Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

aaronreidsmith / pandas   python

Repository URL to install this package:

Version: 0.25.3 

/ tests / io / test_packers.py

import datetime
import glob
from io import BytesIO
import os
from warnings import catch_warnings, filterwarnings

import numpy as np
import pytest

from pandas._libs.tslib import iNaT
from pandas.errors import PerformanceWarning

import pandas
from pandas import (
    Categorical,
    DataFrame,
    Index,
    Interval,
    MultiIndex,
    NaT,
    Period,
    Series,
    Timestamp,
    bdate_range,
    date_range,
    period_range,
)
import pandas.util.testing as tm
from pandas.util.testing import (
    assert_categorical_equal,
    assert_frame_equal,
    assert_index_equal,
    assert_series_equal,
    ensure_clean,
)

from pandas.io.packers import read_msgpack, to_msgpack

nan = np.nan

try:
    import blosc  # NOQA
except ImportError:
    _BLOSC_INSTALLED = False
else:
    _BLOSC_INSTALLED = True

try:
    import zlib  # NOQA
except ImportError:
    _ZLIB_INSTALLED = False
else:
    _ZLIB_INSTALLED = True


@pytest.fixture(scope="module")
def current_packers_data():
    # our current version packers data
    from pandas.tests.io.generate_legacy_storage_files import create_msgpack_data

    return create_msgpack_data()


@pytest.fixture(scope="module")
def all_packers_data():
    # our all of our current version packers data
    from pandas.tests.io.generate_legacy_storage_files import create_data

    return create_data()


def check_arbitrary(a, b):

    if isinstance(a, (list, tuple)) and isinstance(b, (list, tuple)):
        assert len(a) == len(b)
        for a_, b_ in zip(a, b):
            check_arbitrary(a_, b_)
    elif isinstance(a, DataFrame):
        assert_frame_equal(a, b)
    elif isinstance(a, Series):
        assert_series_equal(a, b)
    elif isinstance(a, Index):
        assert_index_equal(a, b)
    elif isinstance(a, Categorical):
        # Temp,
        # Categorical.categories is changed from str to bytes in PY3
        # maybe the same as GH 13591
        if b.categories.inferred_type == "string":
            pass
        else:
            tm.assert_categorical_equal(a, b)
    elif a is NaT:
        assert b is NaT
    elif isinstance(a, Timestamp):
        assert a == b
        assert a.freq == b.freq
    else:
        assert a == b


@pytest.mark.filterwarnings("ignore:.*msgpack:FutureWarning")
class TestPackers:
    def setup_method(self, method):
        self.path = "__{}__.msg".format(tm.rands(10))

    def teardown_method(self, method):
        pass

    def encode_decode(self, x, compress=None, **kwargs):
        with ensure_clean(self.path) as p:
            to_msgpack(p, x, compress=compress, **kwargs)
            return read_msgpack(p, **kwargs)


@pytest.mark.filterwarnings("ignore:.*msgpack:FutureWarning")
class TestAPI(TestPackers):
    def test_string_io(self):

        df = DataFrame(np.random.randn(10, 2))
        s = df.to_msgpack(None)
        result = read_msgpack(s)
        tm.assert_frame_equal(result, df)

        s = df.to_msgpack()
        result = read_msgpack(s)
        tm.assert_frame_equal(result, df)

        s = df.to_msgpack()
        result = read_msgpack(BytesIO(s))
        tm.assert_frame_equal(result, df)

        s = to_msgpack(None, df)
        result = read_msgpack(s)
        tm.assert_frame_equal(result, df)

        with ensure_clean(self.path) as p:

            s = df.to_msgpack()
            with open(p, "wb") as fh:
                fh.write(s)
            result = read_msgpack(p)
            tm.assert_frame_equal(result, df)

    def test_path_pathlib(self):
        df = tm.makeDataFrame()
        result = tm.round_trip_pathlib(df.to_msgpack, read_msgpack)
        tm.assert_frame_equal(df, result)

    def test_path_localpath(self):
        df = tm.makeDataFrame()
        result = tm.round_trip_localpath(df.to_msgpack, read_msgpack)
        tm.assert_frame_equal(df, result)

    def test_iterator_with_string_io(self):

