Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

aaronreidsmith / pandas   python

Repository URL to install this package:

Version: 0.25.3 

/ tests / series / test_missing.py

from datetime import datetime, timedelta

import numpy as np
from numpy import nan
import pytest
import pytz

from pandas._libs.tslib import iNaT
from pandas.errors import PerformanceWarning
import pandas.util._test_decorators as td

import pandas as pd
from pandas import (
    Categorical,
    DataFrame,
    Index,
    IntervalIndex,
    MultiIndex,
    NaT,
    Series,
    Timestamp,
    date_range,
    isna,
)
from pandas.core.series import remove_na
import pandas.util.testing as tm
from pandas.util.testing import assert_frame_equal, assert_series_equal


def _skip_if_no_pchip():
    try:
        from scipy.interpolate import pchip_interpolate  # noqa
    except ImportError:
        import pytest

        pytest.skip("scipy.interpolate.pchip missing")


def _skip_if_no_akima():
    try:
        from scipy.interpolate import Akima1DInterpolator  # noqa
    except ImportError:
        import pytest

        pytest.skip("scipy.interpolate.Akima1DInterpolator missing")


def _simple_ts(start, end, freq="D"):
    rng = date_range(start, end, freq=freq)
    return Series(np.random.randn(len(rng)), index=rng)


class TestSeriesMissingData:
    def test_remove_na_deprecation(self):
        # see gh-16971
        with tm.assert_produces_warning(FutureWarning):
            remove_na(Series([]))

    def test_timedelta_fillna(self):
        # GH 3371
        s = Series(
            [
                Timestamp("20130101"),
                Timestamp("20130101"),
                Timestamp("20130102"),
                Timestamp("20130103 9:01:01"),
            ]
        )
        td = s.diff()

        # reg fillna
        with tm.assert_produces_warning(FutureWarning):
            result = td.fillna(0)
        expected = Series(
            [
                timedelta(0),
                timedelta(0),
                timedelta(1),
                timedelta(days=1, seconds=9 * 3600 + 60 + 1),
            ]
        )
        assert_series_equal(result, expected)

        # interpreted as seconds, deprecated
        with tm.assert_produces_warning(FutureWarning):
            result = td.fillna(1)
        expected = Series(
            [
                timedelta(seconds=1),
                timedelta(0),
                timedelta(1),
                timedelta(days=1, seconds=9 * 3600 + 60 + 1),
            ]
        )
        assert_series_equal(result, expected)

        result = td.fillna(timedelta(days=1, seconds=1))
        expected = Series(
            [
                timedelta(days=1, seconds=1),
                timedelta(0),
                timedelta(1),
                timedelta(days=1, seconds=9 * 3600 + 60 + 1),
            ]
        )
        assert_series_equal(result, expected)

        result = td.fillna(np.timedelta64(int(1e9)))
        expected = Series(
            [
                timedelta(seconds=1),
                timedelta(0),
                timedelta(1),
                timedelta(days=1, seconds=9 * 3600 + 60 + 1),
            ]
        )
        assert_series_equal(result, expected)

        result = td.fillna(NaT)
        expected = Series(
            [
                NaT,
                timedelta(0),
                timedelta(1),
                timedelta(days=1, seconds=9 * 3600 + 60 + 1),
            ],
            dtype="m8[ns]",
        )
        assert_series_equal(result, expected)

        # ffill
        td[2] = np.nan
        result = td.ffill()
        with tm.assert_produces_warning(FutureWarning):
            expected = td.fillna(0)
        expected[0] = np.nan
        assert_series_equal(result, expected)

        # bfill
        td[2] = np.nan
        result = td.bfill()
        with tm.assert_produces_warning(FutureWarning):
            expected = td.fillna(0)
        expected[2] = timedelta(days=1, seconds=9 * 3600 + 60 + 1)
        assert_series_equal(result, expected)

    def test_datetime64_fillna(self):

        s = Series(
            [
                Timestamp("20130101"),
                Timestamp("20130101"),
                Timestamp("20130102"),
                Timestamp("20130103 9:01:01"),
            ]
        )
        s[2] = np.nan

        # reg fillna
        result = s.fillna(Timestamp("20130104"))
        expected = Series(
            [
                Timestamp("20130101"),
                Timestamp("20130101"),
                Timestamp("20130104"),
                Timestamp("20130103 9:01:01"),
            ]
        )
        assert_series_equal(result, expected)

        result = s.fillna(NaT)
        expected = s
        assert_series_equal(result, expected)

