from collections import OrderedDict
import contextlib
from datetime import datetime, time
from functools import partial
import os
import warnings
import numpy as np
import pytest
import pandas.util._test_decorators as td
import pandas as pd
from pandas import DataFrame, Index, MultiIndex, Series
import pandas.util.testing as tm
from pandas.io.common import URLError
@contextlib.contextmanager
def ignore_xlrd_time_clock_warning():
"""
Context manager to ignore warnings raised by the xlrd library,
regarding the deprecation of `time.clock` in Python 3.7.
"""
with warnings.catch_warnings():
warnings.filterwarnings(
action="ignore",
message="time.clock has been deprecated",
category=DeprecationWarning,
)
yield
@pytest.fixture(
params=[
# Add any engines to test here
# When defusedxml is installed it triggers deprecation warnings for
# xlrd and openpyxl, so catch those here
pytest.param(
"xlrd",
marks=[
td.skip_if_no("xlrd"),
pytest.mark.filterwarnings("ignore:.*(tree\\.iter|html argument)"),
],
),
pytest.param(
"openpyxl",
marks=[
td.skip_if_no("openpyxl"),
pytest.mark.filterwarnings("ignore:.*html argument"),
],
),
pytest.param(
None,
marks=[
td.skip_if_no("xlrd"),
pytest.mark.filterwarnings("ignore:.*(tree\\.iter|html argument)"),
],
),
pytest.param("odf", marks=td.skip_if_no("odf")),
]
)
def engine(request):
"""
A fixture for Excel reader engines.
"""
return request.param
class TestReaders:
@pytest.fixture(autouse=True)
def cd_and_set_engine(self, engine, datapath, monkeypatch, read_ext):
"""
Change directory and set engine for read_excel calls.
"""
if engine == "openpyxl" and read_ext == ".xls":
pytest.skip()
if engine == "odf" and read_ext != ".ods":
pytest.skip()
if read_ext == ".ods" and engine != "odf":
pytest.skip()
func = partial(pd.read_excel, engine=engine)
monkeypatch.chdir(datapath("io", "data"))
monkeypatch.setattr(pd, "read_excel", func)
def test_usecols_int(self, read_ext, df_ref):
df_ref = df_ref.reindex(columns=["A", "B", "C"])
# usecols as int
with tm.assert_produces_warning(
FutureWarning, check_stacklevel=False, raise_on_extra_warnings=False
):
with ignore_xlrd_time_clock_warning():
df1 = pd.read_excel(
"test1" + read_ext, "Sheet1", index_col=0, usecols=3
)
# usecols as int
with tm.assert_produces_warning(
FutureWarning, check_stacklevel=False, raise_on_extra_warnings=False
):
with ignore_xlrd_time_clock_warning():
df2 = pd.read_excel(
"test1" + read_ext, "Sheet2", skiprows=[1], index_col=0, usecols=3
)
# TODO add index to xls file)
tm.assert_frame_equal(df1, df_ref, check_names=False)
tm.assert_frame_equal(df2, df_ref, check_names=False)
def test_usecols_list(self, read_ext, df_ref):
df_ref = df_ref.reindex(columns=["B", "C"])
df1 = pd.read_excel(
"test1" + read_ext, "Sheet1", index_col=0, usecols=[0, 2, 3]
)
df2 = pd.read_excel(
"test1" + read_ext, "Sheet2", skiprows=[1], index_col=0, usecols=[0, 2, 3]
)
# TODO add index to xls file)
tm.assert_frame_equal(df1, df_ref, check_names=False)
tm.assert_frame_equal(df2, df_ref, check_names=False)
def test_usecols_str(self, read_ext, df_ref):
df1 = df_ref.reindex(columns=["A", "B", "C"])
df2 = pd.read_excel("test1" + read_ext, "Sheet1", index_col=0, usecols="A:D")
df3 = pd.read_excel(
"test1" + read_ext, "Sheet2", skiprows=[1], index_col=0, usecols="A:D"
)
