import warnings
import numpy as np
import pytest
import pandas as pd
from pandas import DataFrame, MultiIndex, Series
import pandas.util.testing as tm
@pytest.mark.slow
@pytest.mark.filterwarnings("ignore::pandas.errors.PerformanceWarning")
def test_multiindex_get_loc(): # GH7724, GH2646
with warnings.catch_warnings(record=True):
# test indexing into a multi-index before & past the lexsort depth
from numpy.random import randint, choice, randn
cols = ["jim", "joe", "jolie", "joline", "jolia"]
def validate(mi, df, key):
mask = np.ones(len(df)).astype("bool")
# test for all partials of this key
for i, k in enumerate(key):
mask &= df.iloc[:, i] == k
if not mask.any():
assert key[: i + 1] not in mi.index
continue
assert key[: i + 1] in mi.index
right = df[mask].copy()
if i + 1 != len(key): # partial key
right.drop(cols[: i + 1], axis=1, inplace=True)
right.set_index(cols[i + 1 : -1], inplace=True)
tm.assert_frame_equal(mi.loc[key[: i + 1]], right)
else: # full key
right.set_index(cols[:-1], inplace=True)
if len(right) == 1: # single hit
right = Series(
right["jolia"].values, name=right.index[0], index=["jolia"]
)
tm.assert_series_equal(mi.loc[key[: i + 1]], right)
else: # multi hit
tm.assert_frame_equal(mi.loc[key[: i + 1]], right)
def loop(mi, df, keys):
for key in keys:
validate(mi, df, key)
n, m = 1000, 50
vals = [
randint(0, 10, n),
choice(list("abcdefghij"), n),
choice(pd.date_range("20141009", periods=10).tolist(), n),
choice(list("ZYXWVUTSRQ"), n),
randn(n),
]
vals = list(map(tuple, zip(*vals)))
# bunch of keys for testing
keys = [
randint(0, 11, m),
choice(list("abcdefghijk"), m),
choice(pd.date_range("20141009", periods=11).tolist(), m),
choice(list("ZYXWVUTSRQP"), m),
]
keys = list(map(tuple, zip(*keys)))
keys += list(map(lambda t: t[:-1], vals[:: n // m]))
# covers both unique index and non-unique index
df = DataFrame(vals, columns=cols)
a, b = pd.concat([df, df]), df.drop_duplicates(subset=cols[:-1])
for frame in a, b:
for i in range(5): # lexsort depth
df = frame.copy() if i == 0 else frame.sort_values(by=cols[:i])
mi = df.set_index(cols[:-1])
assert not mi.index.lexsort_depth < i
loop(mi, df, keys)
@pytest.mark.slow
def test_large_mi_dataframe_indexing():
# GH10645
result = MultiIndex.from_arrays([range(10 ** 6), range(10 ** 6)])
assert not (10 ** 6, 0) in result