        # ffill
        result = s.ffill()
        expected = Series(
            [
                Timestamp("20130101"),
                Timestamp("20130101"),
                Timestamp("20130101"),
                Timestamp("20130103 9:01:01"),
            ]
        )
        assert_series_equal(result, expected)

        # bfill
        result = s.bfill()
        expected = Series(
            [
                Timestamp("20130101"),
                Timestamp("20130101"),
                Timestamp("20130103 9:01:01"),
                Timestamp("20130103 9:01:01"),
            ]
        )
        assert_series_equal(result, expected)

        # GH 6587
        # make sure that we are treating as integer when filling
        # this also tests inference of a datetime-like with NaT's
        s = Series([pd.NaT, pd.NaT, "2013-08-05 15:30:00.000001"])
        expected = Series(
            [
                "2013-08-05 15:30:00.000001",
                "2013-08-05 15:30:00.000001",
                "2013-08-05 15:30:00.000001",
            ],
            dtype="M8[ns]",
        )
        result = s.fillna(method="backfill")
        assert_series_equal(result, expected)

    def test_datetime64_tz_fillna(self):

        for tz in ["US/Eastern", "Asia/Tokyo"]:
            # DatetimeBlock
            s = Series(
                [
                    Timestamp("2011-01-01 10:00"),
                    pd.NaT,
                    Timestamp("2011-01-03 10:00"),
                    pd.NaT,
                ]
            )
            null_loc = pd.Series([False, True, False, True])

            result = s.fillna(pd.Timestamp("2011-01-02 10:00"))
            expected = Series(
                [
                    Timestamp("2011-01-01 10:00"),
                    Timestamp("2011-01-02 10:00"),
                    Timestamp("2011-01-03 10:00"),
                    Timestamp("2011-01-02 10:00"),
                ]
            )
            tm.assert_series_equal(expected, result)
            # check s is not changed
            tm.assert_series_equal(pd.isna(s), null_loc)

            result = s.fillna(pd.Timestamp("2011-01-02 10:00", tz=tz))
            expected = Series(
                [
                    Timestamp("2011-01-01 10:00"),
                    Timestamp("2011-01-02 10:00", tz=tz),
                    Timestamp("2011-01-03 10:00"),
                    Timestamp("2011-01-02 10:00", tz=tz),
                ]
            )
            tm.assert_series_equal(expected, result)
            tm.assert_series_equal(pd.isna(s), null_loc)

            result = s.fillna("AAA")
            expected = Series(
                [
                    Timestamp("2011-01-01 10:00"),
                    "AAA",
                    Timestamp("2011-01-03 10:00"),
                    "AAA",
                ],
                dtype=object,
            )
            tm.assert_series_equal(expected, result)
            tm.assert_series_equal(pd.isna(s), null_loc)

            result = s.fillna(
                {
                    1: pd.Timestamp("2011-01-02 10:00", tz=tz),
                    3: pd.Timestamp("2011-01-04 10:00"),
                }
            )
            expected = Series(
                [
                    Timestamp("2011-01-01 10:00"),
                    Timestamp("2011-01-02 10:00", tz=tz),
                    Timestamp("2011-01-03 10:00"),
                    Timestamp("2011-01-04 10:00"),
                ]
            )
            tm.assert_series_equal(expected, result)
            tm.assert_series_equal(pd.isna(s), null_loc)

            result = s.fillna(
                {
                    1: pd.Timestamp("2011-01-02 10:00"),
                    3: pd.Timestamp("2011-01-04 10:00"),
                }
            )
            expected = Series(
                [
                    Timestamp("2011-01-01 10:00"),
                    Timestamp("2011-01-02 10:00"),
                    Timestamp("2011-01-03 10:00"),
                    Timestamp("2011-01-04 10:00"),
                ]
            )
            tm.assert_series_equal(expected, result)
            tm.assert_series_equal(pd.isna(s), null_loc)

            # DatetimeBlockTZ
            idx = pd.DatetimeIndex(
                ["2011-01-01 10:00", pd.NaT, "2011-01-03 10:00", pd.NaT], tz=tz
            )
            s = pd.Series(idx)
            assert s.dtype == "datetime64[ns, {0}]".format(tz)
            tm.assert_series_equal(pd.isna(s), null_loc)

            result = s.fillna(pd.Timestamp("2011-01-02 10:00"))
            expected = Series(
                [
                    Timestamp("2011-01-01 10:00", tz=tz),
                    Timestamp("2011-01-02 10:00"),
                    Timestamp("2011-01-03 10:00", tz=tz),
                    Timestamp("2011-01-02 10:00"),
                ]
            )
            tm.assert_series_equal(expected, result)
            tm.assert_series_equal(pd.isna(s), null_loc)

