Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

aaronreidsmith / pandas   python

Repository URL to install this package:

Version: 0.25.3 

/ tests / indexes / datetimes / test_indexing.py

from datetime import datetime, time, timedelta

import numpy as np
import pytest
import pytz

import pandas as pd
from pandas import DatetimeIndex, Index, Timestamp, date_range, notna
import pandas.util.testing as tm

from pandas.tseries.offsets import BDay, CDay

START, END = datetime(2009, 1, 1), datetime(2010, 1, 1)


class TestGetItem:
    def test_ellipsis(self):
        # GH#21282
        idx = pd.date_range(
            "2011-01-01", "2011-01-31", freq="D", tz="Asia/Tokyo", name="idx"
        )

        result = idx[...]
        assert result.equals(idx)
        assert result is not idx

    def test_getitem(self):
        idx1 = pd.date_range("2011-01-01", "2011-01-31", freq="D", name="idx")
        idx2 = pd.date_range(
            "2011-01-01", "2011-01-31", freq="D", tz="Asia/Tokyo", name="idx"
        )

        for idx in [idx1, idx2]:
            result = idx[0]
            assert result == Timestamp("2011-01-01", tz=idx.tz)

            result = idx[0:5]
            expected = pd.date_range(
                "2011-01-01", "2011-01-05", freq="D", tz=idx.tz, name="idx"
            )
            tm.assert_index_equal(result, expected)
            assert result.freq == expected.freq

            result = idx[0:10:2]
            expected = pd.date_range(
                "2011-01-01", "2011-01-09", freq="2D", tz=idx.tz, name="idx"
            )
            tm.assert_index_equal(result, expected)
            assert result.freq == expected.freq

            result = idx[-20:-5:3]
            expected = pd.date_range(
                "2011-01-12", "2011-01-24", freq="3D", tz=idx.tz, name="idx"
            )
            tm.assert_index_equal(result, expected)
            assert result.freq == expected.freq

            result = idx[4::-1]
            expected = DatetimeIndex(
                ["2011-01-05", "2011-01-04", "2011-01-03", "2011-01-02", "2011-01-01"],
                freq="-1D",
                tz=idx.tz,
                name="idx",
            )
            tm.assert_index_equal(result, expected)
            assert result.freq == expected.freq

    def test_dti_business_getitem(self):
        rng = pd.bdate_range(START, END)
        smaller = rng[:5]
        exp = DatetimeIndex(rng.view(np.ndarray)[:5])
        tm.assert_index_equal(smaller, exp)

        assert smaller.freq == rng.freq

        sliced = rng[::5]
        assert sliced.freq == BDay() * 5

        fancy_indexed = rng[[4, 3, 2, 1, 0]]
        assert len(fancy_indexed) == 5
        assert isinstance(fancy_indexed, DatetimeIndex)
        assert fancy_indexed.freq is None

        # 32-bit vs. 64-bit platforms
        assert rng[4] == rng[np.int_(4)]

    def test_dti_business_getitem_matplotlib_hackaround(self):
        rng = pd.bdate_range(START, END)
        values = rng[:, None]
        expected = rng.values[:, None]
        tm.assert_numpy_array_equal(values, expected)

    def test_dti_custom_getitem(self):
        rng = pd.bdate_range(START, END, freq="C")
        smaller = rng[:5]
        exp = DatetimeIndex(rng.view(np.ndarray)[:5])
        tm.assert_index_equal(smaller, exp)
        assert smaller.freq == rng.freq

        sliced = rng[::5]
        assert sliced.freq == CDay() * 5

        fancy_indexed = rng[[4, 3, 2, 1, 0]]
        assert len(fancy_indexed) == 5
        assert isinstance(fancy_indexed, DatetimeIndex)
        assert fancy_indexed.freq is None

