Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

aaronreidsmith / pandas   python

Repository URL to install this package:

Version: 0.25.3 

/ tests / indexes / period / test_indexing.py

from datetime import datetime, timedelta

import numpy as np
import pytest

from pandas._libs.tslibs import period as libperiod

import pandas as pd
from pandas import DatetimeIndex, Period, PeriodIndex, Series, notna, period_range
from pandas.util import testing as tm


class TestGetItem:
    def test_ellipsis(self):
        # GH#21282
        idx = period_range("2011-01-01", "2011-01-31", freq="D", name="idx")

        result = idx[...]
        assert result.equals(idx)
        assert result is not idx

    def test_getitem(self):
        idx1 = pd.period_range("2011-01-01", "2011-01-31", freq="D", name="idx")

        for idx in [idx1]:
            result = idx[0]
            assert result == pd.Period("2011-01-01", freq="D")

            result = idx[-1]
            assert result == pd.Period("2011-01-31", freq="D")

            result = idx[0:5]
            expected = pd.period_range("2011-01-01", "2011-01-05", freq="D", name="idx")
            tm.assert_index_equal(result, expected)
            assert result.freq == expected.freq
            assert result.freq == "D"

            result = idx[0:10:2]
            expected = pd.PeriodIndex(
                ["2011-01-01", "2011-01-03", "2011-01-05", "2011-01-07", "2011-01-09"],
                freq="D",
                name="idx",
            )
            tm.assert_index_equal(result, expected)
            assert result.freq == expected.freq
            assert result.freq == "D"

            result = idx[-20:-5:3]
            expected = pd.PeriodIndex(
                ["2011-01-12", "2011-01-15", "2011-01-18", "2011-01-21", "2011-01-24"],
                freq="D",
                name="idx",
            )
            tm.assert_index_equal(result, expected)
            assert result.freq == expected.freq
            assert result.freq == "D"

            result = idx[4::-1]
            expected = PeriodIndex(
                ["2011-01-05", "2011-01-04", "2011-01-03", "2011-01-02", "2011-01-01"],
                freq="D",
                name="idx",
            )
            tm.assert_index_equal(result, expected)
            assert result.freq == expected.freq
            assert result.freq == "D"

    def test_getitem_index(self):
        idx = period_range("2007-01", periods=10, freq="M", name="x")

        result = idx[[1, 3, 5]]
        exp = pd.PeriodIndex(["2007-02", "2007-04", "2007-06"], freq="M", name="x")
        tm.assert_index_equal(result, exp)

        result = idx[[True, True, False, False, False, True, True, False, False, False]]
        exp = pd.PeriodIndex(
            ["2007-01", "2007-02", "2007-06", "2007-07"], freq="M", name="x"
        )
        tm.assert_index_equal(result, exp)

    def test_getitem_partial(self):
        rng = period_range("2007-01", periods=50, freq="M")
        ts = Series(np.random.randn(len(rng)), rng)

        with pytest.raises(KeyError, match=r"^'2006'$"):
            ts["2006"]

        result = ts["2008"]
        assert (result.index.year == 2008).all()

        result = ts["2008":"2009"]
        assert len(result) == 24

        result = ts["2008-1":"2009-12"]
        assert len(result) == 24

        result = ts["2008Q1":"2009Q4"]
        assert len(result) == 24

        result = ts[:"2009"]
        assert len(result) == 36

        result = ts["2009":]
        assert len(result) == 50 - 24

        exp = result
        result = ts[24:]
        tm.assert_series_equal(exp, result)

        ts = ts[10:].append(ts[10:])
        msg = "left slice bound for non-unique label: '2008'"
        with pytest.raises(KeyError, match=msg):
            ts[slice("2008", "2009")]

    def test_getitem_datetime(self):
        rng = period_range(start="2012-01-01", periods=10, freq="W-MON")
        ts = Series(range(len(rng)), index=rng)

        dt1 = datetime(2011, 10, 2)
        dt4 = datetime(2012, 4, 20)

        rs = ts[dt1:dt4]
        tm.assert_series_equal(rs, ts)

    def test_getitem_nat(self):
        idx = pd.PeriodIndex(["2011-01", "NaT", "2011-02"], freq="M")
        assert idx[0] == pd.Period("2011-01", freq="M")
        assert idx[1] is pd.NaT

