Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

aaronreidsmith / pandas   python

Repository URL to install this package:

Version: 0.25.3 

/ tests / io / excel / test_readers.py

from collections import OrderedDict
import contextlib
from datetime import datetime, time
from functools import partial
import os
import warnings

import numpy as np
import pytest

import pandas.util._test_decorators as td

import pandas as pd
from pandas import DataFrame, Index, MultiIndex, Series
import pandas.util.testing as tm

from pandas.io.common import URLError


@contextlib.contextmanager
def ignore_xlrd_time_clock_warning():
    """
    Context manager to ignore warnings raised by the xlrd library,
    regarding the deprecation of `time.clock` in Python 3.7.
    """
    with warnings.catch_warnings():
        warnings.filterwarnings(
            action="ignore",
            message="time.clock has been deprecated",
            category=DeprecationWarning,
        )
        yield


@pytest.fixture(
    params=[
        # Add any engines to test here
        # When defusedxml is installed it triggers deprecation warnings for
        # xlrd and openpyxl, so catch those here
        pytest.param(
            "xlrd",
            marks=[
                td.skip_if_no("xlrd"),
                pytest.mark.filterwarnings("ignore:.*(tree\\.iter|html argument)"),
            ],
        ),
        pytest.param(
            "openpyxl",
            marks=[
                td.skip_if_no("openpyxl"),
                pytest.mark.filterwarnings("ignore:.*html argument"),
            ],
        ),
        pytest.param(
            None,
            marks=[
                td.skip_if_no("xlrd"),
                pytest.mark.filterwarnings("ignore:.*(tree\\.iter|html argument)"),
            ],
        ),
        pytest.param("odf", marks=td.skip_if_no("odf")),
    ]
)
def engine(request):
    """
    A fixture for Excel reader engines.
    """
    return request.param


class TestReaders:
    @pytest.fixture(autouse=True)
    def cd_and_set_engine(self, engine, datapath, monkeypatch, read_ext):
        """
        Change directory and set engine for read_excel calls.
        """
        if engine == "openpyxl" and read_ext == ".xls":
            pytest.skip()
        if engine == "odf" and read_ext != ".ods":
            pytest.skip()
        if read_ext == ".ods" and engine != "odf":
            pytest.skip()

        func = partial(pd.read_excel, engine=engine)
        monkeypatch.chdir(datapath("io", "data"))
        monkeypatch.setattr(pd, "read_excel", func)

    def test_usecols_int(self, read_ext, df_ref):
        df_ref = df_ref.reindex(columns=["A", "B", "C"])

        # usecols as int
        with tm.assert_produces_warning(
            FutureWarning, check_stacklevel=False, raise_on_extra_warnings=False
        ):
            with ignore_xlrd_time_clock_warning():
                df1 = pd.read_excel(
                    "test1" + read_ext, "Sheet1", index_col=0, usecols=3
                )

        # usecols as int
        with tm.assert_produces_warning(
            FutureWarning, check_stacklevel=False, raise_on_extra_warnings=False
        ):
            with ignore_xlrd_time_clock_warning():
                df2 = pd.read_excel(
                    "test1" + read_ext, "Sheet2", skiprows=[1], index_col=0, usecols=3
                )

        # TODO add index to xls file)
        tm.assert_frame_equal(df1, df_ref, check_names=False)
        tm.assert_frame_equal(df2, df_ref, check_names=False)

    def test_usecols_list(self, read_ext, df_ref):

        df_ref = df_ref.reindex(columns=["B", "C"])
        df1 = pd.read_excel(
            "test1" + read_ext, "Sheet1", index_col=0, usecols=[0, 2, 3]
        )
        df2 = pd.read_excel(
            "test1" + read_ext, "Sheet2", skiprows=[1], index_col=0, usecols=[0, 2, 3]
        )

        # TODO add index to xls file)
        tm.assert_frame_equal(df1, df_ref, check_names=False)
        tm.assert_frame_equal(df2, df_ref, check_names=False)

    def test_usecols_str(self, read_ext, df_ref):

        df1 = df_ref.reindex(columns=["A", "B", "C"])
        df2 = pd.read_excel("test1" + read_ext, "Sheet1", index_col=0, usecols="A:D")
        df3 = pd.read_excel(
            "test1" + read_ext, "Sheet2", skiprows=[1], index_col=0, usecols="A:D"
        )

