Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

aaronreidsmith / pandas   python

Repository URL to install this package:

Version: 0.25.3 

/ tests / io / parser / test_na_values.py

"""
Tests that NA values are properly handled during
parsing for all of the parsers defined in parsers.py
"""
from io import StringIO

import numpy as np
import pytest

from pandas import DataFrame, Index, MultiIndex
import pandas.util.testing as tm

import pandas.io.common as com


def test_string_nas(all_parsers):
    parser = all_parsers
    data = """A,B,C
a,b,c
d,,f
,g,h
"""
    result = parser.read_csv(StringIO(data))
    expected = DataFrame(
        [["a", "b", "c"], ["d", np.nan, "f"], [np.nan, "g", "h"]],
        columns=["A", "B", "C"],
    )
    tm.assert_frame_equal(result, expected)


def test_detect_string_na(all_parsers):
    parser = all_parsers
    data = """A,B
foo,bar
NA,baz
NaN,nan
"""
    expected = DataFrame(
        [["foo", "bar"], [np.nan, "baz"], [np.nan, np.nan]], columns=["A", "B"]
    )
    result = parser.read_csv(StringIO(data))
    tm.assert_frame_equal(result, expected)


@pytest.mark.parametrize(
    "na_values",
    [
        ["-999.0", "-999"],
        [-999, -999.0],
        [-999.0, -999],
        ["-999.0"],
        ["-999"],
        [-999.0],
        [-999],
    ],
)
@pytest.mark.parametrize(
    "data",
    [
        """A,B
-999,1.2
2,-999
3,4.5
""",
        """A,B
-999,1.200
2,-999.000
3,4.500
""",
    ],
)
def test_non_string_na_values(all_parsers, data, na_values):
    # see gh-3611: with an odd float format, we can't match
    # the string "999.0" exactly but still need float matching
    parser = all_parsers
    expected = DataFrame([[np.nan, 1.2], [2.0, np.nan], [3.0, 4.5]], columns=["A", "B"])

    result = parser.read_csv(StringIO(data), na_values=na_values)
    tm.assert_frame_equal(result, expected)


def test_default_na_values(all_parsers):
    _NA_VALUES = {
        "-1.#IND",
        "1.#QNAN",
        "1.#IND",
        "-1.#QNAN",
        "#N/A",
        "N/A",
        "n/a",
        "NA",
        "#NA",
        "NULL",
        "null",
        "NaN",
        "nan",
        "-NaN",
        "-nan",
        "#N/A N/A",
        "",
    }
    assert _NA_VALUES == com._NA_VALUES

    parser = all_parsers
    nv = len(_NA_VALUES)

    def f(i, v):
        if i == 0:
            buf = ""
        elif i > 0:
            buf = "".join([","] * i)

        buf = "{0}{1}".format(buf, v)

        if i < nv - 1:
            buf = "{0}{1}".format(buf, "".join([","] * (nv - i - 1)))

        return buf

    data = StringIO("\n".join(f(i, v) for i, v in enumerate(_NA_VALUES)))
    expected = DataFrame(np.nan, columns=range(nv), index=range(nv))

    result = parser.read_csv(data, header=None)
    tm.assert_frame_equal(result, expected)


@pytest.mark.parametrize("na_values", ["baz", ["baz"]])
def test_custom_na_values(all_parsers, na_values):
    parser = all_parsers
    data = """A,B,C
ignore,this,row
1,NA,3
-1.#IND,5,baz
7,8,NaN
"""
    expected = DataFrame(
        [[1.0, np.nan, 3], [np.nan, 5, np.nan], [7, 8, np.nan]], columns=["A", "B", "C"]
    )
    result = parser.read_csv(StringIO(data), na_values=na_values, skiprows=[1])
    tm.assert_frame_equal(result, expected)


def test_bool_na_values(all_parsers):
    data = """A,B,C
True,False,True
NA,True,False
False,NA,True"""
    parser = all_parsers
    result = parser.read_csv(StringIO(data))
    expected = DataFrame(
        {
            "A": np.array([True, np.nan, False], dtype=object),
            "B": np.array([False, True, np.nan], dtype=object),
            "C": [True, False, True],
        }
    )
    tm.assert_frame_equal(result, expected)


def test_na_value_dict(all_parsers):
    data = """A,B,C
foo,bar,NA
bar,foo,foo
foo,bar,NA
bar,foo,foo"""
    parser = all_parsers
    df = parser.read_csv(StringIO(data), na_values={"A": ["foo"], "B": ["bar"]})
    expected = DataFrame(
        {
            "A": [np.nan, "bar", np.nan, "bar"],
            "B": [np.nan, "foo", np.nan, "foo"],
            "C": [np.nan, "foo", np.nan, "foo"],
        }
    )
    tm.assert_frame_equal(df, expected)