        s = pd.Series([0, 1, 2], index=idx)
        assert s[pd.NaT] == 1

        s = pd.Series(idx, index=idx)
        assert s[pd.Period("2011-01", freq="M")] == pd.Period("2011-01", freq="M")
        assert s[pd.NaT] is pd.NaT

    def test_getitem_list_periods(self):
        # GH 7710
        rng = period_range(start="2012-01-01", periods=10, freq="D")
        ts = Series(range(len(rng)), index=rng)
        exp = ts.iloc[[1]]
        tm.assert_series_equal(ts[[Period("2012-01-02", freq="D")]], exp)

    def test_getitem_seconds(self):
        # GH#6716
        didx = pd.date_range(start="2013/01/01 09:00:00", freq="S", periods=4000)
        pidx = period_range(start="2013/01/01 09:00:00", freq="S", periods=4000)

        for idx in [didx, pidx]:
            # getitem against index should raise ValueError
            values = [
                "2014",
                "2013/02",
                "2013/01/02",
                "2013/02/01 9H",
                "2013/02/01 09:00",
            ]
            for v in values:
                # GH7116
                # these show deprecations as we are trying
                # to slice with non-integer indexers
                # with pytest.raises(IndexError):
                #    idx[v]
                continue

            s = Series(np.random.rand(len(idx)), index=idx)
            tm.assert_series_equal(s["2013/01/01 10:00"], s[3600:3660])
            tm.assert_series_equal(s["2013/01/01 9H"], s[:3600])
            for d in ["2013/01/01", "2013/01", "2013"]:
                tm.assert_series_equal(s[d], s)

    def test_getitem_day(self):
        # GH#6716
        # Confirm DatetimeIndex and PeriodIndex works identically
        didx = pd.date_range(start="2013/01/01", freq="D", periods=400)
        pidx = period_range(start="2013/01/01", freq="D", periods=400)

        for idx in [didx, pidx]:
            # getitem against index should raise ValueError
            values = [
                "2014",
                "2013/02",
                "2013/01/02",
                "2013/02/01 9H",
                "2013/02/01 09:00",
            ]
            for v in values:

                # GH7116
                # these show deprecations as we are trying
                # to slice with non-integer indexers
                # with pytest.raises(IndexError):
                #    idx[v]
                continue

            s = Series(np.random.rand(len(idx)), index=idx)
            tm.assert_series_equal(s["2013/01"], s[0:31])
            tm.assert_series_equal(s["2013/02"], s[31:59])
            tm.assert_series_equal(s["2014"], s[365:])

            invalid = ["2013/02/01 9H", "2013/02/01 09:00"]
            for v in invalid:
                with pytest.raises(KeyError, match=v):
                    s[v]


class TestWhere:
    @pytest.mark.parametrize("klass", [list, tuple, np.array, Series])
    def test_where(self, klass):
        i = period_range("20130101", periods=5, freq="D")
        cond = [True] * len(i)
        expected = i
        result = i.where(klass(cond))
        tm.assert_index_equal(result, expected)

        cond = [False] + [True] * (len(i) - 1)
        expected = PeriodIndex([pd.NaT] + i[1:].tolist(), freq="D")
        result = i.where(klass(cond))
        tm.assert_index_equal(result, expected)

    def test_where_other(self):
        i = period_range("20130101", periods=5, freq="D")
        for arr in [np.nan, pd.NaT]:
            result = i.where(notna(i), other=np.nan)
            expected = i
            tm.assert_index_equal(result, expected)

        i2 = i.copy()
        i2 = pd.PeriodIndex([pd.NaT, pd.NaT] + i[2:].tolist(), freq="D")
        result = i.where(notna(i2), i2)
        tm.assert_index_equal(result, i2)

        i2 = i.copy()
        i2 = pd.PeriodIndex([pd.NaT, pd.NaT] + i[2:].tolist(), freq="D")
        result = i.where(notna(i2), i2.values)
        tm.assert_index_equal(result, i2)


class TestTake:
    def test_take(self):
        # GH#10295
        idx1 = pd.period_range("2011-01-01", "2011-01-31", freq="D", name="idx")

        for idx in [idx1]:
            result = idx.take([0])
            assert result == pd.Period("2011-01-01", freq="D")

            result = idx.take([5])
            assert result == pd.Period("2011-01-06", freq="D")

            result = idx.take([0, 1, 2])
            expected = pd.period_range("2011-01-01", "2011-01-03", freq="D", name="idx")
            tm.assert_index_equal(result, expected)
            assert result.freq == "D"
            assert result.freq == expected.freq