        # TODO add index to xls, read xls ignores index name ?
        tm.assert_frame_equal(df2, df1, check_names=False)
        tm.assert_frame_equal(df3, df1, check_names=False)

        df1 = df_ref.reindex(columns=["B", "C"])
        df2 = pd.read_excel("test1" + read_ext, "Sheet1", index_col=0, usecols="A,C,D")
        df3 = pd.read_excel(
            "test1" + read_ext, "Sheet2", skiprows=[1], index_col=0, usecols="A,C,D"
        )
        # TODO add index to xls file
        tm.assert_frame_equal(df2, df1, check_names=False)
        tm.assert_frame_equal(df3, df1, check_names=False)

        df1 = df_ref.reindex(columns=["B", "C"])
        df2 = pd.read_excel("test1" + read_ext, "Sheet1", index_col=0, usecols="A,C:D")
        df3 = pd.read_excel(
            "test1" + read_ext, "Sheet2", skiprows=[1], index_col=0, usecols="A,C:D"
        )
        tm.assert_frame_equal(df2, df1, check_names=False)
        tm.assert_frame_equal(df3, df1, check_names=False)

    @pytest.mark.parametrize(
        "usecols", [[0, 1, 3], [0, 3, 1], [1, 0, 3], [1, 3, 0], [3, 0, 1], [3, 1, 0]]
    )
    def test_usecols_diff_positional_int_columns_order(self, read_ext, usecols, df_ref):
        expected = df_ref[["A", "C"]]
        result = pd.read_excel(
            "test1" + read_ext, "Sheet1", index_col=0, usecols=usecols
        )
        tm.assert_frame_equal(result, expected, check_names=False)

    @pytest.mark.parametrize("usecols", [["B", "D"], ["D", "B"]])
    def test_usecols_diff_positional_str_columns_order(self, read_ext, usecols, df_ref):
        expected = df_ref[["B", "D"]]
        expected.index = range(len(expected))

        result = pd.read_excel("test1" + read_ext, "Sheet1", usecols=usecols)
        tm.assert_frame_equal(result, expected, check_names=False)

    def test_read_excel_without_slicing(self, read_ext, df_ref):
        expected = df_ref
        result = pd.read_excel("test1" + read_ext, "Sheet1", index_col=0)
        tm.assert_frame_equal(result, expected, check_names=False)

    def test_usecols_excel_range_str(self, read_ext, df_ref):
        expected = df_ref[["C", "D"]]
        result = pd.read_excel(
            "test1" + read_ext, "Sheet1", index_col=0, usecols="A,D:E"
        )
        tm.assert_frame_equal(result, expected, check_names=False)

    def test_usecols_excel_range_str_invalid(self, read_ext):
        msg = "Invalid column name: E1"

        with pytest.raises(ValueError, match=msg):
            pd.read_excel("test1" + read_ext, "Sheet1", usecols="D:E1")

    def test_index_col_label_error(self, read_ext):
        msg = "list indices must be integers.*, not str"

        with pytest.raises(TypeError, match=msg):
            pd.read_excel(
                "test1" + read_ext, "Sheet1", index_col=["A"], usecols=["A", "C"]
            )

    def test_index_col_empty(self, read_ext):
        # see gh-9208
        result = pd.read_excel("test1" + read_ext, "Sheet3", index_col=["A", "B", "C"])
        expected = DataFrame(
            columns=["D", "E", "F"],
            index=MultiIndex(levels=[[]] * 3, codes=[[]] * 3, names=["A", "B", "C"]),
        )
        tm.assert_frame_equal(result, expected)

    @pytest.mark.parametrize("index_col", [None, 2])
    def test_index_col_with_unnamed(self, read_ext, index_col):
        # see gh-18792
        result = pd.read_excel("test1" + read_ext, "Sheet4", index_col=index_col)
        expected = DataFrame(
            [["i1", "a", "x"], ["i2", "b", "y"]], columns=["Unnamed: 0", "col1", "col2"]
        )
        if index_col:
            expected = expected.set_index(expected.columns[index_col])

        tm.assert_frame_equal(result, expected)

    def test_usecols_pass_non_existent_column(self, read_ext):
        msg = (
            "Usecols do not match columns, "
            "columns expected but not found: " + r"\['E'\]"
        )

        with pytest.raises(ValueError, match=msg):
            pd.read_excel("test1" + read_ext, usecols=["E"])

    def test_usecols_wrong_type(self, read_ext):
        msg = (
            "'usecols' must either be list-like of "
            "all strings, all unicode, all integers or a callable."
        )

        with pytest.raises(ValueError, match=msg):
            pd.read_excel("test1" + read_ext, usecols=["E1", 0])

    def test_excel_stop_iterator(self, read_ext):

        parsed = pd.read_excel("test2" + read_ext, "Sheet1")
        expected = DataFrame([["aaaa", "bbbbb"]], columns=["Test", "Test1"])
        tm.assert_frame_equal(parsed, expected)

    def test_excel_cell_error_na(self, read_ext):

        parsed = pd.read_excel("test3" + read_ext, "Sheet1")
        expected = DataFrame([[np.nan]], columns=["Test"])
        tm.assert_frame_equal(parsed, expected)