        dfs = [DataFrame(np.random.randn(10, 2)) for i in range(5)]
        s = to_msgpack(None, *dfs)
        for i, result in enumerate(read_msgpack(s, iterator=True)):
            tm.assert_frame_equal(result, dfs[i])

    def test_invalid_arg(self):
        # GH10369
        class A:
            def __init__(self):
                self.read = 0

        msg = "Invalid file path or buffer object type: <class '{}'>"
        invalid_path = os.path.join("nonexistent_dir", "df.msgpack")
        with pytest.raises(ValueError, match=msg.format("NoneType")):
            read_msgpack(path_or_buf=None)
        with pytest.raises(ValueError, match=msg.format("dict")):
            read_msgpack(path_or_buf={})
        with pytest.raises(ValueError, match=msg.format(r".*\.A")):
            read_msgpack(path_or_buf=A())
        with pytest.raises(FileNotFoundError, match="does not exist"):
            read_msgpack(path_or_buf=invalid_path)


@pytest.mark.filterwarnings("ignore:.*msgpack:FutureWarning")
class TestNumpy(TestPackers):
    def test_numpy_scalar_float(self):
        x = np.float32(np.random.rand())
        x_rec = self.encode_decode(x)
        tm.assert_almost_equal(x, x_rec)

    def test_numpy_scalar_complex(self):
        x = np.complex64(np.random.rand() + 1j * np.random.rand())
        x_rec = self.encode_decode(x)
        assert np.allclose(x, x_rec)

    def test_scalar_float(self):
        x = np.random.rand()
        x_rec = self.encode_decode(x)
        tm.assert_almost_equal(x, x_rec)

    def test_scalar_bool(self):
        x = np.bool_(1)
        x_rec = self.encode_decode(x)
        tm.assert_almost_equal(x, x_rec)

        x = np.bool_(0)
        x_rec = self.encode_decode(x)
        tm.assert_almost_equal(x, x_rec)

    def test_scalar_complex(self):
        x = np.random.rand() + 1j * np.random.rand()
        x_rec = self.encode_decode(x)
        assert np.allclose(x, x_rec)

    def test_list_numpy_float(self):
        x = [np.float32(np.random.rand()) for i in range(5)]
        x_rec = self.encode_decode(x)
        # current msgpack cannot distinguish list/tuple
        tm.assert_almost_equal(tuple(x), x_rec)

        x_rec = self.encode_decode(tuple(x))
        tm.assert_almost_equal(tuple(x), x_rec)

    def test_list_numpy_float_complex(self):
        if not hasattr(np, "complex128"):
            pytest.skip("numpy can not handle complex128")

        x = [np.float32(np.random.rand()) for i in range(5)] + [
            np.complex128(np.random.rand() + 1j * np.random.rand()) for i in range(5)
        ]
        x_rec = self.encode_decode(x)
        assert np.allclose(x, x_rec)

    def test_list_float(self):
        x = [np.random.rand() for i in range(5)]
        x_rec = self.encode_decode(x)
        # current msgpack cannot distinguish list/tuple
        tm.assert_almost_equal(tuple(x), x_rec)

        x_rec = self.encode_decode(tuple(x))
        tm.assert_almost_equal(tuple(x), x_rec)

    def test_list_float_complex(self):
        x = [np.random.rand() for i in range(5)] + [
            (np.random.rand() + 1j * np.random.rand()) for i in range(5)
        ]
        x_rec = self.encode_decode(x)
        assert np.allclose(x, x_rec)

    def test_dict_float(self):
        x = {"foo": 1.0, "bar": 2.0}
        x_rec = self.encode_decode(x)
        tm.assert_almost_equal(x, x_rec)

    def test_dict_complex(self):
        x = {"foo": 1.0 + 1.0j, "bar": 2.0 + 2.0j}
        x_rec = self.encode_decode(x)
        tm.assert_dict_equal(x, x_rec)

        for key in x:
            tm.assert_class_equal(x[key], x_rec[key], obj="complex value")

    def test_dict_numpy_float(self):
        x = {"foo": np.float32(1.0), "bar": np.float32(2.0)}
        x_rec = self.encode_decode(x)
        tm.assert_almost_equal(x, x_rec)

    def test_dict_numpy_complex(self):
        x = {"foo": np.complex128(1.0 + 1.0j), "bar": np.complex128(2.0 + 2.0j)}
        x_rec = self.encode_decode(x)
        tm.assert_dict_equal(x, x_rec)

        for key in x:
            tm.assert_class_equal(x[key], x_rec[key], obj="numpy complex128")

    def test_numpy_array_float(self):