        # 32-bit vs. 64-bit platforms
        assert rng[4] == rng[np.int_(4)]

    def test_dti_custom_getitem_matplotlib_hackaround(self):
        rng = pd.bdate_range(START, END, freq="C")
        values = rng[:, None]
        expected = rng.values[:, None]
        tm.assert_numpy_array_equal(values, expected)


class TestWhere:
    def test_where_other(self):
        # other is ndarray or Index
        i = pd.date_range("20130101", periods=3, tz="US/Eastern")

        for arr in [np.nan, pd.NaT]:
            result = i.where(notna(i), other=np.nan)
            expected = i
            tm.assert_index_equal(result, expected)

        i2 = i.copy()
        i2 = Index([pd.NaT, pd.NaT] + i[2:].tolist())
        result = i.where(notna(i2), i2)
        tm.assert_index_equal(result, i2)

        i2 = i.copy()
        i2 = Index([pd.NaT, pd.NaT] + i[2:].tolist())
        result = i.where(notna(i2), i2.values)
        tm.assert_index_equal(result, i2)

    def test_where_tz(self):
        i = pd.date_range("20130101", periods=3, tz="US/Eastern")
        result = i.where(notna(i))
        expected = i
        tm.assert_index_equal(result, expected)

        i2 = i.copy()
        i2 = Index([pd.NaT, pd.NaT] + i[2:].tolist())
        result = i.where(notna(i2))
        expected = i2
        tm.assert_index_equal(result, expected)


class TestTake:
    def test_take(self):
        # GH#10295
        idx1 = pd.date_range("2011-01-01", "2011-01-31", freq="D", name="idx")
        idx2 = pd.date_range(
            "2011-01-01", "2011-01-31", freq="D", tz="Asia/Tokyo", name="idx"
        )

        for idx in [idx1, idx2]:
            result = idx.take([0])
            assert result == Timestamp("2011-01-01", tz=idx.tz)

            result = idx.take([0, 1, 2])
            expected = pd.date_range(
                "2011-01-01", "2011-01-03", freq="D", tz=idx.tz, name="idx"
            )
            tm.assert_index_equal(result, expected)
            assert result.freq == expected.freq

            result = idx.take([0, 2, 4])
            expected = pd.date_range(
                "2011-01-01", "2011-01-05", freq="2D", tz=idx.tz, name="idx"
            )
            tm.assert_index_equal(result, expected)
            assert result.freq == expected.freq

            result = idx.take([7, 4, 1])
            expected = pd.date_range(
                "2011-01-08", "2011-01-02", freq="-3D", tz=idx.tz, name="idx"
            )
            tm.assert_index_equal(result, expected)
            assert result.freq == expected.freq

            result = idx.take([3, 2, 5])
            expected = DatetimeIndex(
                ["2011-01-04", "2011-01-03", "2011-01-06"],
                freq=None,
                tz=idx.tz,
                name="idx",
            )
            tm.assert_index_equal(result, expected)
            assert result.freq is None

            result = idx.take([-3, 2, 5])
            expected = DatetimeIndex(
                ["2011-01-29", "2011-01-03", "2011-01-06"],
                freq=None,
                tz=idx.tz,
                name="idx",
            )
            tm.assert_index_equal(result, expected)
            assert result.freq is None

    def test_take_invalid_kwargs(self):
        idx = pd.date_range("2011-01-01", "2011-01-31", freq="D", name="idx")
        indices = [1, 6, 5, 9, 10, 13, 15, 3]

        msg = r"take\(\) got an unexpected keyword argument 'foo'"
        with pytest.raises(TypeError, match=msg):
            idx.take(indices, foo=2)

        msg = "the 'out' parameter is not supported"
        with pytest.raises(ValueError, match=msg):
            idx.take(indices, out=indices)

        msg = "the 'mode' parameter is not supported"
        with pytest.raises(ValueError, match=msg):
            idx.take(indices, mode="clip")

    # TODO: This method came from test_datetime; de-dup with version above
    @pytest.mark.parametrize("tz", [None, "US/Eastern", "Asia/Tokyo"])
    def test_take2(self, tz):
        dates = [
            datetime(2010, 1, 1, 14),
            datetime(2010, 1, 1, 15),
            datetime(2010, 1, 1, 17),
            datetime(2010, 1, 1, 21),
        ]

        idx = pd.date_range(
            start="2010-01-01 09:00",
            end="2010-02-01 09:00",
            freq="H",
            tz=tz,
            name="idx",
        )
        expected = DatetimeIndex(dates, freq=None, name="idx", tz=tz)

        taken1 = idx.take([5, 6, 8, 12])
        taken2 = idx[[5, 6, 8, 12]]

        for taken in [taken1, taken2]:
            tm.assert_index_equal(taken, expected)
            assert isinstance(taken, DatetimeIndex)
            assert taken.freq is None
            assert taken.tz == expected.tz
            assert taken.name == expected.name

    def test_take_fill_value(self):
        # GH#12631
        idx = pd.DatetimeIndex(["2011-01-01", "2011-02-01", "2011-03-01"], name="xxx")
        result = idx.take(np.array([1, 0, -1]))
        expected = pd.DatetimeIndex(
            ["2011-02-01", "2011-01-01", "2011-03-01"], name="xxx"
        )
        tm.assert_index_equal(result, expected)