            result = idx.take([0, 2, 4])
            expected = pd.PeriodIndex(
                ["2011-01-01", "2011-01-03", "2011-01-05"], freq="D", name="idx"
            )
            tm.assert_index_equal(result, expected)
            assert result.freq == expected.freq
            assert result.freq == "D"

            result = idx.take([7, 4, 1])
            expected = pd.PeriodIndex(
                ["2011-01-08", "2011-01-05", "2011-01-02"], freq="D", name="idx"
            )
            tm.assert_index_equal(result, expected)
            assert result.freq == expected.freq
            assert result.freq == "D"

            result = idx.take([3, 2, 5])
            expected = PeriodIndex(
                ["2011-01-04", "2011-01-03", "2011-01-06"], freq="D", name="idx"
            )
            tm.assert_index_equal(result, expected)
            assert result.freq == expected.freq
            assert result.freq == "D"

            result = idx.take([-3, 2, 5])
            expected = PeriodIndex(
                ["2011-01-29", "2011-01-03", "2011-01-06"], freq="D", name="idx"
            )
            tm.assert_index_equal(result, expected)
            assert result.freq == expected.freq
            assert result.freq == "D"

    def test_take_misc(self):
        index = period_range(start="1/1/10", end="12/31/12", freq="D", name="idx")
        expected = PeriodIndex(
            [
                datetime(2010, 1, 6),
                datetime(2010, 1, 7),
                datetime(2010, 1, 9),
                datetime(2010, 1, 13),
            ],
            freq="D",
            name="idx",
        )

        taken1 = index.take([5, 6, 8, 12])
        taken2 = index[[5, 6, 8, 12]]

        for taken in [taken1, taken2]:
            tm.assert_index_equal(taken, expected)
            assert isinstance(taken, PeriodIndex)
            assert taken.freq == index.freq
            assert taken.name == expected.name

    def test_take_fill_value(self):
        # GH#12631
        idx = pd.PeriodIndex(
            ["2011-01-01", "2011-02-01", "2011-03-01"], name="xxx", freq="D"
        )
        result = idx.take(np.array([1, 0, -1]))
        expected = pd.PeriodIndex(
            ["2011-02-01", "2011-01-01", "2011-03-01"], name="xxx", freq="D"
        )
        tm.assert_index_equal(result, expected)

        # fill_value
        result = idx.take(np.array([1, 0, -1]), fill_value=True)
        expected = pd.PeriodIndex(
            ["2011-02-01", "2011-01-01", "NaT"], name="xxx", freq="D"
        )
        tm.assert_index_equal(result, expected)

        # allow_fill=False
        result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True)
        expected = pd.PeriodIndex(
            ["2011-02-01", "2011-01-01", "2011-03-01"], name="xxx", freq="D"
        )
        tm.assert_index_equal(result, expected)

        msg = (
            "When allow_fill=True and fill_value is not None, "
            "all indices must be >= -1"
        )
        with pytest.raises(ValueError, match=msg):
            idx.take(np.array([1, 0, -2]), fill_value=True)
        with pytest.raises(ValueError, match=msg):
            idx.take(np.array([1, 0, -5]), fill_value=True)

        msg = "index -5 is out of bounds for size 3"
        with pytest.raises(IndexError, match=msg):
            idx.take(np.array([1, -5]))


class TestIndexing:
    def test_get_loc_msg(self):
        idx = period_range("2000-1-1", freq="A", periods=10)
        bad_period = Period("2012", "A")
        with pytest.raises(KeyError, match=r"^Period\('2012', 'A-DEC'\)$"):
            idx.get_loc(bad_period)

        try:
            idx.get_loc(bad_period)
        except KeyError as inst:
            assert inst.args[0] == bad_period

    def test_get_loc_nat(self):
        didx = DatetimeIndex(["2011-01-01", "NaT", "2011-01-03"])
        pidx = PeriodIndex(["2011-01-01", "NaT", "2011-01-03"], freq="M")

        # check DatetimeIndex compat
        for idx in [didx, pidx]:
            assert idx.get_loc(pd.NaT) == 1
            assert idx.get_loc(None) == 1
            assert idx.get_loc(float("nan")) == 1
            assert idx.get_loc(np.nan) == 1

    def test_get_loc(self):
        # GH 17717
        p0 = pd.Period("2017-09-01")
        p1 = pd.Period("2017-09-02")
        p2 = pd.Period("2017-09-03")