        # run multiple times
        for n in range(10):
            x = np.random.rand(10)
            for dtype in ["float32", "float64"]:
                x = x.astype(dtype)
                x_rec = self.encode_decode(x)
                tm.assert_almost_equal(x, x_rec)

    def test_numpy_array_complex(self):
        x = (np.random.rand(5) + 1j * np.random.rand(5)).astype(np.complex128)
        x_rec = self.encode_decode(x)
        assert all(map(lambda x, y: x == y, x, x_rec)) and x.dtype == x_rec.dtype

    def test_list_mixed(self):
        x = [1.0, np.float32(3.5), np.complex128(4.25), "foo", np.bool_(1)]
        x_rec = self.encode_decode(x)
        # current msgpack cannot distinguish list/tuple
        tm.assert_almost_equal(tuple(x), x_rec)

        x_rec = self.encode_decode(tuple(x))
        tm.assert_almost_equal(tuple(x), x_rec)


@pytest.mark.filterwarnings("ignore:.*msgpack:FutureWarning")
class TestBasic(TestPackers):
    def test_timestamp(self):

        for i in [
            Timestamp("20130101"),
            Timestamp("20130101", tz="US/Eastern"),
            Timestamp("201301010501"),
        ]:
            i_rec = self.encode_decode(i)
            assert i == i_rec

    def test_nat(self):
        nat_rec = self.encode_decode(NaT)
        assert NaT is nat_rec

    def test_datetimes(self):

        for i in [
            datetime.datetime(2013, 1, 1),
            datetime.datetime(2013, 1, 1, 5, 1),
            datetime.date(2013, 1, 1),
            np.datetime64(datetime.datetime(2013, 1, 5, 2, 15)),
        ]:
            i_rec = self.encode_decode(i)
            assert i == i_rec

    def test_timedeltas(self):

        for i in [
            datetime.timedelta(days=1),
            datetime.timedelta(days=1, seconds=10),
            np.timedelta64(1000000),
        ]:
            i_rec = self.encode_decode(i)
            assert i == i_rec

    def test_periods(self):
        # 13463
        for i in [Period("2010-09", "M"), Period("2014-Q1", "Q")]:
            i_rec = self.encode_decode(i)
            assert i == i_rec

    def test_intervals(self):
        # 19967
        for i in [Interval(0, 1), Interval(0, 1, "left"), Interval(10, 25.0, "right")]:
            i_rec = self.encode_decode(i)
            assert i == i_rec


@pytest.mark.filterwarnings("ignore:.*msgpack:FutureWarning")
class TestIndex(TestPackers):
    def setup_method(self, method):
        super().setup_method(method)

        self.d = {
            "string": tm.makeStringIndex(100),
            "date": tm.makeDateIndex(100),
            "int": tm.makeIntIndex(100),
            "rng": tm.makeRangeIndex(100),
            "float": tm.makeFloatIndex(100),
            "empty": Index([]),
            "tuple": Index(zip(["foo", "bar", "baz"], [1, 2, 3])),
            "period": Index(period_range("2012-1-1", freq="M", periods=3)),
            "date2": Index(date_range("2013-01-1", periods=10)),
            "bdate": Index(bdate_range("2013-01-02", periods=10)),
            "cat": tm.makeCategoricalIndex(100),
            "interval": tm.makeIntervalIndex(100),
            "timedelta": tm.makeTimedeltaIndex(100, "H"),
        }

        self.mi = {
            "reg": MultiIndex.from_tuples(
                [
                    ("bar", "one"),
                    ("baz", "two"),
                    ("foo", "two"),
                    ("qux", "one"),
                    ("qux", "two"),
                ],
                names=["first", "second"],
            )
        }

    def test_basic_index(self):

        for s, i in self.d.items():
            i_rec = self.encode_decode(i)
            tm.assert_index_equal(i, i_rec)

