Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

aaronreidsmith / pandas   python

Repository URL to install this package:

Version: 0.25.3 

/ tests / indexes / multi / test_analytics.py

import numpy as np
import pytest

from pandas.compat.numpy import _np_version_under1p17

import pandas as pd
from pandas import Index, MultiIndex, date_range, period_range
import pandas.util.testing as tm


def test_shift(idx):

    # GH8083 test the base class for shift
    msg = "Not supported for type MultiIndex"
    with pytest.raises(NotImplementedError, match=msg):
        idx.shift(1)
    with pytest.raises(NotImplementedError, match=msg):
        idx.shift(1, 2)


def test_groupby(idx):
    groups = idx.groupby(np.array([1, 1, 1, 2, 2, 2]))
    labels = idx.tolist()
    exp = {1: labels[:3], 2: labels[3:]}
    tm.assert_dict_equal(groups, exp)

    # GH5620
    groups = idx.groupby(idx)
    exp = {key: [key] for key in idx}
    tm.assert_dict_equal(groups, exp)


def test_truncate():
    major_axis = Index(list(range(4)))
    minor_axis = Index(list(range(2)))

    major_codes = np.array([0, 0, 1, 2, 3, 3])
    minor_codes = np.array([0, 1, 0, 1, 0, 1])

    index = MultiIndex(
        levels=[major_axis, minor_axis], codes=[major_codes, minor_codes]
    )

    result = index.truncate(before=1)
    assert "foo" not in result.levels[0]
    assert 1 in result.levels[0]

    result = index.truncate(after=1)
    assert 2 not in result.levels[0]
    assert 1 in result.levels[0]

    result = index.truncate(before=1, after=2)
    assert len(result.levels[0]) == 2

    msg = "after < before"
    with pytest.raises(ValueError, match=msg):
        index.truncate(3, 1)


def test_where():
    i = MultiIndex.from_tuples([("A", 1), ("A", 2)])

    msg = r"\.where is not supported for MultiIndex operations"
    with pytest.raises(NotImplementedError, match=msg):
        i.where(True)


@pytest.mark.parametrize("klass", [list, tuple, np.array, pd.Series])
def test_where_array_like(klass):
    i = MultiIndex.from_tuples([("A", 1), ("A", 2)])
    cond = [False, True]
    msg = r"\.where is not supported for MultiIndex operations"
    with pytest.raises(NotImplementedError, match=msg):
        i.where(klass(cond))


# TODO: reshape


def test_reorder_levels(idx):
    # this blows up
    with pytest.raises(IndexError, match="^Too many levels"):
        idx.reorder_levels([2, 1, 0])


def test_numpy_repeat():
    reps = 2
    numbers = [1, 2, 3]
    names = np.array(["foo", "bar"])

    m = MultiIndex.from_product([numbers, names], names=names)
    expected = MultiIndex.from_product([numbers, names.repeat(reps)], names=names)
    tm.assert_index_equal(np.repeat(m, reps), expected)

    msg = "the 'axis' parameter is not supported"
    with pytest.raises(ValueError, match=msg):
        np.repeat(m, reps, axis=1)


def test_append_mixed_dtypes():
    # GH 13660
    dti = date_range("2011-01-01", freq="M", periods=3)
    dti_tz = date_range("2011-01-01", freq="M", periods=3, tz="US/Eastern")
    pi = period_range("2011-01", freq="M", periods=3)

    mi = MultiIndex.from_arrays(
        [[1, 2, 3], [1.1, np.nan, 3.3], ["a", "b", "c"], dti, dti_tz, pi]
    )
    assert mi.nlevels == 6

    res = mi.append(mi)
    exp = MultiIndex.from_arrays(
        [
            [1, 2, 3, 1, 2, 3],
            [1.1, np.nan, 3.3, 1.1, np.nan, 3.3],
            ["a", "b", "c", "a", "b", "c"],
            dti.append(dti),
            dti_tz.append(dti_tz),
            pi.append(pi),
        ]
    )
    tm.assert_index_equal(res, exp)

    other = MultiIndex.from_arrays(
        [
            ["x", "y", "z"],
            ["x", "y", "z"],
            ["x", "y", "z"],
            ["x", "y", "z"],
            ["x", "y", "z"],
            ["x", "y", "z"],
        ]
    )

    res = mi.append(other)
    exp = MultiIndex.from_arrays(
        [
            [1, 2, 3, "x", "y", "z"],
            [1.1, np.nan, 3.3, "x", "y", "z"],
            ["a", "b", "c", "x", "y", "z"],
            dti.append(pd.Index(["x", "y", "z"])),
            dti_tz.append(pd.Index(["x", "y", "z"])),
            pi.append(pd.Index(["x", "y", "z"])),
        ]
    )
    tm.assert_index_equal(res, exp)


def test_take(idx):
    indexer = [4, 3, 0, 2]
    result = idx.take(indexer)
    expected = idx[indexer]
    assert result.equals(expected)