@pytest.mark.parametrize(
    "index_col,expected",
    [
        (
            [0],
            DataFrame({"b": [np.nan], "c": [1], "d": [5]}, index=Index([0], name="a")),
        ),
        (
            [0, 2],
            DataFrame(
                {"b": [np.nan], "d": [5]},
                index=MultiIndex.from_tuples([(0, 1)], names=["a", "c"]),
            ),
        ),
        (
            ["a", "c"],
            DataFrame(
                {"b": [np.nan], "d": [5]},
                index=MultiIndex.from_tuples([(0, 1)], names=["a", "c"]),
            ),
        ),
    ],
)
def test_na_value_dict_multi_index(all_parsers, index_col, expected):
    data = """\
a,b,c,d
0,NA,1,5
"""
    parser = all_parsers
    result = parser.read_csv(StringIO(data), na_values=set(), index_col=index_col)
    tm.assert_frame_equal(result, expected)


@pytest.mark.parametrize(
    "kwargs,expected",
    [
        (
            dict(),
            DataFrame(
                {
                    "A": ["a", "b", np.nan, "d", "e", np.nan, "g"],
                    "B": [1, 2, 3, 4, 5, 6, 7],
                    "C": ["one", "two", "three", np.nan, "five", np.nan, "seven"],
                }
            ),
        ),
        (
            dict(na_values={"A": [], "C": []}, keep_default_na=False),
            DataFrame(
                {
                    "A": ["a", "b", "", "d", "e", "nan", "g"],
                    "B": [1, 2, 3, 4, 5, 6, 7],
                    "C": ["one", "two", "three", "nan", "five", "", "seven"],
                }
            ),
        ),
        (
            dict(na_values=["a"], keep_default_na=False),
            DataFrame(
                {
                    "A": [np.nan, "b", "", "d", "e", "nan", "g"],
                    "B": [1, 2, 3, 4, 5, 6, 7],
                    "C": ["one", "two", "three", "nan", "five", "", "seven"],
                }
            ),
        ),
        (
            dict(na_values={"A": [], "C": []}),
            DataFrame(
                {
                    "A": ["a", "b", np.nan, "d", "e", np.nan, "g"],
                    "B": [1, 2, 3, 4, 5, 6, 7],
                    "C": ["one", "two", "three", np.nan, "five", np.nan, "seven"],
                }
            ),
        ),
    ],
)
def test_na_values_keep_default(all_parsers, kwargs, expected):
    data = """\
A,B,C
a,1,one
b,2,two
,3,three
d,4,nan
e,5,five
nan,6,
g,7,seven
"""
    parser = all_parsers
    result = parser.read_csv(StringIO(data), **kwargs)
    tm.assert_frame_equal(result, expected)


def test_no_na_values_no_keep_default(all_parsers):
    # see gh-4318: passing na_values=None and
    # keep_default_na=False yields 'None" as a na_value
    data = """\
A,B,C
a,1,None
b,2,two
,3,None
d,4,nan
e,5,five
nan,6,
g,7,seven
"""
    parser = all_parsers
    result = parser.read_csv(StringIO(data), keep_default_na=False)

    expected = DataFrame(
        {
            "A": ["a", "b", "", "d", "e", "nan", "g"],
            "B": [1, 2, 3, 4, 5, 6, 7],
            "C": ["None", "two", "None", "nan", "five", "", "seven"],
        }
    )
    tm.assert_frame_equal(result, expected)


def test_no_keep_default_na_dict_na_values(all_parsers):
    # see gh-19227
    data = "a,b\n,2"
    parser = all_parsers
    result = parser.read_csv(
        StringIO(data), na_values={"b": ["2"]}, keep_default_na=False
    )
    expected = DataFrame({"a": [""], "b": [np.nan]})
    tm.assert_frame_equal(result, expected)


def test_no_keep_default_na_dict_na_scalar_values(all_parsers):
    # see gh-19227
    #
    # Scalar values shouldn't cause the parsing to crash or fail.
    data = "a,b\n1,2"
    parser = all_parsers
    df = parser.read_csv(StringIO(data), na_values={"b": 2}, keep_default_na=False)
    expected = DataFrame({"a": [1], "b": [np.nan]})
    tm.assert_frame_equal(df, expected)