        # datetime with no freq (GH5506)
        i = Index([Timestamp("20130101"), Timestamp("20130103")])
        i_rec = self.encode_decode(i)
        tm.assert_index_equal(i, i_rec)

        # datetime with timezone
        i = Index(
            [Timestamp("20130101 9:00:00"), Timestamp("20130103 11:00:00")]
        ).tz_localize("US/Eastern")
        i_rec = self.encode_decode(i)
        tm.assert_index_equal(i, i_rec)

    def test_multi_index(self):

        for s, i in self.mi.items():
            i_rec = self.encode_decode(i)
            tm.assert_index_equal(i, i_rec)

    def test_unicode(self):
        i = tm.makeUnicodeIndex(100)

        i_rec = self.encode_decode(i)
        tm.assert_index_equal(i, i_rec)

    def categorical_index(self):
        # GH15487
        df = DataFrame(np.random.randn(10, 2))
        df = df.astype({0: "category"}).set_index(0)
        result = self.encode_decode(df)
        tm.assert_frame_equal(result, df)


@pytest.mark.filterwarnings("ignore:.*msgpack:FutureWarning")
class TestSeries(TestPackers):
    def setup_method(self, method):
        super().setup_method(method)

        self.d = {}

        s = tm.makeStringSeries()
        s.name = "string"
        self.d["string"] = s

        s = tm.makeObjectSeries()
        s.name = "object"
        self.d["object"] = s

        s = Series(iNaT, dtype="M8[ns]", index=range(5))
        self.d["date"] = s

        data = {
            "A": [0.0, 1.0, 2.0, 3.0, np.nan],
            "B": [0, 1, 0, 1, 0],
            "C": ["foo1", "foo2", "foo3", "foo4", "foo5"],
            "D": date_range("1/1/2009", periods=5),
            "E": [0.0, 1, Timestamp("20100101"), "foo", 2.0],
            "F": [Timestamp("20130102", tz="US/Eastern")] * 2
            + [Timestamp("20130603", tz="CET")] * 3,
            "G": [Timestamp("20130102", tz="US/Eastern")] * 5,
            "H": Categorical([1, 2, 3, 4, 5]),
            "I": Categorical([1, 2, 3, 4, 5], ordered=True),
            "J": (np.bool_(1), 2, 3, 4, 5),
        }

        self.d["float"] = Series(data["A"])
        self.d["int"] = Series(data["B"])
        self.d["mixed"] = Series(data["E"])
        self.d["dt_tz_mixed"] = Series(data["F"])
        self.d["dt_tz"] = Series(data["G"])
        self.d["cat_ordered"] = Series(data["H"])
        self.d["cat_unordered"] = Series(data["I"])
        self.d["numpy_bool_mixed"] = Series(data["J"])

    def test_basic(self):

        # run multiple times here
        for n in range(10):
            for s, i in self.d.items():
                i_rec = self.encode_decode(i)
                assert_series_equal(i, i_rec)


@pytest.mark.filterwarnings("ignore:.*msgpack:FutureWarning")
class TestCategorical(TestPackers):
    def setup_method(self, method):
        super().setup_method(method)

        self.d = {}

        self.d["plain_str"] = Categorical(["a", "b", "c", "d", "e"])
        self.d["plain_str_ordered"] = Categorical(
            ["a", "b", "c", "d", "e"], ordered=True
        )

        self.d["plain_int"] = Categorical([5, 6, 7, 8])
        self.d["plain_int_ordered"] = Categorical([5, 6, 7, 8], ordered=True)

    def test_basic(self):

        # run multiple times here
        for n in range(10):
            for s, i in self.d.items():
                i_rec = self.encode_decode(i)
                assert_categorical_equal(i, i_rec)