            result = s.fillna(pd.Timestamp("2011-01-02 10:00", tz=tz))
            idx = pd.DatetimeIndex(
                [
                    "2011-01-01 10:00",
                    "2011-01-02 10:00",
                    "2011-01-03 10:00",
                    "2011-01-02 10:00",
                ],
                tz=tz,
            )
            expected = Series(idx)
            tm.assert_series_equal(expected, result)
            tm.assert_series_equal(pd.isna(s), null_loc)

            result = s.fillna(pd.Timestamp("2011-01-02 10:00", tz=tz).to_pydatetime())
            idx = pd.DatetimeIndex(
                [
                    "2011-01-01 10:00",
                    "2011-01-02 10:00",
                    "2011-01-03 10:00",
                    "2011-01-02 10:00",
                ],
                tz=tz,
            )
            expected = Series(idx)
            tm.assert_series_equal(expected, result)
            tm.assert_series_equal(pd.isna(s), null_loc)

            result = s.fillna("AAA")
            expected = Series(
                [
                    Timestamp("2011-01-01 10:00", tz=tz),
                    "AAA",
                    Timestamp("2011-01-03 10:00", tz=tz),
                    "AAA",
                ],
                dtype=object,
            )
            tm.assert_series_equal(expected, result)
            tm.assert_series_equal(pd.isna(s), null_loc)

            result = s.fillna(
                {
                    1: pd.Timestamp("2011-01-02 10:00", tz=tz),
                    3: pd.Timestamp("2011-01-04 10:00"),
                }
            )
            expected = Series(
                [
                    Timestamp("2011-01-01 10:00", tz=tz),
                    Timestamp("2011-01-02 10:00", tz=tz),
                    Timestamp("2011-01-03 10:00", tz=tz),
                    Timestamp("2011-01-04 10:00"),
                ]
            )
            tm.assert_series_equal(expected, result)
            tm.assert_series_equal(pd.isna(s), null_loc)

            result = s.fillna(
                {
                    1: pd.Timestamp("2011-01-02 10:00", tz=tz),
                    3: pd.Timestamp("2011-01-04 10:00", tz=tz),
                }
            )
            expected = Series(
                [
                    Timestamp("2011-01-01 10:00", tz=tz),
                    Timestamp("2011-01-02 10:00", tz=tz),
                    Timestamp("2011-01-03 10:00", tz=tz),
                    Timestamp("2011-01-04 10:00", tz=tz),
                ]
            )
            tm.assert_series_equal(expected, result)
            tm.assert_series_equal(pd.isna(s), null_loc)

            # filling with a naive/other zone, coerce to object
            result = s.fillna(Timestamp("20130101"))
            expected = Series(
                [
                    Timestamp("2011-01-01 10:00", tz=tz),
                    Timestamp("2013-01-01"),
                    Timestamp("2011-01-03 10:00", tz=tz),
                    Timestamp("2013-01-01"),
                ]
            )
            tm.assert_series_equal(expected, result)
            tm.assert_series_equal(pd.isna(s), null_loc)

            result = s.fillna(Timestamp("20130101", tz="US/Pacific"))
            expected = Series(
                [
                    Timestamp("2011-01-01 10:00", tz=tz),
                    Timestamp("2013-01-01", tz="US/Pacific"),
                    Timestamp("2011-01-03 10:00", tz=tz),
                    Timestamp("2013-01-01", tz="US/Pacific"),
                ]
            )
            tm.assert_series_equal(expected, result)
            tm.assert_series_equal(pd.isna(s), null_loc)

        # with timezone
        # GH 15855
        df = pd.Series([pd.Timestamp("2012-11-11 00:00:00+01:00"), pd.NaT])
        exp = pd.Series(
            [
                pd.Timestamp("2012-11-11 00:00:00+01:00"),
                pd.Timestamp("2012-11-11 00:00:00+01:00"),
            ]
        )
        assert_series_equal(df.fillna(method="pad"), exp)

        df = pd.Series([pd.NaT, pd.Timestamp("2012-11-11 00:00:00+01:00")])
        exp = pd.Series(
            [
                pd.Timestamp("2012-11-11 00:00:00+01:00"),
                pd.Timestamp("2012-11-11 00:00:00+01:00"),
            ]
        )
        assert_series_equal(df.fillna(method="bfill"), exp)

    def test_datetime64_non_nano_fillna(self):
        # GH#27419
        ser = Series([Timestamp("2010-01-01"), pd.NaT, Timestamp("2000-01-01")])
        val = np.datetime64("1975-04-05", "ms")

        result = ser.fillna(val)
        expected = Series(
            [Timestamp("2010-01-01"), Timestamp("1975-04-05"), Timestamp("2000-01-01")]
        )
        tm.assert_series_equal(result, expected)

    def test_fillna_consistency(self):
        # GH 16402
        # fillna with a tz aware to a tz-naive, should result in object

        s = Series([Timestamp("20130101"), pd.NaT])

        result = s.fillna(Timestamp("20130101", tz="US/Eastern"))
        expected = Series(
            [Timestamp("20130101"), Timestamp("2013-01-01", tz="US/Eastern")],
            dtype="object",
        )
        assert_series_equal(result, expected)