        # get the location of p1/p2 from
        # monotonic increasing PeriodIndex with non-duplicate
        idx0 = pd.PeriodIndex([p0, p1, p2])
        expected_idx1_p1 = 1
        expected_idx1_p2 = 2

        assert idx0.get_loc(p1) == expected_idx1_p1
        assert idx0.get_loc(str(p1)) == expected_idx1_p1
        assert idx0.get_loc(p2) == expected_idx1_p2
        assert idx0.get_loc(str(p2)) == expected_idx1_p2

        msg = "Cannot interpret 'foo' as period"
        with pytest.raises(KeyError, match=msg):
            idx0.get_loc("foo")
        with pytest.raises(KeyError, match=r"^1\.1$"):
            idx0.get_loc(1.1)

        msg = (
            r"'PeriodIndex\(\['2017-09-01', '2017-09-02', '2017-09-03'\],"
            r" dtype='period\[D\]', freq='D'\)' is an invalid key"
        )
        with pytest.raises(TypeError, match=msg):
            idx0.get_loc(idx0)

        # get the location of p1/p2 from
        # monotonic increasing PeriodIndex with duplicate
        idx1 = pd.PeriodIndex([p1, p1, p2])
        expected_idx1_p1 = slice(0, 2)
        expected_idx1_p2 = 2

        assert idx1.get_loc(p1) == expected_idx1_p1
        assert idx1.get_loc(str(p1)) == expected_idx1_p1
        assert idx1.get_loc(p2) == expected_idx1_p2
        assert idx1.get_loc(str(p2)) == expected_idx1_p2

        msg = "Cannot interpret 'foo' as period"
        with pytest.raises(KeyError, match=msg):
            idx1.get_loc("foo")

        with pytest.raises(KeyError, match=r"^1\.1$"):
            idx1.get_loc(1.1)

        msg = (
            r"'PeriodIndex\(\['2017-09-02', '2017-09-02', '2017-09-03'\],"
            r" dtype='period\[D\]', freq='D'\)' is an invalid key"
        )
        with pytest.raises(TypeError, match=msg):
            idx1.get_loc(idx1)

        # get the location of p1/p2 from
        # non-monotonic increasing/decreasing PeriodIndex with duplicate
        idx2 = pd.PeriodIndex([p2, p1, p2])
        expected_idx2_p1 = 1
        expected_idx2_p2 = np.array([True, False, True])

        assert idx2.get_loc(p1) == expected_idx2_p1
        assert idx2.get_loc(str(p1)) == expected_idx2_p1
        tm.assert_numpy_array_equal(idx2.get_loc(p2), expected_idx2_p2)
        tm.assert_numpy_array_equal(idx2.get_loc(str(p2)), expected_idx2_p2)

    def test_is_monotonic_increasing(self):
        # GH 17717
        p0 = pd.Period("2017-09-01")
        p1 = pd.Period("2017-09-02")
        p2 = pd.Period("2017-09-03")

        idx_inc0 = pd.PeriodIndex([p0, p1, p2])
        idx_inc1 = pd.PeriodIndex([p0, p1, p1])
        idx_dec0 = pd.PeriodIndex([p2, p1, p0])
        idx_dec1 = pd.PeriodIndex([p2, p1, p1])
        idx = pd.PeriodIndex([p1, p2, p0])

        assert idx_inc0.is_monotonic_increasing is True
        assert idx_inc1.is_monotonic_increasing is True
        assert idx_dec0.is_monotonic_increasing is False
        assert idx_dec1.is_monotonic_increasing is False
        assert idx.is_monotonic_increasing is False

    def test_is_monotonic_decreasing(self):
        # GH 17717
        p0 = pd.Period("2017-09-01")
        p1 = pd.Period("2017-09-02")
        p2 = pd.Period("2017-09-03")

        idx_inc0 = pd.PeriodIndex([p0, p1, p2])
        idx_inc1 = pd.PeriodIndex([p0, p1, p1])
        idx_dec0 = pd.PeriodIndex([p2, p1, p0])
        idx_dec1 = pd.PeriodIndex([p2, p1, p1])
        idx = pd.PeriodIndex([p1, p2, p0])

        assert idx_inc0.is_monotonic_decreasing is False
        assert idx_inc1.is_monotonic_decreasing is False
        assert idx_dec0.is_monotonic_decreasing is True
        assert idx_dec1.is_monotonic_decreasing is True
        assert idx.is_monotonic_decreasing is False