    def test_excel_table(self, read_ext, df_ref):

        df1 = pd.read_excel("test1" + read_ext, "Sheet1", index_col=0)
        df2 = pd.read_excel("test1" + read_ext, "Sheet2", skiprows=[1], index_col=0)
        # TODO add index to file
        tm.assert_frame_equal(df1, df_ref, check_names=False)
        tm.assert_frame_equal(df2, df_ref, check_names=False)

        df3 = pd.read_excel("test1" + read_ext, "Sheet1", index_col=0, skipfooter=1)
        tm.assert_frame_equal(df3, df1.iloc[:-1])

    def test_reader_special_dtypes(self, read_ext):

        expected = DataFrame.from_dict(
            OrderedDict(
                [
                    ("IntCol", [1, 2, -3, 4, 0]),
                    ("FloatCol", [1.25, 2.25, 1.83, 1.92, 0.0000000005]),
                    ("BoolCol", [True, False, True, True, False]),
                    ("StrCol", [1, 2, 3, 4, 5]),
                    # GH5394 - this is why convert_float isn't vectorized
                    ("Str2Col", ["a", 3, "c", "d", "e"]),
                    (
                        "DateCol",
                        [
                            datetime(2013, 10, 30),
                            datetime(2013, 10, 31),
                            datetime(1905, 1, 1),
                            datetime(2013, 12, 14),
                            datetime(2015, 3, 14),
                        ],
                    ),
                ]
            )
        )
        basename = "test_types"

        # should read in correctly and infer types
        actual = pd.read_excel(basename + read_ext, "Sheet1")
        tm.assert_frame_equal(actual, expected)

        # if not coercing number, then int comes in as float
        float_expected = expected.copy()
        float_expected["IntCol"] = float_expected["IntCol"].astype(float)
        float_expected.loc[float_expected.index[1], "Str2Col"] = 3.0
        actual = pd.read_excel(basename + read_ext, "Sheet1", convert_float=False)
        tm.assert_frame_equal(actual, float_expected)

        # check setting Index (assuming xls and xlsx are the same here)
        for icol, name in enumerate(expected.columns):
            actual = pd.read_excel(basename + read_ext, "Sheet1", index_col=icol)
            exp = expected.set_index(name)
            tm.assert_frame_equal(actual, exp)

        # convert_float and converters should be different but both accepted
        expected["StrCol"] = expected["StrCol"].apply(str)
        actual = pd.read_excel(
            basename + read_ext, "Sheet1", converters={"StrCol": str}
        )
        tm.assert_frame_equal(actual, expected)

        no_convert_float = float_expected.copy()
        no_convert_float["StrCol"] = no_convert_float["StrCol"].apply(str)
        actual = pd.read_excel(
            basename + read_ext,
            "Sheet1",
            convert_float=False,
            converters={"StrCol": str},
        )
        tm.assert_frame_equal(actual, no_convert_float)

    # GH8212 - support for converters and missing values
    def test_reader_converters(self, read_ext):

        basename = "test_converters"

        expected = DataFrame.from_dict(
            OrderedDict(
                [
                    ("IntCol", [1, 2, -3, -1000, 0]),
                    ("FloatCol", [12.5, np.nan, 18.3, 19.2, 0.000000005]),
                    ("BoolCol", ["Found", "Found", "Found", "Not found", "Found"]),
                    ("StrCol", ["1", np.nan, "3", "4", "5"]),
                ]
            )
        )

        converters = {
            "IntCol": lambda x: int(x) if x != "" else -1000,
            "FloatCol": lambda x: 10 * x if x else np.nan,
            2: lambda x: "Found" if x != "" else "Not found",
            3: lambda x: str(x) if x else "",
        }

        # should read in correctly and set types of single cells (not array
        # dtypes)
        actual = pd.read_excel(basename + read_ext, "Sheet1", converters=converters)
        tm.assert_frame_equal(actual, expected)

    def test_reader_dtype(self, read_ext):
        # GH 8212
        basename = "testdtype"
        actual = pd.read_excel(basename + read_ext)

        expected = DataFrame(
            {
                "a": [1, 2, 3, 4],
                "b": [2.5, 3.5, 4.5, 5.5],
                "c": [1, 2, 3, 4],
                "d": [1.0, 2.0, np.nan, 4.0],
            }
        ).reindex(columns=["a", "b", "c", "d"])

        tm.assert_frame_equal(actual, expected)

        actual = pd.read_excel(
            basename + read_ext, dtype={"a": "float64", "b": "float32", "c": str}
        )

        expected["a"] = expected["a"].astype("float64")
        expected["b"] = expected["b"].astype("float32")
        expected["c"] = ["001", "002", "003", "004"]
        tm.assert_frame_equal(actual, expected)

        with pytest.raises(ValueError):
            pd.read_excel(basename + read_ext, dtype={"d": "int64"})

