""" test partial slicing on Series/Frame """
from datetime import datetime
import operator as op
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
DatetimeIndex,
Index,
Series,
Timedelta,
Timestamp,
date_range,
)
from pandas.core.indexing import IndexingError
from pandas.util import testing as tm
class TestSlicing:
def test_dti_slicing(self):
dti = date_range(start="1/1/2005", end="12/1/2005", freq="M")
dti2 = dti[[1, 3, 5]]
v1 = dti2[0]
v2 = dti2[1]
v3 = dti2[2]
assert v1 == Timestamp("2/28/2005")
assert v2 == Timestamp("4/30/2005")
assert v3 == Timestamp("6/30/2005")
# don't carry freq through irregular slicing
assert dti2.freq is None
def test_slice_keeps_name(self):
# GH4226
st = pd.Timestamp("2013-07-01 00:00:00", tz="America/Los_Angeles")
et = pd.Timestamp("2013-07-02 00:00:00", tz="America/Los_Angeles")
dr = pd.date_range(st, et, freq="H", name="timebucket")
assert dr[1:].name == dr.name
def test_slice_with_negative_step(self):
ts = Series(np.arange(20), date_range("2014-01-01", periods=20, freq="MS"))
SLC = pd.IndexSlice
def assert_slices_equivalent(l_slc, i_slc):
tm.assert_series_equal(ts[l_slc], ts.iloc[i_slc])
tm.assert_series_equal(ts.loc[l_slc], ts.iloc[i_slc])
tm.assert_series_equal(ts.loc[l_slc], ts.iloc[i_slc])
assert_slices_equivalent(SLC[Timestamp("2014-10-01") :: -1], SLC[9::-1])
assert_slices_equivalent(SLC["2014-10-01"::-1], SLC[9::-1])
assert_slices_equivalent(SLC[: Timestamp("2014-10-01") : -1], SLC[:8:-1])
assert_slices_equivalent(SLC[:"2014-10-01":-1], SLC[:8:-1])
assert_slices_equivalent(SLC["2015-02-01":"2014-10-01":-1], SLC[13:8:-1])
assert_slices_equivalent(
SLC[Timestamp("2015-02-01") : Timestamp("2014-10-01") : -1], SLC[13:8:-1]
)
assert_slices_equivalent(
SLC["2015-02-01" : Timestamp("2014-10-01") : -1], SLC[13:8:-1]
)
assert_slices_equivalent(
SLC[Timestamp("2015-02-01") : "2014-10-01" : -1], SLC[13:8:-1]
)
assert_slices_equivalent(SLC["2014-10-01":"2015-02-01":-1], SLC[:0])
def test_slice_with_zero_step_raises(self):
ts = Series(np.arange(20), date_range("2014-01-01", periods=20, freq="MS"))
with pytest.raises(ValueError, match="slice step cannot be zero"):
ts[::0]
with pytest.raises(ValueError, match="slice step cannot be zero"):
ts.loc[::0]
with pytest.raises(ValueError, match="slice step cannot be zero"):
ts.loc[::0]
def test_slice_bounds_empty(self):
# GH#14354
empty_idx = date_range(freq="1H", periods=0, end="2015")
right = empty_idx._maybe_cast_slice_bound("2015-01-02", "right", "loc")
exp = Timestamp("2015-01-02 23:59:59.999999999")
assert right == exp
left = empty_idx._maybe_cast_slice_bound("2015-01-02", "left", "loc")
exp = Timestamp("2015-01-02 00:00:00")
assert left == exp
def test_slice_duplicate_monotonic(self):
# https://github.com/pandas-dev/pandas/issues/16515
idx = pd.DatetimeIndex(["2017", "2017"])
result = idx._maybe_cast_slice_bound("2017-01-01", "left", "loc")
expected = Timestamp("2017-01-01")
assert result == expected
def test_monotone_DTI_indexing_bug(self):