# TODO add index to xls, read xls ignores index name ?
tm.assert_frame_equal(df2, df1, check_names=False)
tm.assert_frame_equal(df3, df1, check_names=False)
df1 = df_ref.reindex(columns=["B", "C"])
df2 = pd.read_excel("test1" + read_ext, "Sheet1", index_col=0, usecols="A,C,D")
df3 = pd.read_excel(
"test1" + read_ext, "Sheet2", skiprows=[1], index_col=0, usecols="A,C,D"
)
# TODO add index to xls file
tm.assert_frame_equal(df2, df1, check_names=False)
tm.assert_frame_equal(df3, df1, check_names=False)
df1 = df_ref.reindex(columns=["B", "C"])
df2 = pd.read_excel("test1" + read_ext, "Sheet1", index_col=0, usecols="A,C:D")
df3 = pd.read_excel(
"test1" + read_ext, "Sheet2", skiprows=[1], index_col=0, usecols="A,C:D"
)
tm.assert_frame_equal(df2, df1, check_names=False)
tm.assert_frame_equal(df3, df1, check_names=False)
@pytest.mark.parametrize(
"usecols", [[0, 1, 3], [0, 3, 1], [1, 0, 3], [1, 3, 0], [3, 0, 1], [3, 1, 0]]
)
def test_usecols_diff_positional_int_columns_order(self, read_ext, usecols, df_ref):
expected = df_ref[["A", "C"]]
result = pd.read_excel(
"test1" + read_ext, "Sheet1", index_col=0, usecols=usecols
)
tm.assert_frame_equal(result, expected, check_names=False)
@pytest.mark.parametrize("usecols", [["B", "D"], ["D", "B"]])
def test_usecols_diff_positional_str_columns_order(self, read_ext, usecols, df_ref):
expected = df_ref[["B", "D"]]
expected.index = range(len(expected))
result = pd.read_excel("test1" + read_ext, "Sheet1", usecols=usecols)
tm.assert_frame_equal(result, expected, check_names=False)
def test_read_excel_without_slicing(self, read_ext, df_ref):
expected = df_ref
result = pd.read_excel("test1" + read_ext, "Sheet1", index_col=0)
tm.assert_frame_equal(result, expected, check_names=False)
def test_usecols_excel_range_str(self, read_ext, df_ref):
expected = df_ref[["C", "D"]]
result = pd.read_excel(
"test1" + read_ext, "Sheet1", index_col=0, usecols="A,D:E"
)
tm.assert_frame_equal(result, expected, check_names=False)
def test_usecols_excel_range_str_invalid(self, read_ext):
msg = "Invalid column name: E1"
with pytest.raises(ValueError, match=msg):
pd.read_excel("test1" + read_ext, "Sheet1", usecols="D:E1")
def test_index_col_label_error(self, read_ext):
msg = "list indices must be integers.*, not str"
with pytest.raises(TypeError, match=msg):
pd.read_excel(
"test1" + read_ext, "Sheet1", index_col=["A"], usecols=["A", "C"]
)
def test_index_col_empty(self, read_ext):
# see gh-9208
result = pd.read_excel("test1" + read_ext, "Sheet3", index_col=["A", "B", "C"])
expected = DataFrame(
columns=["D", "E", "F"],
index=MultiIndex(levels=[[]] * 3, codes=[[]] * 3, names=["A", "B", "C"]),
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("index_col", [None, 2])
def test_index_col_with_unnamed(self, read_ext, index_col):
# see gh-18792
result = pd.read_excel("test1" + read_ext, "Sheet4", index_col=index_col)
expected = DataFrame(
[["i1", "a", "x"], ["i2", "b", "y"]], columns=["Unnamed: 0", "col1", "col2"]
)
if index_col:
expected = expected.set_index(expected.columns[index_col])
tm.assert_frame_equal(result, expected)
def test_usecols_pass_non_existent_column(self, read_ext):
msg = (
"Usecols do not match columns, "
"columns expected but not found: " + r"\['E'\]"
)
with pytest.raises(ValueError, match=msg):
pd.read_excel("test1" + read_ext, usecols=["E"])
def test_usecols_wrong_type(self, read_ext):
msg = (
"'usecols' must either be list-like of "
"all strings, all unicode, all integers or a callable."