    @pytest.mark.parametrize(
        "dtype,expected",
        [
            (
                None,
                DataFrame(
                    {
                        "a": [1, 2, 3, 4],
                        "b": [2.5, 3.5, 4.5, 5.5],
                        "c": [1, 2, 3, 4],
                        "d": [1.0, 2.0, np.nan, 4.0],
                    }
                ),
            ),
            (
                {"a": "float64", "b": "float32", "c": str, "d": str},
                DataFrame(
                    {
                        "a": Series([1, 2, 3, 4], dtype="float64"),
                        "b": Series([2.5, 3.5, 4.5, 5.5], dtype="float32"),
                        "c": ["001", "002", "003", "004"],
                        "d": ["1", "2", np.nan, "4"],
                    }
                ),
            ),
        ],
    )
    def test_reader_dtype_str(self, read_ext, dtype, expected):
        # see gh-20377
        basename = "testdtype"

        actual = pd.read_excel(basename + read_ext, dtype=dtype)
        tm.assert_frame_equal(actual, expected)

    def test_reading_all_sheets(self, read_ext):
        # Test reading all sheetnames by setting sheetname to None,
        # Ensure a dict is returned.
        # See PR #9450
        basename = "test_multisheet"
        dfs = pd.read_excel(basename + read_ext, sheet_name=None)
        # ensure this is not alphabetical to test order preservation
        expected_keys = ["Charlie", "Alpha", "Beta"]
        tm.assert_contains_all(expected_keys, dfs.keys())
        # Issue 9930
        # Ensure sheet order is preserved
        assert expected_keys == list(dfs.keys())

    def test_reading_multiple_specific_sheets(self, read_ext):
        # Test reading specific sheetnames by specifying a mixed list
        # of integers and strings, and confirm that duplicated sheet
        # references (positions/names) are removed properly.
        # Ensure a dict is returned
        # See PR #9450
        basename = "test_multisheet"
        # Explicitly request duplicates. Only the set should be returned.
        expected_keys = [2, "Charlie", "Charlie"]
        dfs = pd.read_excel(basename + read_ext, sheet_name=expected_keys)
        expected_keys = list(set(expected_keys))
        tm.assert_contains_all(expected_keys, dfs.keys())
        assert len(expected_keys) == len(dfs.keys())

    def test_reading_all_sheets_with_blank(self, read_ext):
        # Test reading all sheetnames by setting sheetname to None,
        # In the case where some sheets are blank.
        # Issue #11711
        basename = "blank_with_header"
        dfs = pd.read_excel(basename + read_ext, sheet_name=None)
        expected_keys = ["Sheet1", "Sheet2", "Sheet3"]
        tm.assert_contains_all(expected_keys, dfs.keys())

    # GH6403
    def test_read_excel_blank(self, read_ext):
        actual = pd.read_excel("blank" + read_ext, "Sheet1")
        tm.assert_frame_equal(actual, DataFrame())

    def test_read_excel_blank_with_header(self, read_ext):
        expected = DataFrame(columns=["col_1", "col_2"])
        actual = pd.read_excel("blank_with_header" + read_ext, "Sheet1")
        tm.assert_frame_equal(actual, expected)

    def test_date_conversion_overflow(self, read_ext):
        # GH 10001 : pandas.ExcelFile ignore parse_dates=False
        expected = pd.DataFrame(
            [
                [pd.Timestamp("2016-03-12"), "Marc Johnson"],
                [pd.Timestamp("2016-03-16"), "Jack Black"],
                [1e20, "Timothy Brown"],
            ],
            columns=["DateColWithBigInt", "StringCol"],
        )

        if pd.read_excel.keywords["engine"] == "openpyxl":
            pytest.xfail("Maybe not supported by openpyxl")

        result = pd.read_excel("testdateoverflow" + read_ext)
        tm.assert_frame_equal(result, expected)

    def test_sheet_name(self, read_ext, df_ref):
        filename = "test1"
        sheet_name = "Sheet1"

        df1 = pd.read_excel(
            filename + read_ext, sheet_name=sheet_name, index_col=0
        )  # doc
        with ignore_xlrd_time_clock_warning():
            df2 = pd.read_excel(filename + read_ext, index_col=0, sheet_name=sheet_name)

        tm.assert_frame_equal(df1, df_ref, check_names=False)
        tm.assert_frame_equal(df2, df_ref, check_names=False)

    def test_excel_read_buffer(self, read_ext):

        pth = "test1" + read_ext
        expected = pd.read_excel(pth, "Sheet1", index_col=0)
        with open(pth, "rb") as f:
            actual = pd.read_excel(f, "Sheet1", index_col=0)
            tm.assert_frame_equal(expected, actual)

    def test_bad_engine_raises(self, read_ext):
        bad_engine = "foo"
        with pytest.raises(ValueError, match="Unknown engine: foo"):
            pd.read_excel("", engine=bad_engine)