@pytest.mark.parametrize("col_zero_na_values", [113125, "113125"])
def test_no_keep_default_na_dict_na_values_diff_reprs(all_parsers, col_zero_na_values):
    # see gh-19227
    data = """\
113125,"blah","/blaha",kjsdkj,412.166,225.874,214.008
729639,"qwer","",asdfkj,466.681,,252.373
"""
    parser = all_parsers
    expected = DataFrame(
        {
            0: [np.nan, 729639.0],
            1: [np.nan, "qwer"],
            2: ["/blaha", np.nan],
            3: ["kjsdkj", "asdfkj"],
            4: [412.166, 466.681],
            5: ["225.874", ""],
            6: [np.nan, 252.373],
        }
    )

    result = parser.read_csv(
        StringIO(data),
        header=None,
        keep_default_na=False,
        na_values={2: "", 6: "214.008", 1: "blah", 0: col_zero_na_values},
    )
    tm.assert_frame_equal(result, expected)


@pytest.mark.parametrize(
    "na_filter,row_data",
    [
        (True, [[1, "A"], [np.nan, np.nan], [3, "C"]]),
        (False, [["1", "A"], ["nan", "B"], ["3", "C"]]),
    ],
)
def test_na_values_na_filter_override(all_parsers, na_filter, row_data):
    data = """\
A,B
1,A
nan,B
3,C
"""
    parser = all_parsers
    result = parser.read_csv(StringIO(data), na_values=["B"], na_filter=na_filter)

    expected = DataFrame(row_data, columns=["A", "B"])
    tm.assert_frame_equal(result, expected)


def test_na_trailing_columns(all_parsers):
    parser = all_parsers
    data = """Date,Currency,Symbol,Type,Units,UnitPrice,Cost,Tax
2012-03-14,USD,AAPL,BUY,1000
2012-05-12,USD,SBUX,SELL,500"""

    # Trailing columns should be all NaN.
    result = parser.read_csv(StringIO(data))
    expected = DataFrame(
        [
            ["2012-03-14", "USD", "AAPL", "BUY", 1000, np.nan, np.nan, np.nan],
            ["2012-05-12", "USD", "SBUX", "SELL", 500, np.nan, np.nan, np.nan],
        ],
        columns=[
            "Date",
            "Currency",
            "Symbol",
            "Type",
            "Units",
            "UnitPrice",
            "Cost",
            "Tax",
        ],
    )
    tm.assert_frame_equal(result, expected)


@pytest.mark.parametrize(
    "na_values,row_data",
    [
        (1, [[np.nan, 2.0], [2.0, np.nan]]),
        ({"a": 2, "b": 1}, [[1.0, 2.0], [np.nan, np.nan]]),
    ],
)
def test_na_values_scalar(all_parsers, na_values, row_data):
    # see gh-12224
    parser = all_parsers
    names = ["a", "b"]
    data = "1,2\n2,1"

    result = parser.read_csv(StringIO(data), names=names, na_values=na_values)
    expected = DataFrame(row_data, columns=names)
    tm.assert_frame_equal(result, expected)


def test_na_values_dict_aliasing(all_parsers):
    parser = all_parsers
    na_values = {"a": 2, "b": 1}
    na_values_copy = na_values.copy()

    names = ["a", "b"]
    data = "1,2\n2,1"

    expected = DataFrame([[1.0, 2.0], [np.nan, np.nan]], columns=names)
    result = parser.read_csv(StringIO(data), names=names, na_values=na_values)

    tm.assert_frame_equal(result, expected)
    tm.assert_dict_equal(na_values, na_values_copy)


def test_na_values_dict_col_index(all_parsers):
    # see gh-14203
    data = "a\nfoo\n1"
    parser = all_parsers
    na_values = {0: "foo"}

    result = parser.read_csv(StringIO(data), na_values=na_values)
    expected = DataFrame({"a": [np.nan, 1]})
    tm.assert_frame_equal(result, expected)


