"""
Tests parsers ability to read and parse non-local files
and hence require a network connection to be read.
"""
from io import BytesIO, StringIO
import logging
import numpy as np
import pytest
import pandas.util._test_decorators as td
from pandas import DataFrame
import pandas.util.testing as tm
from pandas.io.parsers import read_csv
@pytest.mark.network
@pytest.mark.parametrize(
"compress_type, extension",
[("gzip", ".gz"), ("bz2", ".bz2"), ("zip", ".zip"), ("xz", ".xz")],
)
@pytest.mark.parametrize("mode", ["explicit", "infer"])
@pytest.mark.parametrize("engine", ["python", "c"])
def test_compressed_urls(salaries_table, compress_type, extension, mode, engine):
check_compressed_urls(salaries_table, compress_type, extension, mode, engine)
@tm.network
def check_compressed_urls(salaries_table, compression, extension, mode, engine):
# test reading compressed urls with various engines and
# extension inference
base_url = (
"https://github.com/pandas-dev/pandas/raw/master/"
"pandas/tests/io/parser/data/salaries.csv"
)
url = base_url + extension
if mode != "explicit":
compression = mode
url_table = read_csv(url, sep="\t", compression=compression, engine=engine)
tm.assert_frame_equal(url_table, salaries_table)
@pytest.fixture
def tips_df(datapath):
"""DataFrame with the tips dataset."""
return read_csv(datapath("io", "parser", "data", "tips.csv"))
@pytest.mark.usefixtures("s3_resource")
@td.skip_if_not_us_locale()
class TestS3:
def test_parse_public_s3_bucket(self, tips_df):
pytest.importorskip("s3fs")
# more of an integration test due to the not-public contents portion
# can probably mock this though.
for ext, comp in [("", None), (".gz", "gzip"), (".bz2", "bz2")]:
df = read_csv("s3://pandas-test/tips.csv" + ext, compression=comp)
assert isinstance(df, DataFrame)
assert not df.empty
tm.assert_frame_equal(df, tips_df)
# Read public file from bucket with not-public contents
df = read_csv("s3://cant_get_it/tips.csv")
assert isinstance(df, DataFrame)
assert not df.empty
tm.assert_frame_equal(df, tips_df)
def test_parse_public_s3n_bucket(self, tips_df):
# Read from AWS s3 as "s3n" URL
df = read_csv("s3n://pandas-test/tips.csv", nrows=10)
assert isinstance(df, DataFrame)
assert not df.empty
tm.assert_frame_equal(tips_df.iloc[:10], df)
def test_parse_public_s3a_bucket(self, tips_df):
# Read from AWS s3 as "s3a" URL
df = read_csv("s3a://pandas-test/tips.csv", nrows=10)
assert isinstance(df, DataFrame)
assert not df.empty
tm.assert_frame_equal(tips_df.iloc[:10], df)
def test_parse_public_s3_bucket_nrows(self, tips_df):
for ext, comp in [("", None), (".gz", "gzip"), (".bz2", "bz2")]:
df = read_csv("s3://pandas-test/tips.csv" + ext, nrows=10, compression=comp)
assert isinstance(df, DataFrame)
assert not df.empty
tm.assert_frame_equal(tips_df.iloc[:10], df)
def test_parse_public_s3_bucket_chunked(self, tips_df):
# Read with a chunksize
chunksize = 5
for ext, comp in [("", None), (".gz", "gzip"), (".bz2", "bz2")]:
df_reader = read_csv(
"s3://pandas-test/tips.csv" + ext, chunksize=chunksize, compression=comp
)
assert df_reader.chunksize == chunksize
for i_chunk in [0, 1, 2]:
# Read a couple of chunks and make sure we see them
# properly.
df = df_reader.get_chunk()
assert isinstance(df, DataFrame)
assert not df.empty
true_df = tips_df.iloc[chunksize * i_chunk : chunksize * (i_chunk + 1)]
tm.assert_frame_equal(true_df, df)
def test_parse_public_s3_bucket_chunked_python(self, tips_df):
# Read with a chunksize using the Python parser
chunksize = 5
for ext, comp in [("", None), (".gz", "gzip"), (".bz2", "bz2")]:
df_reader = read_csv(
"s3://pandas-test/tips.csv" + ext,
chunksize=chunksize,
compression=comp,
engine="python",
)
assert df_reader.chunksize == chunksize
for i_chunk in [0, 1, 2]:
# Read a couple of chunks and make sure we see them properly.
df = df_reader.get_chunk()
assert isinstance(df, DataFrame)
assert not df.empty
true_df = tips_df.iloc[chunksize * i_chunk : chunksize * (i_chunk + 1)]
tm.assert_frame_equal(true_df, df)
def test_parse_public_s3_bucket_python(self, tips_df):
for ext, comp in [("", None), (".gz", "gzip"), (".bz2", "bz2")]:
df = read_csv(
"s3://pandas-test/tips.csv" + ext, engine="python", compression=comp
)
assert isinstance(df, DataFrame)
assert not df.empty
tm.assert_frame_equal(df, tips_df)
def test_infer_s3_compression(self, tips_df):
for ext in ["", ".gz", ".bz2"]:
df = read_csv(
"s3://pandas-test/tips.csv" + ext, engine="python", compression="infer"
)
assert isinstance(df, DataFrame)
assert not df.empty
tm.assert_frame_equal(df, tips_df)
def test_parse_public_s3_bucket_nrows_python(self, tips_df):
for ext, comp in [("", None), (".gz", "gzip"), (".bz2", "bz2")]:
df = read_csv(
"s3://pandas-test/tips.csv" + ext,
engine="python",
nrows=10,
compression=comp,
)
assert isinstance(df, DataFrame)
assert not df.empty
tm.assert_frame_equal(tips_df.iloc[:10], df)
def test_s3_fails(self):
with pytest.raises(IOError):
read_csv("s3://nyqpug/asdf.csv")
# Receive a permission error when trying to read a private bucket.
# It's irrelevant here that this isn't actually a table.
with pytest.raises(IOError):
read_csv("s3://cant_get_it/")
def test_read_csv_handles_boto_s3_object(self, s3_resource, tips_file):
# see gh-16135
s3_object = s3_resource.meta.client.get_object(
Bucket="pandas-test", Key="tips.csv"
)
result = read_csv(BytesIO(s3_object["Body"].read()), encoding="utf8")
assert isinstance(result, DataFrame)
assert not result.empty
expected = read_csv(tips_file)
tm.assert_frame_equal(result, expected)
def test_read_csv_chunked_download(self, s3_resource, caplog):
# 8 MB, S3FS usees 5MB chunks
df = DataFrame(np.random.randn(100000, 4), columns=list("abcd"))
buf = BytesIO()
str_buf = StringIO()
df.to_csv(str_buf)
buf = BytesIO(str_buf.getvalue().encode("utf-8"))
s3_resource.Bucket("pandas-test").put_object(Key="large-file.csv", Body=buf)
with caplog.at_level(logging.DEBUG, logger="s3fs.core"):
read_csv("s3://pandas-test/large-file.csv", nrows=5)
# log of fetch_range (start, stop)
assert (0, 5505024) in {x.args[-2:] for x in caplog.records}
def test_read_s3_with_hash_in_key(self, tips_df):
# GH 25945
result = read_csv("s3://pandas-test/tips#1.csv")
tm.assert_frame_equal(tips_df, result)