    @tm.network
    def test_read_from_http_url(self, read_ext):
        if read_ext == ".ods":  # TODO: remove once on master
            pytest.skip()

        url = (
            "https://raw.github.com/pandas-dev/pandas/master/"
            "pandas/tests/io/data/test1" + read_ext
        )
        url_table = pd.read_excel(url)
        local_table = pd.read_excel("test1" + read_ext)
        tm.assert_frame_equal(url_table, local_table)

    @td.skip_if_not_us_locale
    def test_read_from_s3_url(self, read_ext, s3_resource):
        # Bucket "pandas-test" created in tests/io/conftest.py
        with open("test1" + read_ext, "rb") as f:
            s3_resource.Bucket("pandas-test").put_object(Key="test1" + read_ext, Body=f)

        url = "s3://pandas-test/test1" + read_ext
        url_table = pd.read_excel(url)
        local_table = pd.read_excel("test1" + read_ext)
        tm.assert_frame_equal(url_table, local_table)

    @pytest.mark.slow
    # ignore warning from old xlrd
    @pytest.mark.filterwarnings("ignore:This metho:PendingDeprecationWarning")
    def test_read_from_file_url(self, read_ext, datapath):

        # FILE
        localtable = os.path.join(datapath("io", "data"), "test1" + read_ext)
        local_table = pd.read_excel(localtable)

        try:
            url_table = pd.read_excel("file://localhost/" + localtable)
        except URLError:
            # fails on some systems
            import platform

            pytest.skip("failing on {}".format(" ".join(platform.uname()).strip()))

        tm.assert_frame_equal(url_table, local_table)

    def test_read_from_pathlib_path(self, read_ext):

        # GH12655
        from pathlib import Path

        str_path = "test1" + read_ext
        expected = pd.read_excel(str_path, "Sheet1", index_col=0)

        path_obj = Path("test1" + read_ext)
        actual = pd.read_excel(path_obj, "Sheet1", index_col=0)

        tm.assert_frame_equal(expected, actual)

    @td.skip_if_no("py.path")
    def test_read_from_py_localpath(self, read_ext):

        # GH12655
        from py.path import local as LocalPath

        str_path = os.path.join("test1" + read_ext)
        expected = pd.read_excel(str_path, "Sheet1", index_col=0)

        path_obj = LocalPath().join("test1" + read_ext)
        actual = pd.read_excel(path_obj, "Sheet1", index_col=0)

        tm.assert_frame_equal(expected, actual)

    def test_reader_seconds(self, read_ext):

        # Test reading times with and without milliseconds. GH5945.
        expected = DataFrame.from_dict(
            {
                "Time": [
                    time(1, 2, 3),
                    time(2, 45, 56, 100000),
                    time(4, 29, 49, 200000),
                    time(6, 13, 42, 300000),
                    time(7, 57, 35, 400000),
                    time(9, 41, 28, 500000),
                    time(11, 25, 21, 600000),
                    time(13, 9, 14, 700000),
                    time(14, 53, 7, 800000),
                    time(16, 37, 0, 900000),
                    time(18, 20, 54),
                ]
            }
        )

        actual = pd.read_excel("times_1900" + read_ext, "Sheet1")
        tm.assert_frame_equal(actual, expected)

        actual = pd.read_excel("times_1904" + read_ext, "Sheet1")
        tm.assert_frame_equal(actual, expected)

    def test_read_excel_multiindex(self, read_ext):
        # see gh-4679
        mi = MultiIndex.from_product([["foo", "bar"], ["a", "b"]])
        mi_file = "testmultiindex" + read_ext

        # "mi_column" sheet
        expected = DataFrame(
            [
                [1, 2.5, pd.Timestamp("2015-01-01"), True],
                [2, 3.5, pd.Timestamp("2015-01-02"), False],
                [3, 4.5, pd.Timestamp("2015-01-03"), False],
                [4, 5.5, pd.Timestamp("2015-01-04"), True],
            ],
            columns=mi,
        )

        actual = pd.read_excel(mi_file, "mi_column", header=[0, 1], index_col=0)
        tm.assert_frame_equal(actual, expected)

        # "mi_index" sheet
        expected.index = mi
        expected.columns = ["a", "b", "c", "d"]

        actual = pd.read_excel(mi_file, "mi_index", index_col=[0, 1])
        tm.assert_frame_equal(actual, expected, check_names=False)