        # fill_value
        result = idx.take(np.array([1, 0, -1]), fill_value=True)
        expected = pd.DatetimeIndex(["2011-02-01", "2011-01-01", "NaT"], name="xxx")
        tm.assert_index_equal(result, expected)

        # allow_fill=False
        result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True)
        expected = pd.DatetimeIndex(
            ["2011-02-01", "2011-01-01", "2011-03-01"], name="xxx"
        )
        tm.assert_index_equal(result, expected)

        msg = (
            "When allow_fill=True and fill_value is not None, "
            "all indices must be >= -1"
        )
        with pytest.raises(ValueError, match=msg):
            idx.take(np.array([1, 0, -2]), fill_value=True)
        with pytest.raises(ValueError, match=msg):
            idx.take(np.array([1, 0, -5]), fill_value=True)

        with pytest.raises(IndexError):
            idx.take(np.array([1, -5]))

    def test_take_fill_value_with_timezone(self):
        idx = pd.DatetimeIndex(
            ["2011-01-01", "2011-02-01", "2011-03-01"], name="xxx", tz="US/Eastern"
        )
        result = idx.take(np.array([1, 0, -1]))
        expected = pd.DatetimeIndex(
            ["2011-02-01", "2011-01-01", "2011-03-01"], name="xxx", tz="US/Eastern"
        )
        tm.assert_index_equal(result, expected)

        # fill_value
        result = idx.take(np.array([1, 0, -1]), fill_value=True)
        expected = pd.DatetimeIndex(
            ["2011-02-01", "2011-01-01", "NaT"], name="xxx", tz="US/Eastern"
        )
        tm.assert_index_equal(result, expected)

        # allow_fill=False
        result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True)
        expected = pd.DatetimeIndex(
            ["2011-02-01", "2011-01-01", "2011-03-01"], name="xxx", tz="US/Eastern"
        )
        tm.assert_index_equal(result, expected)

        msg = (
            "When allow_fill=True and fill_value is not None, "
            "all indices must be >= -1"
        )
        with pytest.raises(ValueError, match=msg):
            idx.take(np.array([1, 0, -2]), fill_value=True)
        with pytest.raises(ValueError, match=msg):
            idx.take(np.array([1, 0, -5]), fill_value=True)

        with pytest.raises(IndexError):
            idx.take(np.array([1, -5]))


class TestDatetimeIndex:
    @pytest.mark.parametrize("null", [None, np.nan, pd.NaT])
    @pytest.mark.parametrize("tz", [None, "UTC", "US/Eastern"])
    def test_insert_nat(self, tz, null):
        # GH#16537, GH#18295 (test missing)
        idx = pd.DatetimeIndex(["2017-01-01"], tz=tz)
        expected = pd.DatetimeIndex(["NaT", "2017-01-01"], tz=tz)
        res = idx.insert(0, null)
        tm.assert_index_equal(res, expected)

    def test_insert(self):
        idx = DatetimeIndex(["2000-01-04", "2000-01-01", "2000-01-02"], name="idx")

        result = idx.insert(2, datetime(2000, 1, 5))
        exp = DatetimeIndex(
            ["2000-01-04", "2000-01-01", "2000-01-05", "2000-01-02"], name="idx"
        )
        tm.assert_index_equal(result, exp)

        # insertion of non-datetime should coerce to object index
        result = idx.insert(1, "inserted")
        expected = Index(
            [
                datetime(2000, 1, 4),
                "inserted",
                datetime(2000, 1, 1),
                datetime(2000, 1, 2),
            ],
            name="idx",
        )
        assert not isinstance(result, DatetimeIndex)
        tm.assert_index_equal(result, expected)
        assert result.name == expected.name

        idx = date_range("1/1/2000", periods=3, freq="M", name="idx")

        # preserve freq
        expected_0 = DatetimeIndex(
            ["1999-12-31", "2000-01-31", "2000-02-29", "2000-03-31"],
            name="idx",
            freq="M",
        )
        expected_3 = DatetimeIndex(
            ["2000-01-31", "2000-02-29", "2000-03-31", "2000-04-30"],
            name="idx",
            freq="M",
        )