@pytest.mark.parametrize(
    "data,kwargs,expected",
    [
        (
            str(2 ** 63) + "\n" + str(2 ** 63 + 1),
            dict(na_values=[2 ** 63]),
            DataFrame([str(2 ** 63), str(2 ** 63 + 1)]),
        ),
        (str(2 ** 63) + ",1" + "\n,2", dict(), DataFrame([[str(2 ** 63), 1], ["", 2]])),
        (str(2 ** 63) + "\n1", dict(na_values=[2 ** 63]), DataFrame([np.nan, 1])),
    ],
)
def test_na_values_uint64(all_parsers, data, kwargs, expected):
    # see gh-14983
    parser = all_parsers
    result = parser.read_csv(StringIO(data), header=None, **kwargs)
    tm.assert_frame_equal(result, expected)


def test_empty_na_values_no_default_with_index(all_parsers):
    # see gh-15835
    data = "a,1\nb,2"
    parser = all_parsers
    expected = DataFrame({"1": [2]}, index=Index(["b"], name="a"))

    result = parser.read_csv(StringIO(data), index_col=0, keep_default_na=False)
    tm.assert_frame_equal(result, expected)


@pytest.mark.parametrize(
    "na_filter,index_data", [(False, ["", "5"]), (True, [np.nan, 5.0])]
)
def test_no_na_filter_on_index(all_parsers, na_filter, index_data):
    # see gh-5239
    #
    # Don't parse NA-values in index unless na_filter=True
    parser = all_parsers
    data = "a,b,c\n1,,3\n4,5,6"

    expected = DataFrame({"a": [1, 4], "c": [3, 6]}, index=Index(index_data, name="b"))
    result = parser.read_csv(StringIO(data), index_col=[1], na_filter=na_filter)
    tm.assert_frame_equal(result, expected)


def test_inf_na_values_with_int_index(all_parsers):
    # see gh-17128
    parser = all_parsers
    data = "idx,col1,col2\n1,3,4\n2,inf,-inf"

    # Don't fail with OverflowError with inf's and integer index column.
    out = parser.read_csv(StringIO(data), index_col=[0], na_values=["inf", "-inf"])
    expected = DataFrame(
        {"col1": [3, np.nan], "col2": [4, np.nan]}, index=Index([1, 2], name="idx")
    )
    tm.assert_frame_equal(out, expected)


@pytest.mark.parametrize("na_filter", [True, False])
def test_na_values_with_dtype_str_and_na_filter(all_parsers, na_filter):
    # see gh-20377
    parser = all_parsers
    data = "a,b,c\n1,,3\n4,5,6"

    # na_filter=True --> missing value becomes NaN.
    # na_filter=False --> missing value remains empty string.
    empty = np.nan if na_filter else ""
    expected = DataFrame({"a": ["1", "4"], "b": [empty, "5"], "c": ["3", "6"]})

    result = parser.read_csv(StringIO(data), na_filter=na_filter, dtype=str)
    tm.assert_frame_equal(result, expected)


@pytest.mark.parametrize(
    "data, na_values",
    [
        ("false,1\n,1\ntrue", None),
        ("false,1\nnull,1\ntrue", None),
        ("false,1\nnan,1\ntrue", None),
        ("false,1\nfoo,1\ntrue", "foo"),
        ("false,1\nfoo,1\ntrue", ["foo"]),
        ("false,1\nfoo,1\ntrue", {"a": "foo"}),
    ],
)
def test_cast_NA_to_bool_raises_error(all_parsers, data, na_values):
    parser = all_parsers
    msg = (
        "(Bool column has NA values in column [0a])|"
        "(cannot safely convert passed user dtype of "
        "bool for object dtyped data in column 0)"
    )
    with pytest.raises(ValueError, match=msg):
        parser.read_csv(
            StringIO(data),
            header=None,
            names=["a", "b"],
            dtype={"a": "bool"},
            na_values=na_values,
        )