)
with pytest.raises(ValueError, match=msg):
pd.read_excel("test1" + read_ext, usecols=["E1", 0])
def test_excel_stop_iterator(self, read_ext):
parsed = pd.read_excel("test2" + read_ext, "Sheet1")
expected = DataFrame([["aaaa", "bbbbb"]], columns=["Test", "Test1"])
tm.assert_frame_equal(parsed, expected)
def test_excel_cell_error_na(self, read_ext):
parsed = pd.read_excel("test3" + read_ext, "Sheet1")
expected = DataFrame([[np.nan]], columns=["Test"])
tm.assert_frame_equal(parsed, expected)
def test_excel_table(self, read_ext, df_ref):
df1 = pd.read_excel("test1" + read_ext, "Sheet1", index_col=0)
df2 = pd.read_excel("test1" + read_ext, "Sheet2", skiprows=[1], index_col=0)
# TODO add index to file
tm.assert_frame_equal(df1, df_ref, check_names=False)
tm.assert_frame_equal(df2, df_ref, check_names=False)
df3 = pd.read_excel("test1" + read_ext, "Sheet1", index_col=0, skipfooter=1)
tm.assert_frame_equal(df3, df1.iloc[:-1])
def test_reader_special_dtypes(self, read_ext):
expected = DataFrame.from_dict(
OrderedDict(
[
("IntCol", [1, 2, -3, 4, 0]),
("FloatCol", [1.25, 2.25, 1.83, 1.92, 0.0000000005]),
("BoolCol", [True, False, True, True, False]),
("StrCol", [1, 2, 3, 4, 5]),
# GH5394 - this is why convert_float isn't vectorized
("Str2Col", ["a", 3, "c", "d", "e"]),
(
"DateCol",
[
datetime(2013, 10, 30),
datetime(2013, 10, 31),
datetime(1905, 1, 1),
datetime(2013, 12, 14),
datetime(2015, 3, 14),
],
),
]
)
)
basename = "test_types"
# should read in correctly and infer types
actual = pd.read_excel(basename + read_ext, "Sheet1")
tm.assert_frame_equal(actual, expected)
# if not coercing number, then int comes in as float
float_expected = expected.copy()
float_expected["IntCol"] = float_expected["IntCol"].astype(float)
float_expected.loc[float_expected.index[1], "Str2Col"] = 3.0
actual = pd.read_excel(basename + read_ext, "Sheet1", convert_float=False)
tm.assert_frame_equal(actual, float_expected)
# check setting Index (assuming xls and xlsx are the same here)
for icol, name in enumerate(expected.columns):
actual = pd.read_excel(basename + read_ext, "Sheet1", index_col=icol)
exp = expected.set_index(name)
tm.assert_frame_equal(actual, exp)
# convert_float and converters should be different but both accepted
expected["StrCol"] = expected["StrCol"].apply(str)
actual = pd.read_excel(
basename + read_ext, "Sheet1", converters={"StrCol": str}
)
tm.assert_frame_equal(actual, expected)
no_convert_float = float_expected.copy()
no_convert_float["StrCol"] = no_convert_float["StrCol"].apply(str)
actual = pd.read_excel(
basename + read_ext,
"Sheet1",
convert_float=False,
converters={"StrCol": str},
)
tm.assert_frame_equal(actual, no_convert_float)
# GH8212 - support for converters and missing values
def test_reader_converters(self, read_ext):
basename = "test_converters"
expected = DataFrame.from_dict(
OrderedDict(
[
("IntCol", [1, 2, -3, -1000, 0]),
("FloatCol", [12.5, np.nan, 18.3, 19.2, 0.000000005]),
("BoolCol", ["Found", "Found", "Found", "Not found", "Found"]),
("StrCol", ["1", np.nan, "3", "4", "5"]),
]
)
)
converters = {
"IntCol": lambda x: int(x) if x != "" else -1000,
"FloatCol": lambda x: 10 * x if x else np.nan,
2: lambda x: "Found" if x != "" else "Not found",
3: lambda x: str(x) if x else "",
}
# should read in correctly and set types of single cells (not array
# dtypes)
actual = pd.read_excel(basename + read_ext, "Sheet1", converters=converters)
tm.assert_frame_equal(actual, expected)
def test_reader_dtype(self, read_ext):
# GH 8212
basename = "testdtype"
actual = pd.read_excel(basename + read_ext)
expected = DataFrame(
{
"a": [1, 2, 3, 4],
"b": [2.5, 3.5, 4.5, 5.5],
"c": [1, 2, 3, 4],
"d": [1.0, 2.0, np.nan, 4.0],
}
).reindex(columns=["a", "b", "c", "d"])
tm.assert_frame_equal(actual, expected)
actual = pd.read_excel(
basename + read_ext, dtype={"a": "float64", "b": "float32", "c": str}
)
expected["a"] = expected["a"].astype("float64")
expected["b"] = expected["b"].astype("float32")
expected["c"] = ["001", "002", "003", "004"]
tm.assert_frame_equal(actual, expected)
with pytest.raises(ValueError):
pd.read_excel(basename + read_ext, dtype={"d": "int64"})
@pytest.mark.parametrize(
"dtype,expected",
[
(
None,
DataFrame(
{
"a": [1, 2, 3, 4],
"b": [2.5, 3.5, 4.5, 5.5],
"c": [1, 2, 3, 4],
"d": [1.0, 2.0, np.nan, 4.0],
}
),
),
(
{"a": "float64", "b": "float32", "c": str, "d": str},
DataFrame(
{
"a": Series([1, 2, 3, 4], dtype="float64"),
"b": Series([2.5, 3.5, 4.5, 5.5], dtype="float32"),
"c": ["001", "002", "003", "004"],
"d": ["1", "2", np.nan, "4"],
}
),
),
],
)
def test_reader_dtype_str(self, read_ext, dtype, expected):
# see gh-20377
basename = "testdtype"
actual = pd.read_excel(basename + read_ext, dtype=dtype)
tm.assert_frame_equal(actual, expected)
def test_reading_all_sheets(self, read_ext):
