from itertools import product
import numpy as np
import pytest
from pandas import DataFrame, Index, MultiIndex, Series, concat, date_range
import pandas.core.common as com
from pandas.util import testing as tm
@pytest.fixture
def four_level_index_dataframe():
arr = np.array(
[
[-0.5109, -2.3358, -0.4645, 0.05076, 0.364],
[0.4473, 1.4152, 0.2834, 1.00661, 0.1744],
[-0.6662, -0.5243, -0.358, 0.89145, 2.5838],
]
)
index = MultiIndex(
levels=[["a", "x"], ["b", "q"], [10.0032, 20.0, 30.0], [3, 4, 5]],
codes=[[0, 0, 1], [0, 1, 1], [0, 1, 2], [2, 1, 0]],
names=["one", "two", "three", "four"],
)
return DataFrame(arr, index=index, columns=list("ABCDE"))
@pytest.mark.parametrize(
"key, level, exp_arr, exp_index",
[
("a", "lvl0", lambda x: x[:, 0:2], Index(["bar", "foo"], name="lvl1")),
("foo", "lvl1", lambda x: x[:, 1:2], Index(["a"], name="lvl0")),
],
)
def test_xs_named_levels_axis_eq_1(key, level, exp_arr, exp_index):
# see gh-2903
arr = np.random.randn(4, 4)
index = MultiIndex(
levels=[["a", "b"], ["bar", "foo", "hello", "world"]],
codes=[[0, 0, 1, 1], [0, 1, 2, 3]],
names=["lvl0", "lvl1"],
)
df = DataFrame(arr, columns=index)
result = df.xs(key, level=level, axis=1)
expected = DataFrame(exp_arr(arr), columns=exp_index)
tm.assert_frame_equal(result, expected)
def test_xs_values(multiindex_dataframe_random_data):
df = multiindex_dataframe_random_data
result = df.xs(("bar", "two")).values
expected = df.values[4]
tm.assert_almost_equal(result, expected)
def test_xs_loc_equality(multiindex_dataframe_random_data):
df = multiindex_dataframe_random_data
result = df.xs(("bar", "two"))
expected = df.loc[("bar", "two")]
tm.assert_series_equal(result, expected)
def test_xs_missing_values_in_index():
# see gh-6574
# missing values in returned index should be preserved
acc = [
("a", "abcde", 1),
("b", "bbcde", 2),
("y", "yzcde", 25),
("z", "xbcde", 24),
("z", None, 26),
("z", "zbcde", 25),
("z", "ybcde", 26),
]
df = DataFrame(acc, columns=["a1", "a2", "cnt"]).set_index(["a1", "a2"])
expected = DataFrame(
{"cnt": [24, 26, 25, 26]},
index=Index(["xbcde", np.nan, "zbcde", "ybcde"], name="a2"),
)
result = df.xs("z", level="a1")
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("key, level", [("one", "second"), (["one"], ["second"])])
def test_xs_with_duplicates(key, level, multiindex_dataframe_random_data):
# see gh-13719
frame = multiindex_dataframe_random_data
df = concat([frame] * 2)
assert df.index.is_unique is False
expected = concat([frame.xs("one", level="second")] * 2)
result = df.xs(key, level=level)
tm.assert_frame_equal(result, expected)
def test_xs_level(multiindex_dataframe_random_data):
df = multiindex_dataframe_random_data
result = df.xs("two", level="second")
expected = df[df.index.get_level_values(1) == "two"]
expected.index = Index(["foo", "bar", "baz", "qux"], name="first")
tm.assert_frame_equal(result, expected)
def test_xs_level_eq_2():
arr = np.random.randn(3, 5)
index = MultiIndex(
levels=[["a", "p", "x"], ["b", "q", "y"], ["c", "r", "z"]],
codes=[[2, 0, 1], [2, 0, 1], [2, 0, 1]],
)
df = DataFrame(arr, index=index)
expected = DataFrame(arr[1:2], index=[["a"], ["b"]])
result = df.xs("c", level=2)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"indexer",
[
lambda df: df.xs(("a", 4), level=["one", "four"]),
lambda df: df.xs("a").xs(4, level="four"),
],
)
def test_xs_level_multiple(indexer, four_level_index_dataframe):
df = four_level_index_dataframe
expected_values = [[0.4473, 1.4152, 0.2834, 1.00661, 0.1744]]
expected_index = MultiIndex(
levels=[["q"], [20.0]], codes=[[0], [0]], names=["two", "three"]
)