# GH 19362
# Testing accessing the first element in a monotonic descending
# partial string indexing.
df = pd.DataFrame(list(range(5)))
date_list = [
"2018-01-02",
"2017-02-10",
"2016-03-10",
"2015-03-15",
"2014-03-16",
]
date_index = pd.to_datetime(date_list)
df["date"] = date_index
expected = pd.DataFrame({0: list(range(5)), "date": date_index})
tm.assert_frame_equal(df, expected)
df = pd.DataFrame(
{"A": [1, 2, 3]}, index=pd.date_range("20170101", periods=3)[::-1]
)
expected = pd.DataFrame({"A": 1}, index=pd.date_range("20170103", periods=1))
tm.assert_frame_equal(df.loc["2017-01-03"], expected)
def test_slice_year(self):
dti = date_range(freq="B", start=datetime(2005, 1, 1), periods=500)
s = Series(np.arange(len(dti)), index=dti)
result = s["2005"]
expected = s[s.index.year == 2005]
tm.assert_series_equal(result, expected)
df = DataFrame(np.random.rand(len(dti), 5), index=dti)
result = df.loc["2005"]
expected = df[df.index.year == 2005]
tm.assert_frame_equal(result, expected)
rng = date_range("1/1/2000", "1/1/2010")
result = rng.get_loc("2009")
expected = slice(3288, 3653)
assert result == expected
def test_slice_quarter(self):
dti = date_range(freq="D", start=datetime(2000, 6, 1), periods=500)
s = Series(np.arange(len(dti)), index=dti)
assert len(s["2001Q1"]) == 90
df = DataFrame(np.random.rand(len(dti), 5), index=dti)
assert len(df.loc["1Q01"]) == 90
def test_slice_month(self):
dti = date_range(freq="D", start=datetime(2005, 1, 1), periods=500)
s = Series(np.arange(len(dti)), index=dti)
assert len(s["2005-11"]) == 30
df = DataFrame(np.random.rand(len(dti), 5), index=dti)
assert len(df.loc["2005-11"]) == 30
tm.assert_series_equal(s["2005-11"], s["11-2005"])
def test_partial_slice(self):
rng = date_range(freq="D", start=datetime(2005, 1, 1), periods=500)
s = Series(np.arange(len(rng)), index=rng)
result = s["2005-05":"2006-02"]
expected = s["20050501":"20060228"]
tm.assert_series_equal(result, expected)
result = s["2005-05":]
expected = s["20050501":]
tm.assert_series_equal(result, expected)
result = s[:"2006-02"]
expected = s[:"20060228"]
tm.assert_series_equal(result, expected)
result = s["2005-1-1"]
assert result == s.iloc[0]
with pytest.raises(KeyError, match=r"^'2004-12-31'$"):
s["2004-12-31"]
def test_partial_slice_daily(self):
rng = date_range(freq="H", start=datetime(2005, 1, 31), periods=500)
s = Series(np.arange(len(rng)), index=rng)
result = s["2005-1-31"]
tm.assert_series_equal(result, s.iloc[:24])
with pytest.raises(KeyError, match=r"^'2004-12-31 00'$"):
s["2004-12-31 00"]
def test_partial_slice_hourly(self):
rng = date_range(freq="T", start=datetime(2005, 1, 1, 20, 0, 0), periods=500)
s = Series(np.arange(len(rng)), index=rng)
result = s["2005-1-1"]
tm.assert_series_equal(result, s.iloc[: 60 * 4])
result = s["2005-1-1 20"]
tm.assert_series_equal(result, s.iloc[:60])
assert s["2005-1-1 20:00"] == s.iloc[0]
with pytest.raises(KeyError, match=r"^'2004-12-31 00:15'$"):
s["2004-12-31 00:15"]
def test_partial_slice_minutely(self):
rng = date_range(freq="S", start=datetime(2005, 1, 1, 23, 59, 0), periods=500)
s = Series(np.arange(len(rng)), index=rng)
result = s["2005-1-1 23:59"]
tm.assert_series_equal(result, s.iloc[:60])
result = s["2005-1-1"]
tm.assert_series_equal(result, s.iloc[:60])
assert s[Timestamp("2005-1-1 23:59:00")] == s.iloc[0]
with pytest.raises(KeyError, match=r"^'2004-12-31 00:00:00'$"):
s["2004-12-31 00:00:00"]
def test_partial_slice_second_precision(self):
rng = date_range(
start=datetime(2005, 1, 1, 0, 0, 59, microsecond=999990),
periods=20,
freq="US",
)
s = Series(np.arange(20), rng)
tm.assert_series_equal(s["2005-1-1 00:00"], s.iloc[:10])
tm.assert_series_equal(s["2005-1-1 00:00:59"], s.iloc[:10])
tm.assert_series_equal(s["2005-1-1 00:01"], s.iloc[10:])
tm.assert_series_equal(s["2005-1-1 00:01:00"], s.iloc[10:])
assert s[Timestamp("2005-1-1 00:00:59.999990")] == s.iloc[0]
with pytest.raises(KeyError, match="2005-1-1 00:00:00"):
s["2005-1-1 00:00:00"]
def test_partial_slicing_dataframe(self):