# Test reading all sheetnames by setting sheetname to None,
# Ensure a dict is returned.
# See PR #9450
basename = "test_multisheet"
dfs = pd.read_excel(basename + read_ext, sheet_name=None)
# ensure this is not alphabetical to test order preservation
expected_keys = ["Charlie", "Alpha", "Beta"]
tm.assert_contains_all(expected_keys, dfs.keys())
# Issue 9930
# Ensure sheet order is preserved
assert expected_keys == list(dfs.keys())
def test_reading_multiple_specific_sheets(self, read_ext):
# Test reading specific sheetnames by specifying a mixed list
# of integers and strings, and confirm that duplicated sheet
# references (positions/names) are removed properly.
# Ensure a dict is returned
# See PR #9450
basename = "test_multisheet"
# Explicitly request duplicates. Only the set should be returned.
expected_keys = [2, "Charlie", "Charlie"]
dfs = pd.read_excel(basename + read_ext, sheet_name=expected_keys)
expected_keys = list(set(expected_keys))
tm.assert_contains_all(expected_keys, dfs.keys())
assert len(expected_keys) == len(dfs.keys())
def test_reading_all_sheets_with_blank(self, read_ext):
# Test reading all sheetnames by setting sheetname to None,
# In the case where some sheets are blank.
# Issue #11711
basename = "blank_with_header"
dfs = pd.read_excel(basename + read_ext, sheet_name=None)
expected_keys = ["Sheet1", "Sheet2", "Sheet3"]
tm.assert_contains_all(expected_keys, dfs.keys())
# GH6403
def test_read_excel_blank(self, read_ext):
actual = pd.read_excel("blank" + read_ext, "Sheet1")
tm.assert_frame_equal(actual, DataFrame())
def test_read_excel_blank_with_header(self, read_ext):
expected = DataFrame(columns=["col_1", "col_2"])
actual = pd.read_excel("blank_with_header" + read_ext, "Sheet1")
tm.assert_frame_equal(actual, expected)
def test_date_conversion_overflow(self, read_ext):
# GH 10001 : pandas.ExcelFile ignore parse_dates=False
expected = pd.DataFrame(
[
[pd.Timestamp("2016-03-12"), "Marc Johnson"],
[pd.Timestamp("2016-03-16"), "Jack Black"],
[1e20, "Timothy Brown"],
],
columns=["DateColWithBigInt", "StringCol"],
)
if pd.read_excel.keywords["engine"] == "openpyxl":
pytest.xfail("Maybe not supported by openpyxl")
result = pd.read_excel("testdateoverflow" + read_ext)
tm.assert_frame_equal(result, expected)
def test_sheet_name(self, read_ext, df_ref):
filename = "test1"
sheet_name = "Sheet1"
df1 = pd.read_excel(
filename + read_ext, sheet_name=sheet_name, index_col=0
) # doc
with ignore_xlrd_time_clock_warning():
df2 = pd.read_excel(filename + read_ext, index_col=0, sheet_name=sheet_name)
tm.assert_frame_equal(df1, df_ref, check_names=False)
tm.assert_frame_equal(df2, df_ref, check_names=False)
def test_excel_read_buffer(self, read_ext):
pth = "test1" + read_ext
expected = pd.read_excel(pth, "Sheet1", index_col=0)
with open(pth, "rb") as f:
actual = pd.read_excel(f, "Sheet1", index_col=0)
tm.assert_frame_equal(expected, actual)
def test_bad_engine_raises(self, read_ext):
bad_engine = "foo"
with pytest.raises(ValueError, match="Unknown engine: foo"):
pd.read_excel("", engine=bad_engine)
@tm.network