        # where (we ignore the errors=)
        result = s.where(
            [True, False], Timestamp("20130101", tz="US/Eastern"), errors="ignore"
        )
        assert_series_equal(result, expected)

        result = s.where(
            [True, False], Timestamp("20130101", tz="US/Eastern"), errors="ignore"
        )
        assert_series_equal(result, expected)

        # with a non-datetime
        result = s.fillna("foo")
        expected = Series([Timestamp("20130101"), "foo"])
        assert_series_equal(result, expected)

        # assignment
        s2 = s.copy()
        s2[1] = "foo"
        assert_series_equal(s2, expected)

    def test_datetime64tz_fillna_round_issue(self):
        # GH 14872

        data = pd.Series(
            [pd.NaT, pd.NaT, datetime(2016, 12, 12, 22, 24, 6, 100001, tzinfo=pytz.utc)]
        )

        filled = data.fillna(method="bfill")

        expected = pd.Series(
            [
                datetime(2016, 12, 12, 22, 24, 6, 100001, tzinfo=pytz.utc),
                datetime(2016, 12, 12, 22, 24, 6, 100001, tzinfo=pytz.utc),
                datetime(2016, 12, 12, 22, 24, 6, 100001, tzinfo=pytz.utc),
            ]
        )

        assert_series_equal(filled, expected)

    def test_fillna_downcast(self):
        # GH 15277
        # infer int64 from float64
        s = pd.Series([1.0, np.nan])
        result = s.fillna(0, downcast="infer")
        expected = pd.Series([1, 0])
        assert_series_equal(result, expected)

        # infer int64 from float64 when fillna value is a dict
        s = pd.Series([1.0, np.nan])
        result = s.fillna({1: 0}, downcast="infer")
        expected = pd.Series([1, 0])
        assert_series_equal(result, expected)

    def test_fillna_int(self):
        s = Series(np.random.randint(-100, 100, 50))
        s.fillna(method="ffill", inplace=True)
        assert_series_equal(s.fillna(method="ffill", inplace=False), s)

    def test_fillna_raise(self):
        s = Series(np.random.randint(-100, 100, 50))
        msg = '"value" parameter must be a scalar or dict, but you passed a' ' "list"'
        with pytest.raises(TypeError, match=msg):
            s.fillna([1, 2])

        msg = '"value" parameter must be a scalar or dict, but you passed a' ' "tuple"'
        with pytest.raises(TypeError, match=msg):
            s.fillna((1, 2))

        # related GH 9217, make sure limit is an int and greater than 0
        s = Series([1, 2, 3, None])
        msg = (
            r"Cannot specify both 'value' and 'method'\.|"
            r"Limit must be greater than 0|"
            "Limit must be an integer"
        )
        for limit in [-1, 0, 1.0, 2.0]:
            for method in ["backfill", "bfill", "pad", "ffill", None]:
                with pytest.raises(ValueError, match=msg):
                    s.fillna(1, limit=limit, method=method)

    def test_categorical_nan_equality(self):
        cat = Series(Categorical(["a", "b", "c", np.nan]))
        exp = Series([True, True, True, False])
        res = cat == cat
        tm.assert_series_equal(res, exp)

    def test_categorical_nan_handling(self):

        # NaNs are represented as -1 in labels
        s = Series(Categorical(["a", "b", np.nan, "a"]))
        tm.assert_index_equal(s.cat.categories, Index(["a", "b"]))
        tm.assert_numpy_array_equal(
            s.values.codes, np.array([0, 1, -1, 0], dtype=np.int8)
        )