        # reset freq to None
        expected_1_nofreq = DatetimeIndex(
            ["2000-01-31", "2000-01-31", "2000-02-29", "2000-03-31"],
            name="idx",
            freq=None,
        )
        expected_3_nofreq = DatetimeIndex(
            ["2000-01-31", "2000-02-29", "2000-03-31", "2000-01-02"],
            name="idx",
            freq=None,
        )

        cases = [
            (0, datetime(1999, 12, 31), expected_0),
            (-3, datetime(1999, 12, 31), expected_0),
            (3, datetime(2000, 4, 30), expected_3),
            (1, datetime(2000, 1, 31), expected_1_nofreq),
            (3, datetime(2000, 1, 2), expected_3_nofreq),
        ]

        for n, d, expected in cases:
            result = idx.insert(n, d)
            tm.assert_index_equal(result, expected)
            assert result.name == expected.name
            assert result.freq == expected.freq

        # reset freq to None
        result = idx.insert(3, datetime(2000, 1, 2))
        expected = DatetimeIndex(
            ["2000-01-31", "2000-02-29", "2000-03-31", "2000-01-02"],
            name="idx",
            freq=None,
        )
        tm.assert_index_equal(result, expected)
        assert result.name == expected.name
        assert result.freq is None

        # see gh-7299
        idx = date_range("1/1/2000", periods=3, freq="D", tz="Asia/Tokyo", name="idx")
        with pytest.raises(ValueError):
            idx.insert(3, pd.Timestamp("2000-01-04"))
        with pytest.raises(ValueError):
            idx.insert(3, datetime(2000, 1, 4))
        with pytest.raises(ValueError):
            idx.insert(3, pd.Timestamp("2000-01-04", tz="US/Eastern"))
        with pytest.raises(ValueError):
            idx.insert(3, datetime(2000, 1, 4, tzinfo=pytz.timezone("US/Eastern")))

        for tz in ["US/Pacific", "Asia/Singapore"]:
            idx = date_range("1/1/2000 09:00", periods=6, freq="H", tz=tz, name="idx")
            # preserve freq
            expected = date_range(
                "1/1/2000 09:00", periods=7, freq="H", tz=tz, name="idx"
            )
            for d in [
                pd.Timestamp("2000-01-01 15:00", tz=tz),
                pytz.timezone(tz).localize(datetime(2000, 1, 1, 15)),
            ]:

                result = idx.insert(6, d)
                tm.assert_index_equal(result, expected)
                assert result.name == expected.name
                assert result.freq == expected.freq
                assert result.tz == expected.tz

            expected = DatetimeIndex(
                [
                    "2000-01-01 09:00",
                    "2000-01-01 10:00",
                    "2000-01-01 11:00",
                    "2000-01-01 12:00",
                    "2000-01-01 13:00",
                    "2000-01-01 14:00",
                    "2000-01-01 10:00",
                ],
                name="idx",
                tz=tz,
                freq=None,
            )
            # reset freq to None
            for d in [
                pd.Timestamp("2000-01-01 10:00", tz=tz),
                pytz.timezone(tz).localize(datetime(2000, 1, 1, 10)),
            ]:
                result = idx.insert(6, d)
                tm.assert_index_equal(result, expected)
                assert result.name == expected.name
                assert result.tz == expected.tz
                assert result.freq is None

    def test_delete(self):
        idx = date_range(start="2000-01-01", periods=5, freq="M", name="idx")

        # prserve freq
        expected_0 = date_range(start="2000-02-01", periods=4, freq="M", name="idx")
        expected_4 = date_range(start="2000-01-01", periods=4, freq="M", name="idx")

        # reset freq to None
        expected_1 = DatetimeIndex(
            ["2000-01-31", "2000-03-31", "2000-04-30", "2000-05-31"],
            freq=None,
            name="idx",
        )

        cases = {
            0: expected_0,
            -5: expected_0,
            -1: expected_4,
            4: expected_4,
            1: expected_1,
        }
        for n, expected in cases.items():
            result = idx.delete(n)
            tm.assert_index_equal(result, expected)
            assert result.name == expected.name
            assert result.freq == expected.freq

        with pytest.raises((IndexError, ValueError)):
            # either depending on numpy version
            idx.delete(5)