def test_read_from_http_url(self, read_ext):
if read_ext == ".ods": # TODO: remove once on master
pytest.skip()
url = (
"https://raw.github.com/pandas-dev/pandas/master/"
"pandas/tests/io/data/test1" + read_ext
)
url_table = pd.read_excel(url)
local_table = pd.read_excel("test1" + read_ext)
tm.assert_frame_equal(url_table, local_table)
@td.skip_if_not_us_locale
def test_read_from_s3_url(self, read_ext, s3_resource):
# Bucket "pandas-test" created in tests/io/conftest.py
with open("test1" + read_ext, "rb") as f:
s3_resource.Bucket("pandas-test").put_object(Key="test1" + read_ext, Body=f)
url = "s3://pandas-test/test1" + read_ext
url_table = pd.read_excel(url)
local_table = pd.read_excel("test1" + read_ext)
tm.assert_frame_equal(url_table, local_table)
@pytest.mark.slow
# ignore warning from old xlrd
@pytest.mark.filterwarnings("ignore:This metho:PendingDeprecationWarning")
def test_read_from_file_url(self, read_ext, datapath):
# FILE
localtable = os.path.join(datapath("io", "data"), "test1" + read_ext)
local_table = pd.read_excel(localtable)
try:
url_table = pd.read_excel("file://localhost/" + localtable)
except URLError:
# fails on some systems
import platform
pytest.skip("failing on {}".format(" ".join(platform.uname()).strip()))
tm.assert_frame_equal(url_table, local_table)
def test_read_from_pathlib_path(self, read_ext):
# GH12655
from pathlib import Path
str_path = "test1" + read_ext
expected = pd.read_excel(str_path, "Sheet1", index_col=0)
path_obj = Path("test1" + read_ext)
actual = pd.read_excel(path_obj, "Sheet1", index_col=0)
tm.assert_frame_equal(expected, actual)
@td.skip_if_no("py.path")
def test_read_from_py_localpath(self, read_ext):
# GH12655
from py.path import local as LocalPath
str_path = os.path.join("test1" + read_ext)
expected = pd.read_excel(str_path, "Sheet1", index_col=0)
path_obj = LocalPath().join("test1" + read_ext)
actual = pd.read_excel(path_obj, "Sheet1", index_col=0)
tm.assert_frame_equal(expected, actual)
def test_reader_seconds(self, read_ext):
# Test reading times with and without milliseconds. GH5945.
expected = DataFrame.from_dict(
{
"Time": [
time(1, 2, 3),
time(2, 45, 56, 100000),
time(4, 29, 49, 200000),
time(6, 13, 42, 300000),
time(7, 57, 35, 400000),
time(9, 41, 28, 500000),
time(11, 25, 21, 600000),
time(13, 9, 14, 700000),
time(14, 53, 7, 800000),
time(16, 37, 0, 900000),
time(18, 20, 54),
]
}
)
actual = pd.read_excel("times_1900" + read_ext, "Sheet1")
tm.assert_frame_equal(actual, expected)
actual = pd.read_excel("times_1904" + read_ext, "Sheet1")
tm.assert_frame_equal(actual, expected)
def test_read_excel_multiindex(self, read_ext):
# see gh-4679
mi = MultiIndex.from_product([["foo", "bar"], ["a", "b"]])
mi_file = "testmultiindex" + read_ext
# "mi_column" sheet
expected = DataFrame(
[
[1, 2.5, pd.Timestamp("2015-01-01"), True],
[2, 3.5, pd.Timestamp("2015-01-02"), False],
[3, 4.5, pd.Timestamp("2015-01-03"), False],
[4, 5.5, pd.Timestamp("2015-01-04"), True],
],
columns=mi,
)
actual = pd.read_excel(mi_file, "mi_column", header=[0, 1], index_col=0)
tm.assert_frame_equal(actual, expected)