# GH14856
# Test various combinations of string slicing resolution vs.
# index resolution
# - If string resolution is less precise than index resolution,
# string is considered a slice
# - If string resolution is equal to or more precise than index
# resolution, string is considered an exact match
formats = [
"%Y",
"%Y-%m",
"%Y-%m-%d",
"%Y-%m-%d %H",
"%Y-%m-%d %H:%M",
"%Y-%m-%d %H:%M:%S",
]
resolutions = ["year", "month", "day", "hour", "minute", "second"]
for rnum, resolution in enumerate(resolutions[2:], 2):
# we check only 'day', 'hour', 'minute' and 'second'
unit = Timedelta("1 " + resolution)
middate = datetime(2012, 1, 1, 0, 0, 0)
index = DatetimeIndex([middate - unit, middate, middate + unit])
values = [1, 2, 3]
df = DataFrame({"a": values}, index, dtype=np.int64)
assert df.index.resolution == resolution
# Timestamp with the same resolution as index
# Should be exact match for Series (return scalar)
# and raise KeyError for Frame
for timestamp, expected in zip(index, values):
ts_string = timestamp.strftime(formats[rnum])
# make ts_string as precise as index
result = df["a"][ts_string]
assert isinstance(result, np.int64)
assert result == expected
msg = r"^'{}'$".format(ts_string)
with pytest.raises(KeyError, match=msg):
df[ts_string]
# Timestamp with resolution less precise than index
for fmt in formats[:rnum]:
for element, theslice in [[0, slice(None, 1)], [1, slice(1, None)]]:
ts_string = index[element].strftime(fmt)
# Series should return slice
result = df["a"][ts_string]
expected = df["a"][theslice]
tm.assert_series_equal(result, expected)
# Frame should return slice as well
result = df[ts_string]
expected = df[theslice]
tm.assert_frame_equal(result, expected)
# Timestamp with resolution more precise than index
# Compatible with existing key
# Should return scalar for Series
# and raise KeyError for Frame
for fmt in formats[rnum + 1 :]:
ts_string = index[1].strftime(fmt)
result = df["a"][ts_string]
assert isinstance(result, np.int64)
assert result == 2
msg = r"^'{}'$".format(ts_string)
with pytest.raises(KeyError, match=msg):
df[ts_string]
# Not compatible with existing key
# Should raise KeyError
for fmt, res in list(zip(formats, resolutions))[rnum + 1 :]:
ts = index[1] + Timedelta("1 " + res)
ts_string = ts.strftime(fmt)
msg = r"^'{}'$".format(ts_string)
with pytest.raises(KeyError, match=msg):
df["a"][ts_string]
with pytest.raises(KeyError, match=msg):
df[ts_string]
def test_partial_slicing_with_multiindex(self):
# GH 4758
# partial string indexing with a multi-index buggy
df = DataFrame(
{
"ACCOUNT": ["ACCT1", "ACCT1", "ACCT1", "ACCT2"],
"TICKER": ["ABC", "MNP", "XYZ", "XYZ"],
"val": [1, 2, 3, 4],
},
index=date_range("2013-06-19 09:30:00", periods=4, freq="5T"),
)
df_multi = df.set_index(["ACCOUNT", "TICKER"], append=True)
expected = DataFrame(
[[1]], index=Index(["ABC"], name="TICKER"), columns=["val"]
)
result = df_multi.loc[("2013-06-19 09:30:00", "ACCT1")]
tm.assert_frame_equal(result, expected)
expected = df_multi.loc[
(pd.Timestamp("2013-06-19 09:30:00", tz=None), "ACCT1", "ABC")
]
result = df_multi.loc[("2013-06-19 09:30:00", "ACCT1", "ABC")]
tm.assert_series_equal(result, expected)