        for tz in [None, "Asia/Tokyo", "US/Pacific"]:
            idx = date_range(
                start="2000-01-01 09:00", periods=10, freq="H", name="idx", tz=tz
            )

            expected = date_range(
                start="2000-01-01 10:00", periods=9, freq="H", name="idx", tz=tz
            )
            result = idx.delete(0)
            tm.assert_index_equal(result, expected)
            assert result.name == expected.name
            assert result.freqstr == "H"
            assert result.tz == expected.tz

            expected = date_range(
                start="2000-01-01 09:00", periods=9, freq="H", name="idx", tz=tz
            )
            result = idx.delete(-1)
            tm.assert_index_equal(result, expected)
            assert result.name == expected.name
            assert result.freqstr == "H"
            assert result.tz == expected.tz

    def test_delete_slice(self):
        idx = date_range(start="2000-01-01", periods=10, freq="D", name="idx")

        # prserve freq
        expected_0_2 = date_range(start="2000-01-04", periods=7, freq="D", name="idx")
        expected_7_9 = date_range(start="2000-01-01", periods=7, freq="D", name="idx")

        # reset freq to None
        expected_3_5 = DatetimeIndex(
            [
                "2000-01-01",
                "2000-01-02",
                "2000-01-03",
                "2000-01-07",
                "2000-01-08",
                "2000-01-09",
                "2000-01-10",
            ],
            freq=None,
            name="idx",
        )

        cases = {
            (0, 1, 2): expected_0_2,
            (7, 8, 9): expected_7_9,
            (3, 4, 5): expected_3_5,
        }
        for n, expected in cases.items():
            result = idx.delete(n)
            tm.assert_index_equal(result, expected)
            assert result.name == expected.name
            assert result.freq == expected.freq

            result = idx.delete(slice(n[0], n[-1] + 1))
            tm.assert_index_equal(result, expected)
            assert result.name == expected.name
            assert result.freq == expected.freq

        for tz in [None, "Asia/Tokyo", "US/Pacific"]:
            ts = pd.Series(
                1,
                index=pd.date_range(
                    "2000-01-01 09:00", periods=10, freq="H", name="idx", tz=tz
                ),
            )
            # preserve freq
            result = ts.drop(ts.index[:5]).index
            expected = pd.date_range(
                "2000-01-01 14:00", periods=5, freq="H", name="idx", tz=tz
            )
            tm.assert_index_equal(result, expected)
            assert result.name == expected.name
            assert result.freq == expected.freq
            assert result.tz == expected.tz

            # reset freq to None
            result = ts.drop(ts.index[[1, 3, 5, 7, 9]]).index
            expected = DatetimeIndex(
                [
                    "2000-01-01 09:00",
                    "2000-01-01 11:00",
                    "2000-01-01 13:00",
                    "2000-01-01 15:00",
                    "2000-01-01 17:00",
                ],
                freq=None,
                name="idx",
                tz=tz,
            )
            tm.assert_index_equal(result, expected)
            assert result.name == expected.name
            assert result.freq == expected.freq
            assert result.tz == expected.tz

    def test_get_loc(self):
        idx = pd.date_range("2000-01-01", periods=3)

        for method in [None, "pad", "backfill", "nearest"]:
            assert idx.get_loc(idx[1], method) == 1
            assert idx.get_loc(idx[1].to_pydatetime(), method) == 1
            assert idx.get_loc(str(idx[1]), method) == 1

            if method is not None:
                assert (
                    idx.get_loc(idx[1], method, tolerance=pd.Timedelta("0 days")) == 1
                )

        assert idx.get_loc("2000-01-01", method="nearest") == 0
        assert idx.get_loc("2000-01-01T12", method="nearest") == 1

        assert idx.get_loc("2000-01-01T12", method="nearest", tolerance="1 day") == 1
        assert (
            idx.get_loc("2000-01-01T12", method="nearest", tolerance=pd.Timedelta("1D"))
            == 1
        )
        assert (
            idx.get_loc(
                "2000-01-01T12", method="nearest", tolerance=np.timedelta64(1, "D")
            )
            == 1
        )
        assert (
            idx.get_loc("2000-01-01T12", method="nearest", tolerance=timedelta(1)) == 1
        )
        with pytest.raises(ValueError, match="unit abbreviation w/o a number"):
            idx.get_loc("2000-01-01T12", method="nearest", tolerance="foo")
        with pytest.raises(KeyError, match="'2000-01-01T03'"):
            idx.get_loc("2000-01-01T03", method="nearest", tolerance="2 hours")
        with pytest.raises(
            ValueError, match="tolerance size must match target index size"
        ):
            idx.get_loc(
                "2000-01-01",
                method="nearest",
                tolerance=[
                    pd.Timedelta("1day").to_timedelta64(),
                    pd.Timedelta("1day").to_timedelta64(),
                ],
            )