    @pytest.mark.parametrize(
        "fill_value, expected_output",
        [
            ("a", ["a", "a", "b", "a", "a"]),
            ({1: "a", 3: "b", 4: "b"}, ["a", "a", "b", "b", "b"]),
            ({1: "a"}, ["a", "a", "b", np.nan, np.nan]),
            ({1: "a", 3: "b"}, ["a", "a", "b", "b", np.nan]),
            (Series("a"), ["a", np.nan, "b", np.nan, np.nan]),
            (Series("a", index=[1]), ["a", "a", "b", np.nan, np.nan]),
            (Series({1: "a", 3: "b"}), ["a", "a", "b", "b", np.nan]),
            (Series(["a", "b"], index=[3, 4]), ["a", np.nan, "b", "a", "b"]),
        ],
    )
    def test_fillna_categorical(self, fill_value, expected_output):
        # GH 17033
        # Test fillna for a Categorical series
        data = ["a", np.nan, "b", np.nan, np.nan]
        s = Series(Categorical(data, categories=["a", "b"]))
        exp = Series(Categorical(expected_output, categories=["a", "b"]))
        tm.assert_series_equal(s.fillna(fill_value), exp)

    @pytest.mark.parametrize(
        "fill_value, expected_output",
        [
            (Series(["a", "b", "c", "d", "e"]), ["a", "b", "b", "d", "e"]),
            (Series(["b", "d", "a", "d", "a"]), ["a", "d", "b", "d", "a"]),
            (
                Series(
                    Categorical(
                        ["b", "d", "a", "d", "a"], categories=["b", "c", "d", "e", "a"]
                    )
                ),
                ["a", "d", "b", "d", "a"],
            ),
        ],
    )
    def test_fillna_categorical_with_new_categories(self, fill_value, expected_output):
        # GH 26215
        data = ["a", np.nan, "b", np.nan, np.nan]
        s = Series(Categorical(data, categories=["a", "b", "c", "d", "e"]))
        exp = Series(Categorical(expected_output, categories=["a", "b", "c", "d", "e"]))
        tm.assert_series_equal(s.fillna(fill_value), exp)

    def test_fillna_categorical_raise(self):
        data = ["a", np.nan, "b", np.nan, np.nan]
        s = Series(Categorical(data, categories=["a", "b"]))

        with pytest.raises(ValueError, match="fill value must be in categories"):
            s.fillna("d")

        with pytest.raises(ValueError, match="fill value must be in categories"):
            s.fillna(Series("d"))

        with pytest.raises(ValueError, match="fill value must be in categories"):
            s.fillna({1: "d", 3: "a"})

        msg = '"value" parameter must be a scalar or ' 'dict, but you passed a "list"'
        with pytest.raises(TypeError, match=msg):
            s.fillna(["a", "b"])

        msg = '"value" parameter must be a scalar or ' 'dict, but you passed a "tuple"'
        with pytest.raises(TypeError, match=msg):
            s.fillna(("a", "b"))

        msg = (
            '"value" parameter must be a scalar, dict '
            'or Series, but you passed a "DataFrame"'
        )
        with pytest.raises(TypeError, match=msg):
            s.fillna(DataFrame({1: ["a"], 3: ["b"]}))

    def test_fillna_nat(self):
        series = Series([0, 1, 2, iNaT], dtype="M8[ns]")

        filled = series.fillna(method="pad")
        filled2 = series.fillna(value=series.values[2])

        expected = series.copy()
        expected.values[3] = expected.values[2]

        assert_series_equal(filled, expected)
        assert_series_equal(filled2, expected)

        df = DataFrame({"A": series})
        filled = df.fillna(method="pad")
        filled2 = df.fillna(value=series.values[2])
        expected = DataFrame({"A": expected})
        assert_frame_equal(filled, expected)
        assert_frame_equal(filled2, expected)

        series = Series([iNaT, 0, 1, 2], dtype="M8[ns]")

        filled = series.fillna(method="bfill")
        filled2 = series.fillna(value=series[1])

        expected = series.copy()
        expected[0] = expected[1]

        assert_series_equal(filled, expected)
        assert_series_equal(filled2, expected)

        df = DataFrame({"A": series})
        filled = df.fillna(method="bfill")
        filled2 = df.fillna(value=series[1])
        expected = DataFrame({"A": expected})
        assert_frame_equal(filled, expected)
        assert_frame_equal(filled2, expected)

    def test_isna_for_inf(self):
        s = Series(["a", np.inf, np.nan, 1.0])
        with pd.option_context("mode.use_inf_as_na", True):
            r = s.isna()
            dr = s.dropna()
        e = Series([False, True, True, False])
        de = Series(["a", 1.0], index=[0, 3])
        tm.assert_series_equal(r, e)
        tm.assert_series_equal(dr, de)

    def test_isnull_for_inf_deprecated(self):
        # gh-17115
        s = Series(["a", np.inf, np.nan, 1.0])
        with pd.option_context("mode.use_inf_as_null", True):
            r = s.isna()
            dr = s.dropna()