        # "both" sheet
        expected.columns = mi

        actual = pd.read_excel(mi_file, "both", index_col=[0, 1], header=[0, 1])
        tm.assert_frame_equal(actual, expected, check_names=False)

        # "mi_index_name" sheet
        expected.columns = ["a", "b", "c", "d"]
        expected.index = mi.set_names(["ilvl1", "ilvl2"])

        actual = pd.read_excel(mi_file, "mi_index_name", index_col=[0, 1])
        tm.assert_frame_equal(actual, expected)

        # "mi_column_name" sheet
        expected.index = list(range(4))
        expected.columns = mi.set_names(["c1", "c2"])
        actual = pd.read_excel(mi_file, "mi_column_name", header=[0, 1], index_col=0)
        tm.assert_frame_equal(actual, expected)

        # see gh-11317
        # "name_with_int" sheet
        expected.columns = mi.set_levels([1, 2], level=1).set_names(["c1", "c2"])

        actual = pd.read_excel(mi_file, "name_with_int", index_col=0, header=[0, 1])
        tm.assert_frame_equal(actual, expected)

        # "both_name" sheet
        expected.columns = mi.set_names(["c1", "c2"])
        expected.index = mi.set_names(["ilvl1", "ilvl2"])

        actual = pd.read_excel(mi_file, "both_name", index_col=[0, 1], header=[0, 1])
        tm.assert_frame_equal(actual, expected)

        # "both_skiprows" sheet
        actual = pd.read_excel(
            mi_file, "both_name_skiprows", index_col=[0, 1], header=[0, 1], skiprows=2
        )
        tm.assert_frame_equal(actual, expected)

    def test_read_excel_multiindex_header_only(self, read_ext):
        # see gh-11733.
        #
        # Don't try to parse a header name if there isn't one.
        mi_file = "testmultiindex" + read_ext
        result = pd.read_excel(mi_file, "index_col_none", header=[0, 1])

        exp_columns = MultiIndex.from_product([("A", "B"), ("key", "val")])
        expected = DataFrame([[1, 2, 3, 4]] * 2, columns=exp_columns)
        tm.assert_frame_equal(result, expected)

    def test_excel_old_index_format(self, read_ext):
        # see gh-4679
        filename = "test_index_name_pre17" + read_ext

        # We detect headers to determine if index names exist, so
        # that "index" name in the "names" version of the data will
        # now be interpreted as rows that include null data.
        data = np.array(
            [
                [None, None, None, None, None],
                ["R0C0", "R0C1", "R0C2", "R0C3", "R0C4"],
                ["R1C0", "R1C1", "R1C2", "R1C3", "R1C4"],
                ["R2C0", "R2C1", "R2C2", "R2C3", "R2C4"],
                ["R3C0", "R3C1", "R3C2", "R3C3", "R3C4"],
                ["R4C0", "R4C1", "R4C2", "R4C3", "R4C4"],
            ]
        )
        columns = ["C_l0_g0", "C_l0_g1", "C_l0_g2", "C_l0_g3", "C_l0_g4"]
        mi = MultiIndex(
            levels=[
                ["R0", "R_l0_g0", "R_l0_g1", "R_l0_g2", "R_l0_g3", "R_l0_g4"],
                ["R1", "R_l1_g0", "R_l1_g1", "R_l1_g2", "R_l1_g3", "R_l1_g4"],
            ],
            codes=[[0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5]],
            names=[None, None],
        )
        si = Index(
            ["R0", "R_l0_g0", "R_l0_g1", "R_l0_g2", "R_l0_g3", "R_l0_g4"], name=None
        )

        expected = pd.DataFrame(data, index=si, columns=columns)

        actual = pd.read_excel(filename, "single_names", index_col=0)
        tm.assert_frame_equal(actual, expected)

        expected.index = mi

        actual = pd.read_excel(filename, "multi_names", index_col=[0, 1])
        tm.assert_frame_equal(actual, expected)

        # The analogous versions of the "names" version data
        # where there are explicitly no names for the indices.
        data = np.array(
            [
                ["R0C0", "R0C1", "R0C2", "R0C3", "R0C4"],
                ["R1C0", "R1C1", "R1C2", "R1C3", "R1C4"],
                ["R2C0", "R2C1", "R2C2", "R2C3", "R2C4"],
                ["R3C0", "R3C1", "R3C2", "R3C3", "R3C4"],
                ["R4C0", "R4C1", "R4C2", "R4C3", "R4C4"],
            ]
        )
        columns = ["C_l0_g0", "C_l0_g1", "C_l0_g2", "C_l0_g3", "C_l0_g4"]
        mi = MultiIndex(
            levels=[
                ["R_l0_g0", "R_l0_g1", "R_l0_g2", "R_l0_g3", "R_l0_g4"],
                ["R_l1_g0", "R_l1_g1", "R_l1_g2", "R_l1_g3", "R_l1_g4"],
            ],
            codes=[[0, 1, 2, 3, 4], [0, 1, 2, 3, 4]],
            names=[None, None],
        )
        si = Index(["R_l0_g0", "R_l0_g1", "R_l0_g2", "R_l0_g3", "R_l0_g4"], name=None)