    # TODO: Remove Commented Code
    # if not isinstance(idx,
    #                   (DatetimeIndex, PeriodIndex, TimedeltaIndex)):
    # GH 10791
    msg = "'MultiIndex' object has no attribute 'freq'"
    with pytest.raises(AttributeError, match=msg):
        idx.freq


def test_take_invalid_kwargs(idx):
    idx = idx
    indices = [1, 2]

    msg = r"take\(\) got an unexpected keyword argument 'foo'"
    with pytest.raises(TypeError, match=msg):
        idx.take(indices, foo=2)

    msg = "the 'out' parameter is not supported"
    with pytest.raises(ValueError, match=msg):
        idx.take(indices, out=indices)

    msg = "the 'mode' parameter is not supported"
    with pytest.raises(ValueError, match=msg):
        idx.take(indices, mode="clip")


def test_take_fill_value():
    # GH 12631
    vals = [["A", "B"], [pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02")]]
    idx = pd.MultiIndex.from_product(vals, names=["str", "dt"])

    result = idx.take(np.array([1, 0, -1]))
    exp_vals = [
        ("A", pd.Timestamp("2011-01-02")),
        ("A", pd.Timestamp("2011-01-01")),
        ("B", pd.Timestamp("2011-01-02")),
    ]
    expected = pd.MultiIndex.from_tuples(exp_vals, names=["str", "dt"])
    tm.assert_index_equal(result, expected)

    # fill_value
    result = idx.take(np.array([1, 0, -1]), fill_value=True)
    exp_vals = [
        ("A", pd.Timestamp("2011-01-02")),
        ("A", pd.Timestamp("2011-01-01")),
        (np.nan, pd.NaT),
    ]
    expected = pd.MultiIndex.from_tuples(exp_vals, names=["str", "dt"])
    tm.assert_index_equal(result, expected)

    # allow_fill=False
    result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True)
    exp_vals = [
        ("A", pd.Timestamp("2011-01-02")),
        ("A", pd.Timestamp("2011-01-01")),
        ("B", pd.Timestamp("2011-01-02")),
    ]
    expected = pd.MultiIndex.from_tuples(exp_vals, names=["str", "dt"])
    tm.assert_index_equal(result, expected)

    msg = "When allow_fill=True and fill_value is not None, all indices must be >= -1"
    with pytest.raises(ValueError, match=msg):
        idx.take(np.array([1, 0, -2]), fill_value=True)
    with pytest.raises(ValueError, match=msg):
        idx.take(np.array([1, 0, -5]), fill_value=True)

    msg = "index -5 is out of bounds for size 4"
    with pytest.raises(IndexError, match=msg):
        idx.take(np.array([1, -5]))


def test_iter(idx):
    result = list(idx)
    expected = [
        ("foo", "one"),
        ("foo", "two"),
        ("bar", "one"),
        ("baz", "two"),
        ("qux", "one"),
        ("qux", "two"),
    ]
    assert result == expected


def test_sub(idx):

    first = idx

    # - now raises (previously was set op difference)
    msg = "cannot perform __sub__ with this index type: MultiIndex"
    with pytest.raises(TypeError, match=msg):
        first - idx[-3:]
    with pytest.raises(TypeError, match=msg):
        idx[-3:] - first
    with pytest.raises(TypeError, match=msg):
        idx[-3:] - first.tolist()
    msg = "cannot perform __rsub__ with this index type: MultiIndex"
    with pytest.raises(TypeError, match=msg):
        first.tolist() - idx[-3:]


def test_map(idx):
    # callable
    index = idx

    # we don't infer UInt64
    if isinstance(index, pd.UInt64Index):
        expected = index.astype("int64")
    else:
        expected = index

    result = index.map(lambda x: x)
    tm.assert_index_equal(result, expected)


@pytest.mark.parametrize(
    "mapper",
    [
        lambda values, idx: {i: e for e, i in zip(values, idx)},
        lambda values, idx: pd.Series(values, idx),
    ],
)
def test_map_dictlike(idx, mapper):

    if isinstance(idx, (pd.CategoricalIndex, pd.IntervalIndex)):
        pytest.skip("skipping tests for {}".format(type(idx)))

    identity = mapper(idx.values, idx)

    # we don't infer to UInt64 for a dict
    if isinstance(idx, pd.UInt64Index) and isinstance(identity, dict):
        expected = idx.astype("int64")
    else:
        expected = idx

    result = idx.map(identity)
    tm.assert_index_equal(result, expected)

    # empty mappable
    expected = pd.Index([np.nan] * len(idx))
    result = idx.map(mapper(expected, idx))
    tm.assert_index_equal(result, expected)


@pytest.mark.parametrize(
    "func",
    [
        np.exp,
        np.exp2,
        np.expm1,
        np.log,
        np.log2,
        np.log10,
        np.log1p,
        np.sqrt,
        np.sin,
        np.cos,
        np.tan,
        np.arcsin,
        np.arccos,
        np.arctan,
        np.sinh,
        np.cosh,
        np.tanh,
        np.arcsinh,
        np.arccosh,
        np.arctanh,
        np.deg2rad,
        np.rad2deg,
    ],
    ids=lambda func: func.__name__,
)
def test_numpy_ufuncs(idx, func):
    # test ufuncs of numpy. see:
    # http://docs.scipy.org/doc/numpy/reference/ufuncs.html

    if _np_version_under1p17:
        expected_exception = AttributeError
        msg = "'tuple' object has no attribute '{}'".format(func.__name__)
    else:
        expected_exception = TypeError
        msg = (
            "loop of ufunc does not support argument 0 of type tuple which"
            " has no callable {} method"
        ).format(func.__name__)
    with pytest.raises(expected_exception, match=msg):
        func(idx)


@pytest.mark.parametrize(
    "func",
    [np.isfinite, np.isinf, np.isnan, np.signbit],
    ids=lambda func: func.__name__,
)
def test_numpy_type_funcs(idx, func):
    msg = (
        "ufunc '{}' not supported for the input types, and the inputs"
        " could not be safely coerced to any supported types according to"
        " the casting rule ''safe''"
    ).format(func.__name__)
    with pytest.raises(TypeError, match=msg):
        func(idx)