        e = Series([False, True, True, False])
        de = Series(["a", 1.0], index=[0, 3])
        tm.assert_series_equal(r, e)
        tm.assert_series_equal(dr, de)

    def test_fillna(self, datetime_series):
        ts = Series([0.0, 1.0, 2.0, 3.0, 4.0], index=tm.makeDateIndex(5))

        tm.assert_series_equal(ts, ts.fillna(method="ffill"))

        ts[2] = np.NaN

        exp = Series([0.0, 1.0, 1.0, 3.0, 4.0], index=ts.index)
        tm.assert_series_equal(ts.fillna(method="ffill"), exp)

        exp = Series([0.0, 1.0, 3.0, 3.0, 4.0], index=ts.index)
        tm.assert_series_equal(ts.fillna(method="backfill"), exp)

        exp = Series([0.0, 1.0, 5.0, 3.0, 4.0], index=ts.index)
        tm.assert_series_equal(ts.fillna(value=5), exp)

        msg = "Must specify a fill 'value' or 'method'"
        with pytest.raises(ValueError, match=msg):
            ts.fillna()

        msg = "Cannot specify both 'value' and 'method'"
        with pytest.raises(ValueError, match=msg):
            datetime_series.fillna(value=0, method="ffill")

        # GH 5703
        s1 = Series([np.nan])
        s2 = Series([1])
        result = s1.fillna(s2)
        expected = Series([1.0])
        assert_series_equal(result, expected)
        result = s1.fillna({})
        assert_series_equal(result, s1)
        result = s1.fillna(Series(()))
        assert_series_equal(result, s1)
        result = s2.fillna(s1)
        assert_series_equal(result, s2)
        result = s1.fillna({0: 1})
        assert_series_equal(result, expected)
        result = s1.fillna({1: 1})
        assert_series_equal(result, Series([np.nan]))
        result = s1.fillna({0: 1, 1: 1})
        assert_series_equal(result, expected)
        result = s1.fillna(Series({0: 1, 1: 1}))
        assert_series_equal(result, expected)
        result = s1.fillna(Series({0: 1, 1: 1}, index=[4, 5]))
        assert_series_equal(result, s1)

        s1 = Series([0, 1, 2], list("abc"))
        s2 = Series([0, np.nan, 2], list("bac"))
        result = s2.fillna(s1)
        expected = Series([0, 0, 2.0], list("bac"))
        assert_series_equal(result, expected)

        # limit
        s = Series(np.nan, index=[0, 1, 2])
        result = s.fillna(999, limit=1)
        expected = Series([999, np.nan, np.nan], index=[0, 1, 2])
        assert_series_equal(result, expected)

        result = s.fillna(999, limit=2)
        expected = Series([999, 999, np.nan], index=[0, 1, 2])
        assert_series_equal(result, expected)

        # GH 9043
        # make sure a string representation of int/float values can be filled
        # correctly without raising errors or being converted
        vals = ["0", "1.5", "-0.3"]
        for val in vals:
            s = Series([0, 1, np.nan, np.nan, 4], dtype="float64")
            result = s.fillna(val)
            expected = Series([0, 1, val, val, 4], dtype="object")
            assert_series_equal(result, expected)

    def test_fillna_bug(self):
        x = Series([nan, 1.0, nan, 3.0, nan], ["z", "a", "b", "c", "d"])
        filled = x.fillna(method="ffill")
        expected = Series([nan, 1.0, 1.0, 3.0, 3.0], x.index)
        assert_series_equal(filled, expected)

        filled = x.fillna(method="bfill")
        expected = Series([1.0, 1.0, 3.0, 3.0, nan], x.index)
        assert_series_equal(filled, expected)

    def test_fillna_inplace(self):
        x = Series([nan, 1.0, nan, 3.0, nan], ["z", "a", "b", "c", "d"])
        y = x.copy()

        y.fillna(value=0, inplace=True)

        expected = x.fillna(value=0)
        assert_series_equal(y, expected)

    def test_fillna_invalid_method(self, datetime_series):
        try:
            datetime_series.fillna(method="ffil")
        except ValueError as inst:
            assert "ffil" in str(inst)

    def test_ffill(self):
        ts = Series([0.0, 1.0, 2.0, 3.0, 4.0], index=tm.makeDateIndex(5))
        ts[2] = np.NaN
        assert_series_equal(ts.ffill(), ts.fillna(method="ffill"))

    def test_ffill_mixed_dtypes_without_missing_data(self):
        # GH14956
        series = pd.Series([datetime(2015, 1, 1, tzinfo=pytz.utc), 1])
        result = series.ffill()
        assert_series_equal(series, result)

    def test_bfill(self):
        ts = Series([0.0, 1.0, 2.0, 3.0, 4.0], index=tm.makeDateIndex(5))
        ts[2] = np.NaN
        assert_series_equal(ts.bfill(), ts.fillna(method="bfill"))

    def test_timedelta64_nan(self):

        td = Series([timedelta(days=i) for i in range(10)])