        expected = pd.DataFrame(data, index=si, columns=columns)

        actual = pd.read_excel(filename, "single_no_names", index_col=0)
        tm.assert_frame_equal(actual, expected)

        expected.index = mi

        actual = pd.read_excel(filename, "multi_no_names", index_col=[0, 1])
        tm.assert_frame_equal(actual, expected, check_names=False)

    def test_read_excel_bool_header_arg(self, read_ext):
        # GH 6114
        for arg in [True, False]:
            with pytest.raises(TypeError):
                pd.read_excel("test1" + read_ext, header=arg)

    def test_read_excel_chunksize(self, read_ext):
        # GH 8011
        with pytest.raises(NotImplementedError):
            pd.read_excel("test1" + read_ext, chunksize=100)

    def test_read_excel_skiprows_list(self, read_ext):
        # GH 4903
        actual = pd.read_excel(
            "testskiprows" + read_ext, "skiprows_list", skiprows=[0, 2]
        )
        expected = DataFrame(
            [
                [1, 2.5, pd.Timestamp("2015-01-01"), True],
                [2, 3.5, pd.Timestamp("2015-01-02"), False],
                [3, 4.5, pd.Timestamp("2015-01-03"), False],
                [4, 5.5, pd.Timestamp("2015-01-04"), True],
            ],
            columns=["a", "b", "c", "d"],
        )
        tm.assert_frame_equal(actual, expected)

        actual = pd.read_excel(
            "testskiprows" + read_ext, "skiprows_list", skiprows=np.array([0, 2])
        )
        tm.assert_frame_equal(actual, expected)

    def test_read_excel_nrows(self, read_ext):
        # GH 16645
        num_rows_to_pull = 5
        actual = pd.read_excel("test1" + read_ext, nrows=num_rows_to_pull)
        expected = pd.read_excel("test1" + read_ext)
        expected = expected[:num_rows_to_pull]
        tm.assert_frame_equal(actual, expected)

    def test_read_excel_nrows_greater_than_nrows_in_file(self, read_ext):
        # GH 16645
        expected = pd.read_excel("test1" + read_ext)
        num_records_in_file = len(expected)
        num_rows_to_pull = num_records_in_file + 10
        actual = pd.read_excel("test1" + read_ext, nrows=num_rows_to_pull)
        tm.assert_frame_equal(actual, expected)

    def test_read_excel_nrows_non_integer_parameter(self, read_ext):
        # GH 16645
        msg = "'nrows' must be an integer >=0"
        with pytest.raises(ValueError, match=msg):
            pd.read_excel("test1" + read_ext, nrows="5")

    def test_read_excel_squeeze(self, read_ext):
        # GH 12157
        f = "test_squeeze" + read_ext

        actual = pd.read_excel(f, "two_columns", index_col=0, squeeze=True)
        expected = pd.Series([2, 3, 4], [4, 5, 6], name="b")
        expected.index.name = "a"
        tm.assert_series_equal(actual, expected)

        actual = pd.read_excel(f, "two_columns", squeeze=True)
        expected = pd.DataFrame({"a": [4, 5, 6], "b": [2, 3, 4]})
        tm.assert_frame_equal(actual, expected)

        actual = pd.read_excel(f, "one_column", squeeze=True)
        expected = pd.Series([1, 2, 3], name="a")
        tm.assert_series_equal(actual, expected)


class TestExcelFileRead:
    @pytest.fixture(autouse=True)
    def cd_and_set_engine(self, engine, datapath, monkeypatch, read_ext):
        """
        Change directory and set engine for ExcelFile objects.
        """
        if engine == "odf" and read_ext != ".ods":
            pytest.skip()
        if read_ext == ".ods" and engine != "odf":
            pytest.skip()
        if engine == "openpyxl" and read_ext == ".xls":
            pytest.skip()

        func = partial(pd.ExcelFile, engine=engine)
        monkeypatch.chdir(datapath("io", "data"))
        monkeypatch.setattr(pd, "ExcelFile", func)

    def test_excel_passes_na(self, read_ext):

        with pd.ExcelFile("test4" + read_ext) as excel:
            parsed = pd.read_excel(
                excel, "Sheet1", keep_default_na=False, na_values=["apple"]
            )
        expected = DataFrame(
            [["NA"], [1], ["NA"], [np.nan], ["rabbit"]], columns=["Test"]
        )
        tm.assert_frame_equal(parsed, expected)

        with pd.ExcelFile("test4" + read_ext) as excel:
            parsed = pd.read_excel(
                excel, "Sheet1", keep_default_na=True, na_values=["apple"]
            )
        expected = DataFrame(
            [[np.nan], [1], [np.nan], [np.nan], ["rabbit"]], columns=["Test"]
        )
        tm.assert_frame_equal(parsed, expected)

