_equal(result, expected)

        tz = "America/Chicago"
        res_values = df.groupby("tz").date.get_group(tz)
        result = pd.to_datetime(res_values).dt.tz_localize(tz)
        exp_values = Series(
            ["2000-01-28 16:47:00", "2000-01-29 16:48:00", "2000-01-31 16:50:00"],
            index=[0, 1, 3],
            name="date",
        )
        expected = pd.to_datetime(exp_values).dt.tz_localize(tz)
        assert_series_equal(result, expected)

    def test_groupby_groups_periods(self):
        dates = [
            "2011-07-19 07:00:00",
            "2011-07-19 08:00:00",
            "2011-07-19 09:00:00",
            "2011-07-19 07:00:00",
            "2011-07-19 08:00:00",
            "2011-07-19 09:00:00",
        ]
        df = DataFrame(
            {
                "label": ["a", "a", "a", "b", "b", "b"],
                "period": [pd.Period(d, freq="H") for d in dates],
                "value1": np.arange(6, dtype="int64"),
                "value2": [1, 2] * 3,
            }
        )

        exp_idx1 = pd.PeriodIndex(
            [
                "2011-07-19 07:00:00",
                "2011-07-19 07:00:00",
                "2011-07-19 08:00:00",
                "2011-07-19 08:00:00",
                "2011-07-19 09:00:00",
                "2011-07-19 09:00:00",
            ],
            freq="H",
            name="period",
        )
        exp_idx2 = Index(["a", "b"] * 3, name="label")
        exp_idx = MultiIndex.from_arrays([exp_idx1, exp_idx2])
        expected = DataFrame(
            {"value1": [0, 3, 1, 4, 2, 5], "value2": [1, 2, 2, 1, 1, 2]},
            index=exp_idx,
            columns=["value1", "value2"],
        )

        result = df.groupby(["period", "label"]).sum()
        assert_frame_equal(result, expected)

        # by level
        didx = pd.PeriodIndex(dates, freq="H")
        df = DataFrame(
            {"value1": np.arange(6, dtype="int64"), "value2": [1, 2, 3, 1, 2, 3]},
            index=didx,
        )

        exp_idx = pd.PeriodIndex(
            ["2011-07-19 07:00:00", "2011-07-19 08:00:00", "2011-07-19 09:00:00"],
            freq="H",
        )
        expected = DataFrame(
            {"value1": [3, 5, 7], "value2": [2, 4, 6]},
            index=exp_idx,
            columns=["value1", "value2"],
        )

        result = df.groupby(level=0).sum()
        assert_frame_equal(result, expected)

    def test_groupby_first_datetime64(self):
        df = DataFrame([(1, 1351036800000000000), (2, 1351036800000000000)])
        df[1] = df[1].view("M8[ns]")

        assert issubclass(df[1].dtype.type, np.datetime64)

        result = df.groupby(level=0).first()
        got_dt = result[1].dtype
        assert issubclass(got_dt.type, np.datetime64)

        result = df[1].groupby(level=0).first()
        got_dt = result.dtype
        assert issubclass(got_dt.type, np.datetime64)

    def test_groupby_max_datetime64(self):
        # GH 5869
        # datetimelike dtype conversion from int
        df = DataFrame(dict(A=Timestamp("20130101"), B=np.arange(5)))
        expected = df.groupby("A")["A"].apply(lambda x: x.max())
        result = df.groupby("A")["A"].max()
        assert_series_equal(result, expected)

    def test_groupby_datetime64_32_bit(self):
        # GH 6410 / numpy 4328
        # 32-bit under 1.9-dev indexing issue

        df = DataFrame({"A": range(2), "B": [pd.Timestamp("2000-01-1")] * 2})
        result = df.groupby("A")["B"].transform(min)
        expected = Series([pd.Timestamp("2000-01-1")] * 2, name="B")
        assert_series_equal(result, expected)

    def test_groupby_with_timezone_selection(self):
        # GH 11616
        # Test that column selection returns output in correct timezone.
        np.random.seed(42)
        df = pd.DataFrame(
            {
                "factor": np.random.randint(0, 3, size=60),
                "time": pd.date_range(
                    "01/01/2000 00:00", periods=60, freq="s", tz="UTC"
                ),
            }
        )
        df1 = df.groupby("factor").max()["time"]
        df2 = df.groupby("factor")["time"].max()
        tm.assert_series_equal(df1, df2)

    def test_timezone_info(self):
        # see gh-11682: Timezone info lost when broadcasting
        # scalar datetime to DataFrame

        df = pd.DataFrame({"a": [1], "b": [datetime.now(pytz.utc)]})
        assert df["b"][0].tzinfo == pytz.utc
        df = pd.DataFrame({"a": [1, 2, 3]})
        df["b"] = datetime.now(pytz.utc)
        assert df["b"][0].tzinfo == pytz.utc

    def test_datetime_count(self):
        df = DataFrame(
            {"a": [1, 2, 3] * 2, "dates": pd.date_range("now", periods=6, freq="T")}
        )
        result = df.groupby("a").dates.count()
        expected = Series([2, 2, 2], index=Index([1, 2, 3], name="a"), name="dates")
        tm.assert_series_equal(result, expected)

    def test_first_last_max_min_on_time_data(self):
        # GH 10295
        # Verify that NaT is not in the result of max, min, first and last on
        # Dataframe with datetime or timedelta values.
        from datetime import timedelta as td

        df_test = DataFrame(
            {
                "dt": [
                    nan,
                    "2015-07-24 10:10",
                    "2015-07-25 11:11",
                    "2015-07-23 12:12",
                    nan,
                ],
                "td": [nan, td(days=1), td(days=2), td(days=3), nan],
            }
        )
        df_test.dt = pd.to_datetime(df_test.dt)
        df_test["group"] = "A"
        df_ref = df_test[df_test.dt.notna()]

        grouped_test = df_test.groupby("group")
        grouped_ref = df_ref.groupby("group")

        assert_frame_equal(grouped_ref.max(), grouped_test.max())
        assert_frame_equal(grouped_ref.min(), grouped_test.min())
        assert_frame_equal(grouped_ref.first(), grouped_test.first())
        assert_frame_equal(grouped_ref.last(), grouped_test.last())

    def test_nunique_with_timegrouper_and_nat(self):
        # GH 17575
        test = pd.DataFrame(
            {
                "time": [
                    Timestamp("2016-06-28 09:35:35"),
                    pd.NaT,
                    Timestamp("2016-06-28 16:46:28"),
                ],
                "data": ["1", "2", "3"],
            }
        )

        grouper = pd.Grouper(key="time", freq="h")
        result = test.groupby(grouper)["data"].nunique()
        expected = test[test.time.notnull()].groupby(grouper)["data"].nunique()
        tm.assert_series_equal(result, expected)

    def test_scalar_call_versus_list_call(self):
        # Issue: 17530
        data_frame = {
            "location": ["shanghai", "beijing", "shanghai"],
            "time": pd.Series(
                ["2017-08-09 13:32:23", "2017-08-11 23:23:15", "2017-08-11 22:23:15"],
                dtype="datetime64[ns]",
            ),
            "value": [1, 2, 3],
        }
        data_frame = pd.DataFrame(data_frame).set_index("time")
        grouper = pd.Grouper(freq="D")

        grouped = data_frame.groupby(grouper)
        result = grouped.count()
        grouped = data_frame.groupby([grouper])
        expected = grouped.count()

        assert_frame_equal(result, expected)