@pytest.mark.filterwarnings("ignore:msgpack:FutureWarning")
class TestNDFrame(TestPackers):
    def setup_method(self, method):
        super().setup_method(method)

        data = {
            "A": [0.0, 1.0, 2.0, 3.0, np.nan],
            "B": [0, 1, 0, 1, 0],
            "C": ["foo1", "foo2", "foo3", "foo4", "foo5"],
            "D": date_range("1/1/2009", periods=5),
            "E": [0.0, 1, Timestamp("20100101"), "foo", 2.0],
            "F": [Timestamp("20130102", tz="US/Eastern")] * 5,
            "G": [Timestamp("20130603", tz="CET")] * 5,
            "H": Categorical(["a", "b", "c", "d", "e"]),
            "I": Categorical(["a", "b", "c", "d", "e"], ordered=True),
        }

        self.frame = {
            "float": DataFrame(dict(A=data["A"], B=Series(data["A"]) + 1)),
            "int": DataFrame(dict(A=data["B"], B=Series(data["B"]) + 1)),
            "mixed": DataFrame(data),
        }

    def test_basic_frame(self):

        for s, i in self.frame.items():
            i_rec = self.encode_decode(i)
            assert_frame_equal(i, i_rec)

    def test_multi(self):

        i_rec = self.encode_decode(self.frame)
        for k in self.frame.keys():
            assert_frame_equal(self.frame[k], i_rec[k])

        packed_items = tuple(
            [self.frame["float"], self.frame["float"].A, self.frame["float"].B, None]
        )
        l_rec = self.encode_decode(packed_items)
        check_arbitrary(packed_items, l_rec)

        # this is an oddity in that packed lists will be returned as tuples
        packed_items = [
            self.frame["float"],
            self.frame["float"].A,
            self.frame["float"].B,
            None,
        ]
        l_rec = self.encode_decode(packed_items)
        assert isinstance(l_rec, tuple)
        check_arbitrary(packed_items, l_rec)

    def test_iterator(self):

        packed_items = [
            self.frame["float"],
            self.frame["float"].A,
            self.frame["float"].B,
            None,
        ]

        with ensure_clean(self.path) as path:
            to_msgpack(path, *packed_items)
            for i, packed in enumerate(read_msgpack(path, iterator=True)):
                check_arbitrary(packed, packed_items[i])

    def tests_datetimeindex_freq_issue(self):

        # GH 5947
        # inferring freq on the datetimeindex
        df = DataFrame([1, 2, 3], index=date_range("1/1/2013", "1/3/2013"))
        result = self.encode_decode(df)
        assert_frame_equal(result, df)

        df = DataFrame([1, 2], index=date_range("1/1/2013", "1/2/2013"))
        result = self.encode_decode(df)
        assert_frame_equal(result, df)

    def test_dataframe_duplicate_column_names(self):

        # GH 9618
        expected_1 = DataFrame(columns=["a", "a"])
        expected_2 = DataFrame(columns=[1] * 100)
        expected_2.loc[0] = np.random.randn(100)
        expected_3 = DataFrame(columns=[1, 1])
        expected_3.loc[0] = ["abc", np.nan]

        result_1 = self.encode_decode(expected_1)
        result_2 = self.encode_decode(expected_2)
        result_3 = self.encode_decode(expected_3)

        assert_frame_equal(result_1, expected_1)
        assert_frame_equal(result_2, expected_2)
        assert_frame_equal(result_3, expected_3)


@pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
@pytest.mark.filterwarnings("ignore:Series.to_sparse:FutureWarning")
@pytest.mark.filterwarnings("ignore:DataFrame.to_sparse:FutureWarning")
@pytest.mark.filterwarnings("ignore:.*msgpack:FutureWarning")
class TestSparse(TestPackers):
    def _check_roundtrip(self, obj, comparator, **kwargs):

        # currently these are not implemetned
        # i_rec = self.encode_decode(obj)
        # comparator(obj, i_rec, **kwargs)
        msg = r"msgpack sparse (series|frame) is not implemented"
        with pytest.raises(NotImplementedError, match=msg):
            self.encode_decode(obj)

    def test_sparse_series(self):

        s = tm.makeStringSeries()
        s[3:5] = np.nan
        ss = s.to_sparse()
        self._check_roundtrip(ss, tm.assert_series_equal, check_series_type=True)

        ss2 = s.to_sparse(kind="integer")
        self._check_roundtrip(ss2, tm.assert_series_equal, check_series_type=True)

        ss3 = s.to_sparse(fill_value=0)
        self._check_roundtrip(ss3, tm.assert_series_equal, check_series_type=True)

    def test_sparse_frame(self):

        s = tm.makeDataFrame()
        s.loc[3:5, 1:3] = np.nan
        s.loc[8:10, -2] = np.nan
        ss = s.to_sparse()

        self._check_roundtrip(ss, tm.assert_frame_equal, check_frame_type=True)

        ss2 = s.to_sparse(kind="integer")
        self._check_roundtrip(ss2, tm.assert_frame_equal, check_frame_type=True)

        ss3 = s.to_sparse(fill_value=0)
        self._check_roundtrip(ss3, tm.assert_frame_equal, check_frame_type=True)