    def test_contains(self):
        # GH 17717
        p0 = pd.Period("2017-09-01")
        p1 = pd.Period("2017-09-02")
        p2 = pd.Period("2017-09-03")
        p3 = pd.Period("2017-09-04")

        ps0 = [p0, p1, p2]
        idx0 = pd.PeriodIndex(ps0)

        for p in ps0:
            assert p in idx0
            assert str(p) in idx0

        assert "2017-09-01 00:00:01" in idx0

        assert "2017-09" in idx0

        assert p3 not in idx0

    def test_get_value(self):
        # GH 17717
        p0 = pd.Period("2017-09-01")
        p1 = pd.Period("2017-09-02")
        p2 = pd.Period("2017-09-03")

        idx0 = pd.PeriodIndex([p0, p1, p2])
        input0 = np.array([1, 2, 3])
        expected0 = 2

        result0 = idx0.get_value(input0, p1)
        assert result0 == expected0

        idx1 = pd.PeriodIndex([p1, p1, p2])
        input1 = np.array([1, 2, 3])
        expected1 = np.array([1, 2])

        result1 = idx1.get_value(input1, p1)
        tm.assert_numpy_array_equal(result1, expected1)

        idx2 = pd.PeriodIndex([p1, p2, p1])
        input2 = np.array([1, 2, 3])
        expected2 = np.array([1, 3])

        result2 = idx2.get_value(input2, p1)
        tm.assert_numpy_array_equal(result2, expected2)

    def test_get_indexer(self):
        # GH 17717
        p1 = pd.Period("2017-09-01")
        p2 = pd.Period("2017-09-04")
        p3 = pd.Period("2017-09-07")

        tp0 = pd.Period("2017-08-31")
        tp1 = pd.Period("2017-09-02")
        tp2 = pd.Period("2017-09-05")
        tp3 = pd.Period("2017-09-09")

        idx = pd.PeriodIndex([p1, p2, p3])

        tm.assert_numpy_array_equal(
            idx.get_indexer(idx), np.array([0, 1, 2], dtype=np.intp)
        )

        target = pd.PeriodIndex([tp0, tp1, tp2, tp3])
        tm.assert_numpy_array_equal(
            idx.get_indexer(target, "pad"), np.array([-1, 0, 1, 2], dtype=np.intp)
        )
        tm.assert_numpy_array_equal(
            idx.get_indexer(target, "backfill"), np.array([0, 1, 2, -1], dtype=np.intp)
        )
        tm.assert_numpy_array_equal(
            idx.get_indexer(target, "nearest"), np.array([0, 0, 1, 2], dtype=np.intp)
        )

        res = idx.get_indexer(target, "nearest", tolerance=pd.Timedelta("1 day"))
        tm.assert_numpy_array_equal(res, np.array([0, 0, 1, -1], dtype=np.intp))

    def test_get_indexer_non_unique(self):
        # GH 17717
        p1 = pd.Period("2017-09-02")
        p2 = pd.Period("2017-09-03")
        p3 = pd.Period("2017-09-04")
        p4 = pd.Period("2017-09-05")

        idx1 = pd.PeriodIndex([p1, p2, p1])
        idx2 = pd.PeriodIndex([p2, p1, p3, p4])

        result = idx1.get_indexer_non_unique(idx2)
        expected_indexer = np.array([1, 0, 2, -1, -1], dtype=np.intp)
        expected_missing = np.array([2, 3], dtype=np.int64)

        tm.assert_numpy_array_equal(result[0], expected_indexer)
        tm.assert_numpy_array_equal(result[1], expected_missing)

    # TODO: This method came from test_period; de-dup with version above
    def test_get_loc2(self):
        idx = pd.period_range("2000-01-01", periods=3)

        for method in [None, "pad", "backfill", "nearest"]:
            assert idx.get_loc(idx[1], method) == 1
            assert idx.get_loc(idx[1].asfreq("H", how="start"), method) == 1
            assert idx.get_loc(idx[1].to_timestamp(), method) == 1
            assert idx.get_loc(idx[1].to_timestamp().to_pydatetime(), method) == 1
            assert idx.get_loc(str(idx[1]), method) == 1