        # 13967
        with pd.ExcelFile("test5" + read_ext) as excel:
            parsed = pd.read_excel(
                excel, "Sheet1", keep_default_na=False, na_values=["apple"]
            )
        expected = DataFrame(
            [["1.#QNAN"], [1], ["nan"], [np.nan], ["rabbit"]], columns=["Test"]
        )
        tm.assert_frame_equal(parsed, expected)

        with pd.ExcelFile("test5" + read_ext) as excel:
            parsed = pd.read_excel(
                excel, "Sheet1", keep_default_na=True, na_values=["apple"]
            )
        expected = DataFrame(
            [[np.nan], [1], [np.nan], [np.nan], ["rabbit"]], columns=["Test"]
        )
        tm.assert_frame_equal(parsed, expected)

    @pytest.mark.parametrize("arg", ["sheet", "sheetname", "parse_cols"])
    def test_unexpected_kwargs_raises(self, read_ext, arg):
        # gh-17964
        kwarg = {arg: "Sheet1"}
        msg = "unexpected keyword argument `{}`".format(arg)

        with pd.ExcelFile("test1" + read_ext) as excel:
            with pytest.raises(TypeError, match=msg):
                pd.read_excel(excel, **kwarg)

    def test_excel_table_sheet_by_index(self, read_ext, df_ref):

        with pd.ExcelFile("test1" + read_ext) as excel:
            df1 = pd.read_excel(excel, 0, index_col=0)
            df2 = pd.read_excel(excel, 1, skiprows=[1], index_col=0)
        tm.assert_frame_equal(df1, df_ref, check_names=False)
        tm.assert_frame_equal(df2, df_ref, check_names=False)

        with pd.ExcelFile("test1" + read_ext) as excel:
            df1 = excel.parse(0, index_col=0)
            df2 = excel.parse(1, skiprows=[1], index_col=0)
        tm.assert_frame_equal(df1, df_ref, check_names=False)
        tm.assert_frame_equal(df2, df_ref, check_names=False)

        with pd.ExcelFile("test1" + read_ext) as excel:
            df3 = pd.read_excel(excel, 0, index_col=0, skipfooter=1)
        tm.assert_frame_equal(df3, df1.iloc[:-1])

        with tm.assert_produces_warning(
            FutureWarning, check_stacklevel=False, raise_on_extra_warnings=False
        ):
            with pd.ExcelFile("test1" + read_ext) as excel:
                df4 = pd.read_excel(excel, 0, index_col=0, skip_footer=1)

            tm.assert_frame_equal(df3, df4)

        with pd.ExcelFile("test1" + read_ext) as excel:
            df3 = excel.parse(0, index_col=0, skipfooter=1)

        tm.assert_frame_equal(df3, df1.iloc[:-1])

    def test_sheet_name(self, read_ext, df_ref):
        filename = "test1"
        sheet_name = "Sheet1"

        with pd.ExcelFile(filename + read_ext) as excel:
            df1_parse = excel.parse(sheet_name=sheet_name, index_col=0)  # doc

        with pd.ExcelFile(filename + read_ext) as excel:
            df2_parse = excel.parse(index_col=0, sheet_name=sheet_name)

        tm.assert_frame_equal(df1_parse, df_ref, check_names=False)
        tm.assert_frame_equal(df2_parse, df_ref, check_names=False)

    def test_excel_read_buffer(self, engine, read_ext):
        pth = "test1" + read_ext
        expected = pd.read_excel(pth, "Sheet1", index_col=0, engine=engine)

        with open(pth, "rb") as f:
            with pd.ExcelFile(f) as xls:
                actual = pd.read_excel(xls, "Sheet1", index_col=0)

        tm.assert_frame_equal(expected, actual)

    def test_reader_closes_file(self, engine, read_ext):
        f = open("test1" + read_ext, "rb")
        with pd.ExcelFile(f) as xlsx:
            # parses okay
            pd.read_excel(xlsx, "Sheet1", index_col=0, engine=engine)

        assert f.closed

    def test_conflicting_excel_engines(self, read_ext):
        # GH 26566
        msg = "Engine should not be specified when passing an ExcelFile"

        with pd.ExcelFile("test1" + read_ext) as xl:
            with pytest.raises(ValueError, match=msg):
                pd.read_excel(xl, engine="foo")