# "mi_index" sheet
expected.index = mi
expected.columns = ["a", "b", "c", "d"]
actual = pd.read_excel(mi_file, "mi_index", index_col=[0, 1])
tm.assert_frame_equal(actual, expected, check_names=False)
# "both" sheet
expected.columns = mi
actual = pd.read_excel(mi_file, "both", index_col=[0, 1], header=[0, 1])
tm.assert_frame_equal(actual, expected, check_names=False)
# "mi_index_name" sheet
expected.columns = ["a", "b", "c", "d"]
expected.index = mi.set_names(["ilvl1", "ilvl2"])
actual = pd.read_excel(mi_file, "mi_index_name", index_col=[0, 1])
tm.assert_frame_equal(actual, expected)
# "mi_column_name" sheet
expected.index = list(range(4))
expected.columns = mi.set_names(["c1", "c2"])
actual = pd.read_excel(mi_file, "mi_column_name", header=[0, 1], index_col=0)
tm.assert_frame_equal(actual, expected)
# see gh-11317
# "name_with_int" sheet
expected.columns = mi.set_levels([1, 2], level=1).set_names(["c1", "c2"])
actual = pd.read_excel(mi_file, "name_with_int", index_col=0, header=[0, 1])
tm.assert_frame_equal(actual, expected)
# "both_name" sheet
expected.columns = mi.set_names(["c1", "c2"])
expected.index = mi.set_names(["ilvl1", "ilvl2"])
actual = pd.read_excel(mi_file, "both_name", index_col=[0, 1], header=[0, 1])
tm.assert_frame_equal(actual, expected)
# "both_skiprows" sheet
actual = pd.read_excel(
mi_file, "both_name_skiprows", index_col=[0, 1], header=[0, 1], skiprows=2
)
tm.assert_frame_equal(actual, expected)
def test_read_excel_multiindex_header_only(self, read_ext):
# see gh-11733.
#
# Don't try to parse a header name if there isn't one.
mi_file = "testmultiindex" + read_ext
result = pd.read_excel(mi_file, "index_col_none", header=[0, 1])
exp_columns = MultiIndex.from_product([("A", "B"), ("key", "val")])
expected = DataFrame([[1, 2, 3, 4]] * 2, columns=exp_columns)
tm.assert_frame_equal(result, expected)
def test_excel_old_index_format(self, read_ext):
# see gh-4679
filename = "test_index_name_pre17" + read_ext
# We detect headers to determine if index names exist, so
# that "index" name in the "names" version of the data will
# now be interpreted as rows that include null data.
data = np.array(
[
[None, None, None, None, None],
["R0C0", "R0C1", "R0C2", "R0C3", "R0C4"],
["R1C0", "R1C1", "R1C2", "R1C3", "R1C4"],
["R2C0", "R2C1", "R2C2", "R2C3", "R2C4"],
["R3C0", "R3C1", "R3C2", "R3C3", "R3C4"],
["R4C0", "R4C1", "R4C2", "R4C3", "R4C4"],
]
)
columns = ["C_l0_g0", "C_l0_g1", "C_l0_g2", "C_l0_g3", "C_l0_g4"]
mi = MultiIndex(
levels=[
["R0", "R_l0_g0", "R_l0_g1", "R_l0_g2", "R_l0_g3", "R_l0_g4"],
["R1", "R_l1_g0", "R_l1_g1", "R_l1_g2", "R_l1_g3", "R_l1_g4"],
],
codes=[[0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5]],
names=[None, None],
)
si = Index(
["R0", "R_l0_g0", "R_l0_g1", "R_l0_g2", "R_l0_g3", "R_l0_g4"], name=None
)
expected = pd.DataFrame(data, index=si, columns=columns)
actual = pd.read_excel(filename, "single_names", index_col=0)
tm.assert_frame_equal(actual, expected)
expected.index = mi
actual = pd.read_excel(filename, "multi_names", index_col=[0, 1])
tm.assert_frame_equal(actual, expected)