        assert idx.get_loc("2000", method="nearest") == slice(0, 3)
        assert idx.get_loc("2000-01", method="nearest") == slice(0, 3)

        assert idx.get_loc("1999", method="nearest") == 0
        assert idx.get_loc("2001", method="nearest") == 2

        with pytest.raises(KeyError, match="'1999'"):
            idx.get_loc("1999", method="pad")
        with pytest.raises(KeyError, match="'2001'"):
            idx.get_loc("2001", method="backfill")

        with pytest.raises(KeyError, match="'foobar'"):
            idx.get_loc("foobar")
        with pytest.raises(TypeError):
            idx.get_loc(slice(2))

        idx = pd.to_datetime(["2000-01-01", "2000-01-04"])
        assert idx.get_loc("2000-01-02", method="nearest") == 0
        assert idx.get_loc("2000-01-03", method="nearest") == 1
        assert idx.get_loc("2000-01", method="nearest") == slice(0, 2)

        # time indexing
        idx = pd.date_range("2000-01-01", periods=24, freq="H")
        tm.assert_numpy_array_equal(
            idx.get_loc(time(12)), np.array([12]), check_dtype=False
        )
        tm.assert_numpy_array_equal(
            idx.get_loc(time(12, 30)), np.array([]), check_dtype=False
        )
        with pytest.raises(NotImplementedError):
            idx.get_loc(time(12, 30), method="pad")

    def test_get_indexer(self):
        idx = pd.date_range("2000-01-01", periods=3)
        exp = np.array([0, 1, 2], dtype=np.intp)
        tm.assert_numpy_array_equal(idx.get_indexer(idx), exp)

        target = idx[0] + pd.to_timedelta(["-1 hour", "12 hours", "1 day 1 hour"])
        tm.assert_numpy_array_equal(
            idx.get_indexer(target, "pad"), np.array([-1, 0, 1], dtype=np.intp)
        )
        tm.assert_numpy_array_equal(
            idx.get_indexer(target, "backfill"), np.array([0, 1, 2], dtype=np.intp)
        )
        tm.assert_numpy_array_equal(
            idx.get_indexer(target, "nearest"), np.array([0, 1, 1], dtype=np.intp)
        )
        tm.assert_numpy_array_equal(
            idx.get_indexer(target, "nearest", tolerance=pd.Timedelta("1 hour")),
            np.array([0, -1, 1], dtype=np.intp),
        )
        tol_raw = [
            pd.Timedelta("1 hour"),
            pd.Timedelta("1 hour"),
            pd.Timedelta("1 hour").to_timedelta64(),
        ]
        tm.assert_numpy_array_equal(
            idx.get_indexer(
                target, "nearest", tolerance=[np.timedelta64(x) for x in tol_raw]
            ),
            np.array([0, -1, 1], dtype=np.intp),
        )
        tol_bad = [
            pd.Timedelta("2 hour").to_timedelta64(),
            pd.Timedelta("1 hour").to_timedelta64(),
            "foo",
        ]
        with pytest.raises(ValueError, match="abbreviation w/o a number"):
            idx.get_indexer(target, "nearest", tolerance=tol_bad)
        with pytest.raises(ValueError):
            idx.get_indexer(idx[[0]], method="nearest", tolerance="foo")

    def test_reasonable_key_error(self):
        # GH#1062
        index = DatetimeIndex(["1/3/2000"])
        with pytest.raises(KeyError, match="2000"):
            index.get_loc("1/1/2000")

    @pytest.mark.parametrize("key", [pd.Timedelta(0), pd.Timedelta(1), timedelta(0)])
    def test_timedelta_invalid_key(self, key):
        # GH#20464
        dti = pd.date_range("1970-01-01", periods=10)
        with pytest.raises(TypeError):
            dti.get_loc(key)

    def test_get_loc_nat(self):
        # GH#20464
        index = DatetimeIndex(["1/3/2000", "NaT"])
        assert index.get_loc(pd.NaT) == 1