        # nan ops on timedeltas
        td1 = td.copy()
        td1[0] = np.nan
        assert isna(td1[0])
        assert td1[0].value == iNaT
        td1[0] = td[0]
        assert not isna(td1[0])

        td1[1] = iNaT
        assert isna(td1[1])
        assert td1[1].value == iNaT
        td1[1] = td[1]
        assert not isna(td1[1])

        td1[2] = NaT
        assert isna(td1[2])
        assert td1[2].value == iNaT
        td1[2] = td[2]
        assert not isna(td1[2])

        # boolean setting
        # this doesn't work, not sure numpy even supports it
        # result = td[(td>np.timedelta64(timedelta(days=3))) &
        # td<np.timedelta64(timedelta(days=7)))] = np.nan
        # assert isna(result).sum() == 7

        # NumPy limitation =(

        # def test_logical_range_select(self):
        #     np.random.seed(12345)
        #     selector = -0.5 <= datetime_series <= 0.5
        #     expected = (datetime_series >= -0.5) & (datetime_series <= 0.5)
        #     assert_series_equal(selector, expected)

    def test_dropna_empty(self):
        s = Series([])
        assert len(s.dropna()) == 0
        s.dropna(inplace=True)
        assert len(s) == 0

        # invalid axis
        msg = "No axis named 1 for object type <class 'pandas.core.series.Series'>"
        with pytest.raises(ValueError, match=msg):
            s.dropna(axis=1)

    def test_datetime64_tz_dropna(self):
        # DatetimeBlock
        s = Series(
            [
                Timestamp("2011-01-01 10:00"),
                pd.NaT,
                Timestamp("2011-01-03 10:00"),
                pd.NaT,
            ]
        )
        result = s.dropna()
        expected = Series(
            [Timestamp("2011-01-01 10:00"), Timestamp("2011-01-03 10:00")], index=[0, 2]
        )
        tm.assert_series_equal(result, expected)

        # DatetimeBlockTZ
        idx = pd.DatetimeIndex(
            ["2011-01-01 10:00", pd.NaT, "2011-01-03 10:00", pd.NaT], tz="Asia/Tokyo"
        )
        s = pd.Series(idx)
        assert s.dtype == "datetime64[ns, Asia/Tokyo]"
        result = s.dropna()
        expected = Series(
            [
                Timestamp("2011-01-01 10:00", tz="Asia/Tokyo"),
                Timestamp("2011-01-03 10:00", tz="Asia/Tokyo"),
            ],
            index=[0, 2],
        )
        assert result.dtype == "datetime64[ns, Asia/Tokyo]"
        tm.assert_series_equal(result, expected)

    def test_dropna_no_nan(self):
        for s in [Series([1, 2, 3], name="x"), Series([False, True, False], name="x")]:

            result = s.dropna()
            tm.assert_series_equal(result, s)
            assert result is not s

            s2 = s.copy()
            s2.dropna(inplace=True)
            tm.assert_series_equal(s2, s)

    def test_dropna_intervals(self):
        s = Series(
            [np.nan, 1, 2, 3],
            IntervalIndex.from_arrays([np.nan, 0, 1, 2], [np.nan, 1, 2, 3]),
        )

        result = s.dropna()
        expected = s.iloc[1:]
        assert_series_equal(result, expected)

    def test_valid(self, datetime_series):
        ts = datetime_series.copy()
        ts[::2] = np.NaN

        result = ts.dropna()
        assert len(result) == ts.count()
        tm.assert_series_equal(result, ts[1::2])
        tm.assert_series_equal(result, ts[pd.notna(ts)])

    def test_isna(self):
        ser = Series([0, 5.4, 3, nan, -0.001])
        expected = Series([False, False, False, True, False])
        tm.assert_series_equal(ser.isna(), expected)

        ser = Series(["hi", "", nan])
        expected = Series([False, False, True])
        tm.assert_series_equal(ser.isna(), expected)

    def test_notna(self):
        ser = Series([0, 5.4, 3, nan, -0.001])
        expected = Series([True, True, True, False, True])
        tm.assert_series_equal(ser.notna(), expected)

        ser = Series(["hi", "", nan])
        expected = Series([True, True, False])
        tm.assert_series_equal(ser.notna(), expected)

    def test_pad_nan(self):
        x = Series(
            [np.nan, 1.0, np.nan, 3.0, np.nan], ["z", "a", "b", "c", "d"], dtype=float
        )

        x.fillna(method="pad", inplace=True)

        expected = Series(
            [np.nan, 1.0, 1.0, 3.0, 3.0], ["z", "a", "b", "c", "d"], dtype=float
        )
        assert_series_equal(x[1:], expected[1:])
        assert np.isnan(x[0]), np.isnan(expected[0])

    def test_pad_require_monotonicity(self):
        rng = date_range("1/1/2000", "3/1/2000", freq="B")