        idx = pd.period_range("2000-01-01", periods=5)[::2]
        assert idx.get_loc("2000-01-02T12", method="nearest", tolerance="1 day") == 1
        assert (
            idx.get_loc("2000-01-02T12", method="nearest", tolerance=pd.Timedelta("1D"))
            == 1
        )
        assert (
            idx.get_loc(
                "2000-01-02T12", method="nearest", tolerance=np.timedelta64(1, "D")
            )
            == 1
        )
        assert (
            idx.get_loc("2000-01-02T12", method="nearest", tolerance=timedelta(1)) == 1
        )

        msg = "unit abbreviation w/o a number"
        with pytest.raises(ValueError, match=msg):
            idx.get_loc("2000-01-10", method="nearest", tolerance="foo")

        msg = "Input has different freq=None from PeriodArray\\(freq=D\\)"
        with pytest.raises(ValueError, match=msg):
            idx.get_loc("2000-01-10", method="nearest", tolerance="1 hour")
        with pytest.raises(KeyError, match=r"^Period\('2000-01-10', 'D'\)$"):
            idx.get_loc("2000-01-10", method="nearest", tolerance="1 day")
        with pytest.raises(
            ValueError, match="list-like tolerance size must match target index size"
        ):
            idx.get_loc(
                "2000-01-10",
                method="nearest",
                tolerance=[
                    pd.Timedelta("1 day").to_timedelta64(),
                    pd.Timedelta("1 day").to_timedelta64(),
                ],
            )

    # TODO: This method came from test_period; de-dup with version above
    def test_get_indexer2(self):
        idx = pd.period_range("2000-01-01", periods=3).asfreq("H", how="start")
        tm.assert_numpy_array_equal(
            idx.get_indexer(idx), np.array([0, 1, 2], dtype=np.intp)
        )

        target = pd.PeriodIndex(
            ["1999-12-31T23", "2000-01-01T12", "2000-01-02T01"], freq="H"
        )
        tm.assert_numpy_array_equal(
            idx.get_indexer(target, "pad"), np.array([-1, 0, 1], dtype=np.intp)
        )
        tm.assert_numpy_array_equal(
            idx.get_indexer(target, "backfill"), np.array([0, 1, 2], dtype=np.intp)
        )
        tm.assert_numpy_array_equal(
            idx.get_indexer(target, "nearest"), np.array([0, 1, 1], dtype=np.intp)
        )
        tm.assert_numpy_array_equal(
            idx.get_indexer(target, "nearest", tolerance="1 hour"),
            np.array([0, -1, 1], dtype=np.intp),
        )

        msg = "Input has different freq=None from PeriodArray\\(freq=H\\)"
        with pytest.raises(ValueError, match=msg):
            idx.get_indexer(target, "nearest", tolerance="1 minute")

        tm.assert_numpy_array_equal(
            idx.get_indexer(target, "nearest", tolerance="1 day"),
            np.array([0, 1, 1], dtype=np.intp),
        )
        tol_raw = [
            pd.Timedelta("1 hour"),
            pd.Timedelta("1 hour"),
            np.timedelta64(1, "D"),
        ]
        tm.assert_numpy_array_equal(
            idx.get_indexer(
                target, "nearest", tolerance=[np.timedelta64(x) for x in tol_raw]
            ),
            np.array([0, -1, 1], dtype=np.intp),
        )
        tol_bad = [
            pd.Timedelta("2 hour").to_timedelta64(),
            pd.Timedelta("1 hour").to_timedelta64(),
            np.timedelta64(1, "M"),
        ]
        with pytest.raises(
            libperiod.IncompatibleFrequency, match="Input has different freq=None from"
        ):
            idx.get_indexer(target, "nearest", tolerance=tol_bad)

    def test_indexing(self):
        # GH 4390, iat incorrectly indexing
        index = period_range("1/1/2001", periods=10)
        s = Series(np.random.randn(10), index=index)
        expected = s[index[0]]
        result = s.iat[0]
        assert expected == result

    def test_period_index_indexer(self):
        # GH4125
        idx = pd.period_range("2002-01", "2003-12", freq="M")
        df = pd.DataFrame(pd.np.random.randn(24, 10), index=idx)
        tm.assert_frame_equal(df, df.loc[idx])
        tm.assert_frame_equal(df, df.loc[list(idx)])
        tm.assert_frame_equal(df, df.loc[list(idx)])
        tm.assert_frame_equal(df.iloc[0:5], df.loc[idx[0:5]])
        tm.assert_frame_equal(df, df.loc[list(idx)])