@pytest.mark.filterwarnings("ignore:.*msgpack:FutureWarning")
class TestCompression(TestPackers):
    """See https://github.com/pandas-dev/pandas/pull/9783
    """

    def setup_method(self, method):
        try:
            from sqlalchemy import create_engine

            self._create_sql_engine = create_engine
        except ImportError:
            self._SQLALCHEMY_INSTALLED = False
        else:
            self._SQLALCHEMY_INSTALLED = True

        super().setup_method(method)
        data = {
            "A": np.arange(1000, dtype=np.float64),
            "B": np.arange(1000, dtype=np.int32),
            "C": list(100 * "abcdefghij"),
            "D": date_range(datetime.datetime(2015, 4, 1), periods=1000),
            "E": [datetime.timedelta(days=x) for x in range(1000)],
        }
        self.frame = {
            "float": DataFrame({k: data[k] for k in ["A", "A"]}),
            "int": DataFrame({k: data[k] for k in ["B", "B"]}),
            "mixed": DataFrame(data),
        }

    def test_plain(self):
        i_rec = self.encode_decode(self.frame)
        for k in self.frame.keys():
            assert_frame_equal(self.frame[k], i_rec[k])

    def _test_compression(self, compress):
        i_rec = self.encode_decode(self.frame, compress=compress)
        for k in self.frame.keys():
            value = i_rec[k]
            expected = self.frame[k]
            assert_frame_equal(value, expected)
            # make sure that we can write to the new frames
            for block in value._data.blocks:
                assert block.values.flags.writeable

    def test_compression_zlib(self):
        if not _ZLIB_INSTALLED:
            pytest.skip("no zlib")
        self._test_compression("zlib")

    def test_compression_blosc(self):
        if not _BLOSC_INSTALLED:
            pytest.skip("no blosc")
        self._test_compression("blosc")

    def _test_compression_warns_when_decompress_caches(self, monkeypatch, compress):
        not_garbage = []
        control = []  # copied data

        compress_module = globals()[compress]
        real_decompress = compress_module.decompress

        def decompress(ob):
            """mock decompress function that delegates to the real
            decompress but caches the result and a copy of the result.
            """
            res = real_decompress(ob)
            not_garbage.append(res)  # hold a reference to this bytes object
            control.append(bytearray(res))  # copy the data here to check later
            return res

        # types mapped to values to add in place.
        rhs = {
            np.dtype("float64"): 1.0,
            np.dtype("int32"): 1,
            np.dtype("object"): "a",
            np.dtype("datetime64[ns]"): np.timedelta64(1, "ns"),
            np.dtype("timedelta64[ns]"): np.timedelta64(1, "ns"),
        }

        with monkeypatch.context() as m, tm.assert_produces_warning(
            PerformanceWarning
        ) as ws:
            m.setattr(compress_module, "decompress", decompress)

            with catch_warnings():
                filterwarnings("ignore", category=FutureWarning)
                i_rec = self.encode_decode(self.frame, compress=compress)
                for k in self.frame.keys():

                    value = i_rec[k]
                    expected = self.frame[k]
                    assert_frame_equal(value, expected)
                    # make sure that we can write to the new frames even though
                    # we needed to copy the data
                    for block in value._data.blocks:
                        assert block.values.flags.writeable
                        # mutate the data in some way
                        block.values[0] += rhs[block.dtype]

        for w in ws:
            # check the messages from our warnings
            assert str(w.message) == (
                "copying data after decompressing; "
                "this may mean that decompress is "
                "caching its result"
            )

        for buf, control_buf in zip(not_garbage, control):
            # make sure none of our mutations above affected the
            # original buffers
            assert buf == control_buf