expected = DataFrame(expected_values, index=expected_index, columns=list("ABCDE"))
result = indexer(df)
tm.assert_frame_equal(result, expected)
def test_xs_setting_with_copy_error(multiindex_dataframe_random_data):
# this is a copy in 0.14
df = multiindex_dataframe_random_data
result = df.xs("two", level="second")
# setting this will give a SettingWithCopyError
# as we are trying to write a view
msg = "A value is trying to be set on a copy of a slice from a DataFrame"
with pytest.raises(com.SettingWithCopyError, match=msg):
result[:] = 10
def test_xs_setting_with_copy_error_multiple(four_level_index_dataframe):
# this is a copy in 0.14
df = four_level_index_dataframe
result = df.xs(("a", 4), level=["one", "four"])
# setting this will give a SettingWithCopyError
# as we are trying to write a view
msg = "A value is trying to be set on a copy of a slice from a DataFrame"
with pytest.raises(com.SettingWithCopyError, match=msg):
result[:] = 10
def test_xs_integer_key():
# see gh-2107
dates = range(20111201, 20111205)
ids = "abcde"
index = MultiIndex.from_tuples(
[x for x in product(dates, ids)], names=["date", "secid"]
)
df = DataFrame(np.random.randn(len(index), 3), index, ["X", "Y", "Z"])
result = df.xs(20111201, level="date")
expected = df.loc[20111201, :]
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"indexer", [lambda df: df.xs("a", level=0), lambda df: df.xs("a")]
)
def test_xs_level0(indexer, four_level_index_dataframe):
df = four_level_index_dataframe
expected_values = [
[-0.5109, -2.3358, -0.4645, 0.05076, 0.364],
[0.4473, 1.4152, 0.2834, 1.00661, 0.1744],
]
expected_index = MultiIndex(
levels=[["b", "q"], [10.0032, 20.0], [4, 5]],
codes=[[0, 1], [0, 1], [1, 0]],
names=["two", "three", "four"],
)
expected = DataFrame(expected_values, index=expected_index, columns=list("ABCDE"))
result = indexer(df)
tm.assert_frame_equal(result, expected)
def test_xs_level_series(multiindex_dataframe_random_data):
# this test is not explicitly testing .xs functionality
# TODO: move to another module or refactor
df = multiindex_dataframe_random_data
s = df["A"]
result = s[:, "two"]
expected = df.xs("two", level=1)["A"]
tm.assert_series_equal(result, expected)
def test_xs_level_series_ymd(multiindex_year_month_day_dataframe_random_data):
# this test is not explicitly testing .xs functionality
# TODO: move to another module or refactor
df = multiindex_year_month_day_dataframe_random_data
s = df["A"]
result = s[2000, 5]
expected = df.loc[2000, 5]["A"]
tm.assert_series_equal(result, expected)
def test_xs_level_series_slice_not_implemented(
multiindex_year_month_day_dataframe_random_data
):
# this test is not explicitly testing .xs functionality
# TODO: move to another module or refactor
# not implementing this for now
df = multiindex_year_month_day_dataframe_random_data
s = df["A"]
msg = r"\(2000, slice\(3, 4, None\)\)"
with pytest.raises(TypeError, match=msg):
s[2000, 3:4]
def test_series_getitem_multiindex_xs():
# GH6258
dt = list(date_range("20130903", periods=3))
idx = MultiIndex.from_product([list("AB"), dt])
s = Series([1, 3, 4, 1, 3, 4], index=idx)
expected = Series([1, 1], index=list("AB"))
result = s.xs("20130903", level=1)
tm.assert_series_equal(result, expected)
def test_series_getitem_multiindex_xs_by_label():
# GH5684
idx = MultiIndex.from_tuples(
[("a", "one"), ("a", "two"), ("b", "one"), ("b", "two")]
)
s = Series([1, 2, 3, 4], index=idx)
s.index.set_names(["L1", "L2"], inplace=True)
expected = Series([1, 3], index=["a", "b"])
expected.index.set_names(["L1"], inplace=True)
result = s.xs("one", level="L2")
tm.assert_series_equal(result, expected)