# The analogous versions of the "names" version data
# where there are explicitly no names for the indices.
data = np.array(
[
["R0C0", "R0C1", "R0C2", "R0C3", "R0C4"],
["R1C0", "R1C1", "R1C2", "R1C3", "R1C4"],
["R2C0", "R2C1", "R2C2", "R2C3", "R2C4"],
["R3C0", "R3C1", "R3C2", "R3C3", "R3C4"],
["R4C0", "R4C1", "R4C2", "R4C3", "R4C4"],
]
)
columns = ["C_l0_g0", "C_l0_g1", "C_l0_g2", "C_l0_g3", "C_l0_g4"]
mi = MultiIndex(
levels=[
["R_l0_g0", "R_l0_g1", "R_l0_g2", "R_l0_g3", "R_l0_g4"],
["R_l1_g0", "R_l1_g1", "R_l1_g2", "R_l1_g3", "R_l1_g4"],
],
codes=[[0, 1, 2, 3, 4], [0, 1, 2, 3, 4]],
names=[None, None],
)
si = Index(["R_l0_g0", "R_l0_g1", "R_l0_g2", "R_l0_g3", "R_l0_g4"], name=None)
expected = pd.DataFrame(data, index=si, columns=columns)
actual = pd.read_excel(filename, "single_no_names", index_col=0)
tm.assert_frame_equal(actual, expected)
expected.index = mi
actual = pd.read_excel(filename, "multi_no_names", index_col=[0, 1])
tm.assert_frame_equal(actual, expected, check_names=False)
def test_read_excel_bool_header_arg(self, read_ext):
# GH 6114
for arg in [True, False]:
with pytest.raises(TypeError):
pd.read_excel("test1" + read_ext, header=arg)
def test_read_excel_chunksize(self, read_ext):
# GH 8011
with pytest.raises(NotImplementedError):
pd.read_excel("test1" + read_ext, chunksize=100)
def test_read_excel_skiprows_list(self, read_ext):
# GH 4903
actual = pd.read_excel(
"testskiprows" + read_ext, "skiprows_list", skiprows=[0, 2]
)
expected = DataFrame(
[
[1, 2.5, pd.Timestamp("2015-01-01"), True],
[2, 3.5, pd.Timestamp("2015-01-02"), False],
[3, 4.5, pd.Timestamp("2015-01-03"), False],
[4, 5.5, pd.Timestamp("2015-01-04"), True],
],
columns=["a", "b", "c", "d"],
)
tm.assert_frame_equal(actual, expected)
actual = pd.read_excel(
"testskiprows" + read_ext, "skiprows_list", skiprows=np.array([0, 2])
)
tm.assert_frame_equal(actual, expected)
def test_read_excel_nrows(self, read_ext):
# GH 16645
num_rows_to_pull = 5
actual = pd.read_excel("test1" + read_ext, nrows=num_rows_to_pull)
expected = pd.read_excel("test1" + read_ext)
expected = expected[:num_rows_to_pull]
tm.assert_frame_equal(actual, expected)
def test_read_excel_nrows_greater_than_nrows_in_file(self, read_ext):
# GH 16645
expected = pd.read_excel("test1" + read_ext)
num_records_in_file = len(expected)
num_rows_to_pull = num_records_in_file + 10
actual = pd.read_excel("test1" + read_ext, nrows=num_rows_to_pull)
tm.assert_frame_equal(actual, expected)
def test_read_excel_nrows_non_integer_parameter(self, read_ext):
# GH 16645
msg = "'nrows' must be an integer >=0"
with pytest.raises(ValueError, match=msg):
pd.read_excel("test1" + read_ext, nrows="5")
def test_read_excel_squeeze(self, read_ext):
# GH 12157
f = "test_squeeze" + read_ext
actual = pd.read_excel(f, "two_columns", index_col=0, squeeze=True)
expected = pd.Series([2, 3, 4], [4, 5, 6], name="b")
expected.index.name = "a"
tm.assert_series_equal(actual, expected)
actual = pd.read_excel(f, "two_columns", squeeze=True)
expected = pd.DataFrame({"a": [4, 5, 6], "b": [2, 3, 4]})
tm.assert_frame_equal(actual, expected)
actual = pd.read_excel(f, "one_column", squeeze=True)
expected = pd.Series([1, 2, 3], name="a")
tm.assert_series_equal(actual, expected)
class TestExcelFileRead:
@pytest.fixture(autouse=True)
def cd_and_set_engine(self, engine, datapath, monkeypatch, read_ext):
"""
Change directory and set engine for ExcelFile objects.