    def test_compression_warns_when_decompress_caches_zlib(self, monkeypatch):
        if not _ZLIB_INSTALLED:
            pytest.skip("no zlib")
        self._test_compression_warns_when_decompress_caches(monkeypatch, "zlib")

    def test_compression_warns_when_decompress_caches_blosc(self, monkeypatch):
        if not _BLOSC_INSTALLED:
            pytest.skip("no blosc")
        self._test_compression_warns_when_decompress_caches(monkeypatch, "blosc")

    def _test_small_strings_no_warn(self, compress):
        empty = np.array([], dtype="uint8")
        with tm.assert_produces_warning(None):
            with catch_warnings():
                filterwarnings("ignore", category=FutureWarning)
                empty_unpacked = self.encode_decode(empty, compress=compress)

        tm.assert_numpy_array_equal(empty_unpacked, empty)
        assert empty_unpacked.flags.writeable

        char = np.array([ord(b"a")], dtype="uint8")
        with tm.assert_produces_warning(None):
            with catch_warnings():
                filterwarnings("ignore", category=FutureWarning)
                char_unpacked = self.encode_decode(char, compress=compress)

        tm.assert_numpy_array_equal(char_unpacked, char)
        assert char_unpacked.flags.writeable
        # if this test fails I am sorry because the interpreter is now in a
        # bad state where b'a' points to 98 == ord(b'b').
        char_unpacked[0] = ord(b"b")

        # we compare the ord of bytes b'a' with unicode 'a' because the should
        # always be the same (unless we were able to mutate the shared
        # character singleton in which case ord(b'a') == ord(b'b').
        assert ord(b"a") == ord("a")
        tm.assert_numpy_array_equal(char_unpacked, np.array([ord(b"b")], dtype="uint8"))

    def test_small_strings_no_warn_zlib(self):
        if not _ZLIB_INSTALLED:
            pytest.skip("no zlib")
        self._test_small_strings_no_warn("zlib")

    def test_small_strings_no_warn_blosc(self):
        if not _BLOSC_INSTALLED:
            pytest.skip("no blosc")
        self._test_small_strings_no_warn("blosc")

    def test_readonly_axis_blosc(self):
        # GH11880
        if not _BLOSC_INSTALLED:
            pytest.skip("no blosc")
        df1 = DataFrame({"A": list("abcd")})
        df2 = DataFrame(df1, index=[1.0, 2.0, 3.0, 4.0])
        assert 1 in self.encode_decode(df1["A"], compress="blosc")
        assert 1.0 in self.encode_decode(df2["A"], compress="blosc")

    def test_readonly_axis_zlib(self):
        # GH11880
        df1 = DataFrame({"A": list("abcd")})
        df2 = DataFrame(df1, index=[1.0, 2.0, 3.0, 4.0])
        assert 1 in self.encode_decode(df1["A"], compress="zlib")
        assert 1.0 in self.encode_decode(df2["A"], compress="zlib")

    def test_readonly_axis_blosc_to_sql(self):
        # GH11880
        if not _BLOSC_INSTALLED:
            pytest.skip("no blosc")
        if not self._SQLALCHEMY_INSTALLED:
            pytest.skip("no sqlalchemy")
        expected = DataFrame({"A": list("abcd")})
        df = self.encode_decode(expected, compress="blosc")
        eng = self._create_sql_engine("sqlite:///:memory:")
        df.to_sql("test", eng, if_exists="append")
        result = pandas.read_sql_table("test", eng, index_col="index")
        result.index.names = [None]
        assert_frame_equal(expected, result)

    def test_readonly_axis_zlib_to_sql(self):
        # GH11880
        if not _ZLIB_INSTALLED:
            pytest.skip("no zlib")
        if not self._SQLALCHEMY_INSTALLED:
            pytest.skip("no sqlalchemy")
        expected = DataFrame({"A": list("abcd")})
        df = self.encode_decode(expected, compress="zlib")
        eng = self._create_sql_engine("sqlite:///:memory:")
        df.to_sql("test", eng, if_exists="append")
        result = pandas.read_sql_table("test", eng, index_col="index")
        result.index.names = [None]
        assert_frame_equal(expected, result)