# this is an IndexingError as we don't do partial string selection on
# multi-levels.
msg = "Too many indexers"
with pytest.raises(IndexingError, match=msg):
df_multi.loc[("2013-06-19", "ACCT1", "ABC")]
# GH 4294
# partial slice on a series mi
s = pd.DataFrame(
np.random.rand(1000, 1000), index=pd.date_range("2000-1-1", periods=1000)
).stack()
s2 = s[:-1].copy()
expected = s2["2000-1-4"]
result = s2[pd.Timestamp("2000-1-4")]
tm.assert_series_equal(result, expected)
result = s[pd.Timestamp("2000-1-4")]
expected = s["2000-1-4"]
tm.assert_series_equal(result, expected)
df2 = pd.DataFrame(s)
expected = df2.xs("2000-1-4")
result = df2.loc[pd.Timestamp("2000-1-4")]
tm.assert_frame_equal(result, expected)
def test_partial_slice_doesnt_require_monotonicity(self):
# For historical reasons.
s = pd.Series(np.arange(10), pd.date_range("2014-01-01", periods=10))
nonmonotonic = s[[3, 5, 4]]
expected = nonmonotonic.iloc[:0]
timestamp = pd.Timestamp("2014-01-10")
tm.assert_series_equal(nonmonotonic["2014-01-10":], expected)
with pytest.raises(KeyError, match=r"Timestamp\('2014-01-10 00:00:00'\)"):
nonmonotonic[timestamp:]
tm.assert_series_equal(nonmonotonic.loc["2014-01-10":], expected)
with pytest.raises(KeyError, match=r"Timestamp\('2014-01-10 00:00:00'\)"):
nonmonotonic.loc[timestamp:]
def test_loc_datetime_length_one(self):
# GH16071
df = pd.DataFrame(
columns=["1"],
index=pd.date_range("2016-10-01T00:00:00", "2016-10-01T23:59:59"),
)
result = df.loc[datetime(2016, 10, 1) :]
tm.assert_frame_equal(result, df)
result = df.loc["2016-10-01T00:00:00":]
tm.assert_frame_equal(result, df)
@pytest.mark.parametrize(
"datetimelike",
[
Timestamp("20130101"),
datetime(2013, 1, 1),
np.datetime64("2013-01-01T00:00", "ns"),
],
)
@pytest.mark.parametrize(
"op,expected",
[
(op.lt, [True, False, False, False]),
(op.le, [True, True, False, False]),
(op.eq, [False, True, False, False]),
(op.gt, [False, False, False, True]),
],
)
def test_selection_by_datetimelike(self, datetimelike, op, expected):
# GH issue #17965, test for ability to compare datetime64[ns] columns
# to datetimelike
df = DataFrame(
{
"A": [
pd.Timestamp("20120101"),
pd.Timestamp("20130101"),
np.nan,
pd.Timestamp("20130103"),
]
}
)
result = op(df.A, datetimelike)
expected = Series(expected, name="A")
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"start",
[
"2018-12-02 21:50:00+00:00",
pd.Timestamp("2018-12-02 21:50:00+00:00"),
pd.Timestamp("2018-12-02 21:50:00+00:00").to_pydatetime(),
],
)
@pytest.mark.parametrize(
"end",
[
"2018-12-02 21:52:00+00:00",
pd.Timestamp("2018-12-02 21:52:00+00:00"),
pd.Timestamp("2018-12-02 21:52:00+00:00").to_pydatetime(),
],
)
def test_getitem_with_datestring_with_UTC_offset(self, start, end):
# GH 24076
idx = pd.date_range(
start="2018-12-02 14:50:00-07:00",
end="2018-12-02 14:50:00-07:00",
freq="1min",
)
df = pd.DataFrame(1, index=idx, columns=["A"])
result = df[start:end]
expected = df.iloc[0:3, :]
tm.assert_frame_equal(result, expected)
# GH 16785
start = str(start)
end = str(end)
with pytest.raises(ValueError, match="Both dates must"):
df[start : end[:-4] + "1:00"]
with pytest.raises(ValueError, match="The index must be timezone"):
df = df.tz_localize(None)
df[start:end]
def test_slice_reduce_to_series(self):
# GH 27516
df = pd.DataFrame(
{"A": range(24)}, index=pd.date_range("2000", periods=24, freq="M")
)
expected = pd.Series(
range(12), index=pd.date_range("2000", periods=12, freq="M"), name="A"
)
result = df.loc["2000", "A"]
tm.assert_series_equal(result, expected)