"""
if engine == "odf" and read_ext != ".ods":
pytest.skip()
if read_ext == ".ods" and engine != "odf":
pytest.skip()
if engine == "openpyxl" and read_ext == ".xls":
pytest.skip()
func = partial(pd.ExcelFile, engine=engine)
monkeypatch.chdir(datapath("io", "data"))
monkeypatch.setattr(pd, "ExcelFile", func)
def test_excel_passes_na(self, read_ext):
with pd.ExcelFile("test4" + read_ext) as excel:
parsed = pd.read_excel(
excel, "Sheet1", keep_default_na=False, na_values=["apple"]
)
expected = DataFrame(
[["NA"], [1], ["NA"], [np.nan], ["rabbit"]], columns=["Test"]
)
tm.assert_frame_equal(parsed, expected)
with pd.ExcelFile("test4" + read_ext) as excel:
parsed = pd.read_excel(
excel, "Sheet1", keep_default_na=True, na_values=["apple"]
)
expected = DataFrame(
[[np.nan], [1], [np.nan], [np.nan], ["rabbit"]], columns=["Test"]
)
tm.assert_frame_equal(parsed, expected)
# 13967
with pd.ExcelFile("test5" + read_ext) as excel:
parsed = pd.read_excel(
excel, "Sheet1", keep_default_na=False, na_values=["apple"]
)
expected = DataFrame(
[["1.#QNAN"], [1], ["nan"], [np.nan], ["rabbit"]], columns=["Test"]
)
tm.assert_frame_equal(parsed, expected)
with pd.ExcelFile("test5" + read_ext) as excel:
parsed = pd.read_excel(
excel, "Sheet1", keep_default_na=True, na_values=["apple"]
)
expected = DataFrame(
[[np.nan], [1], [np.nan], [np.nan], ["rabbit"]], columns=["Test"]
)
tm.assert_frame_equal(parsed, expected)
@pytest.mark.parametrize("arg", ["sheet", "sheetname", "parse_cols"])
def test_unexpected_kwargs_raises(self, read_ext, arg):
# gh-17964
kwarg = {arg: "Sheet1"}
msg = "unexpected keyword argument `{}`".format(arg)
with pd.ExcelFile("test1" + read_ext) as excel:
with pytest.raises(TypeError, match=msg):
pd.read_excel(excel, **kwarg)
def test_excel_table_sheet_by_index(self, read_ext, df_ref):
with pd.ExcelFile("test1" + read_ext) as excel:
df1 = pd.read_excel(excel, 0, index_col=0)
df2 = pd.read_excel(excel, 1, skiprows=[1], index_col=0)
tm.assert_frame_equal(df1, df_ref, check_names=False)
tm.assert_frame_equal(df2, df_ref, check_names=False)
with pd.ExcelFile("test1" + read_ext) as excel:
df1 = excel.parse(0, index_col=0)
df2 = excel.parse(1, skiprows=[1], index_col=0)
tm.assert_frame_equal(df1, df_ref, check_names=False)
tm.assert_frame_equal(df2, df_ref, check_names=False)
with pd.ExcelFile("test1" + read_ext) as excel:
df3 = pd.read_excel(excel, 0, index_col=0, skipfooter=1)
tm.assert_frame_equal(df3, df1.iloc[:-1])
with tm.assert_produces_warning(
FutureWarning, check_stacklevel=False, raise_on_extra_warnings=False
):
with pd.ExcelFile("test1" + read_ext) as excel:
df4 = pd.read_excel(excel, 0, index_col=0, skip_footer=1)
tm.assert_frame_equal(df3, df4)
with pd.ExcelFile("test1" + read_ext) as excel:
df3 = excel.parse(0, index_col=0, skipfooter=1)
tm.assert_frame_equal(df3, df1.iloc[:-1])
def test_sheet_name(self, read_ext, df_ref):
filename = "test1"
sheet_name = "Sheet1"
with pd.ExcelFile(filename + read_ext) as excel:
df1_parse = excel.parse(sheet_name=sheet_name, index_col=0) # doc
with pd.ExcelFile(filename + read_ext) as excel:
df2_parse = excel.parse(index_col=0, sheet_name=sheet_name)
tm.assert_frame_equal(df1_parse, df_ref, check_names=False)
tm.assert_frame_equal(df2_parse, df_ref, check_names=False)
def test_excel_read_buffer(self, engine, read_ext):
pth = "test1" + read_ext
expected = pd.read_excel(pth, "Sheet1", index_col=0, engine=engine)
with open(pth, "rb") as f:
with pd.ExcelFile(f) as xls:
actual = pd.read_excel(xls, "Sheet1", index_col=0)
tm.assert_frame_equal(expected, actual)
def test_reader_closes_file(self, engine, read_ext):
f = open("test1" + read_ext, "rb")
with pd.ExcelFile(f) as xlsx:
# parses okay
pd.read_excel(xlsx, "Sheet1", index_col=0, engine=engine)
assert f.closed
def test_conflicting_excel_engines(self, read_ext):
# GH 26566
msg = "Engine should not be specified when passing an ExcelFile"
with pd.ExcelFile("test1" + read_ext) as xl:
with pytest.raises(ValueError, match=msg):
pd.read_excel(xl, engine="foo")