@pytest.mark.filterwarnings("ignore:.*msgpack:FutureWarning")
class TestEncoding(TestPackers):
    def setup_method(self, method):
        super().setup_method(method)
        data = {
            "A": ["\u2019"] * 1000,
            "B": np.arange(1000, dtype=np.int32),
            "C": list(100 * "abcdefghij"),
            "D": date_range(datetime.datetime(2015, 4, 1), periods=1000),
            "E": [datetime.timedelta(days=x) for x in range(1000)],
            "G": [400] * 1000,
        }
        self.frame = {
            "float": DataFrame({k: data[k] for k in ["A", "A"]}),
            "int": DataFrame({k: data[k] for k in ["B", "B"]}),
            "mixed": DataFrame(data),
        }
        self.utf_encodings = ["utf8", "utf16", "utf32"]

    def test_utf(self):
        # GH10581
        for encoding in self.utf_encodings:
            for frame in self.frame.values():
                result = self.encode_decode(frame, encoding=encoding)
                assert_frame_equal(result, frame)

    def test_default_encoding(self):
        for frame in self.frame.values():
            result = frame.to_msgpack()
            expected = frame.to_msgpack(encoding="utf8")
            assert result == expected
            result = self.encode_decode(frame)
            assert_frame_equal(result, frame)


files = glob.glob(
    os.path.join(os.path.dirname(__file__), "data", "legacy_msgpack", "*", "*.msgpack")
)


@pytest.fixture(params=files)
def legacy_packer(request, datapath):
    return datapath(request.param)


@pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
@pytest.mark.filterwarnings("ignore:.*msgpack:FutureWarning")
class TestMsgpack:
    """
    How to add msgpack tests:

    1. Install pandas version intended to output the msgpack.
    2. Execute "generate_legacy_storage_files.py" to create the msgpack.
    $ python generate_legacy_storage_files.py <output_dir> msgpack

    3. Move the created pickle to "data/legacy_msgpack/<version>" directory.
    """

    minimum_structure = {
        "series": ["float", "int", "mixed", "ts", "mi", "dup"],
        "frame": ["float", "int", "mixed", "mi"],
        "index": ["int", "date", "period"],
        "mi": ["reg2"],
    }

    def check_min_structure(self, data, version):
        for typ, v in self.minimum_structure.items():

            assert typ in data, '"{0}" not found in unpacked data'.format(typ)
            for kind in v:
                msg = '"{0}" not found in data["{1}"]'.format(kind, typ)
                assert kind in data[typ], msg

    def compare(self, current_data, all_data, vf, version):
        data = read_msgpack(vf)

        self.check_min_structure(data, version)
        for typ, dv in data.items():
            assert typ in all_data, "unpacked data contains " 'extra key "{0}"'.format(
                typ
            )
            for dt, result in dv.items():
                assert (
                    dt in current_data[typ]
                ), 'data["{0}"] contains extra ' 'key "{1}"'.format(typ, dt)
                try:
                    expected = current_data[typ][dt]
                except KeyError:
                    continue

                # use a specific comparator
                # if available
                comp_method = "compare_{typ}_{dt}".format(typ=typ, dt=dt)
                comparator = getattr(self, comp_method, None)
                if comparator is not None:
                    comparator(result, expected, typ, version)
                else:
                    check_arbitrary(result, expected)

        return data

    def compare_series_dt_tz(self, result, expected, typ, version):
        tm.assert_series_equal(result, expected)

    def compare_frame_dt_mixed_tzs(self, result, expected, typ, version):
        tm.assert_frame_equal(result, expected)

    def test_msgpacks_legacy(
        self, current_packers_data, all_packers_data, legacy_packer, datapath
    ):

        version = os.path.basename(os.path.dirname(legacy_packer))

        try:
            with catch_warnings(record=True):
                self.compare(
                    current_packers_data, all_packers_data, legacy_packer, version
                )
        except ImportError:
            # blosc not installed
            pass

    def test_msgpack_period_freq(self):
        # https://github.com/pandas-dev/pandas/issues/24135
        s = Series(np.random.rand(5), index=date_range("20130101", periods=5))
        r = read_msgpack(s.to_msgpack())
        repr(r)