        # neither monotonic increasing or decreasing
        rng2 = rng[[1, 0, 2]]

        msg = "index must be monotonic increasing or decreasing"
        with pytest.raises(ValueError, match=msg):
            rng2.get_indexer(rng, method="pad")

    def test_dropna_preserve_name(self, datetime_series):
        datetime_series[:5] = np.nan
        result = datetime_series.dropna()
        assert result.name == datetime_series.name
        name = datetime_series.name
        ts = datetime_series.copy()
        ts.dropna(inplace=True)
        assert ts.name == name

    def test_fill_value_when_combine_const(self):
        # GH12723
        s = Series([0, 1, np.nan, 3, 4, 5])

        exp = s.fillna(0).add(2)
        res = s.add(2, fill_value=0)
        assert_series_equal(res, exp)

    def test_series_fillna_limit(self):
        index = np.arange(10)
        s = Series(np.random.randn(10), index=index)

        result = s[:2].reindex(index)
        result = result.fillna(method="pad", limit=5)

        expected = s[:2].reindex(index).fillna(method="pad")
        expected[-3:] = np.nan
        assert_series_equal(result, expected)

        result = s[-2:].reindex(index)
        result = result.fillna(method="bfill", limit=5)

        expected = s[-2:].reindex(index).fillna(method="backfill")
        expected[:3] = np.nan
        assert_series_equal(result, expected)

    @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
    @pytest.mark.filterwarnings("ignore:Series.to_sparse:FutureWarning")
    def test_sparse_series_fillna_limit(self):
        index = np.arange(10)
        s = Series(np.random.randn(10), index=index)

        ss = s[:2].reindex(index).to_sparse()
        # TODO: what is this test doing? why are result an expected
        # the same call to fillna?
        with tm.assert_produces_warning(
            PerformanceWarning, raise_on_extra_warnings=False
        ):
            # TODO: release-note fillna performance warning
            result = ss.fillna(method="pad", limit=5)
            expected = ss.fillna(method="pad", limit=5)
        expected = expected.to_dense()
        expected[-3:] = np.nan
        expected = expected.to_sparse()
        assert_series_equal(result, expected)

        ss = s[-2:].reindex(index).to_sparse()
        with tm.assert_produces_warning(
            PerformanceWarning, raise_on_extra_warnings=False
        ):
            result = ss.fillna(method="backfill", limit=5)
            expected = ss.fillna(method="backfill")
        expected = expected.to_dense()
        expected[:3] = np.nan
        expected = expected.to_sparse()
        assert_series_equal(result, expected)

    @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
    @pytest.mark.filterwarnings("ignore:Series.to_sparse:FutureWarning")
    def test_sparse_series_pad_backfill_limit(self):
        index = np.arange(10)
        s = Series(np.random.randn(10), index=index)
        s = s.to_sparse()

        result = s[:2].reindex(index, method="pad", limit=5)
        with tm.assert_produces_warning(
            PerformanceWarning, raise_on_extra_warnings=False
        ):
            expected = s[:2].reindex(index).fillna(method="pad")
        expected = expected.to_dense()
        expected[-3:] = np.nan
        expected = expected.to_sparse()
        assert_series_equal(result, expected)

        result = s[-2:].reindex(index, method="backfill", limit=5)
        with tm.assert_produces_warning(
            PerformanceWarning, raise_on_extra_warnings=False
        ):
            expected = s[-2:].reindex(index).fillna(method="backfill")
        expected = expected.to_dense()
        expected[:3] = np.nan
        expected = expected.to_sparse()
        assert_series_equal(result, expected)

    @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
    def test_series_pad_backfill_limit(self):
        index = np.arange(10)
        s = Series(np.random.randn(10), index=index)

        result = s[:2].reindex(index, method="pad", limit=5)

        expected = s[:2].reindex(index).fillna(method="pad")
        expected[-3:] = np.nan
        assert_series_equal(result, expected)

        result = s[-2:].reindex(index, method="backfill", limit=5)

        expected = s[-2:].reindex(index).fillna(method="backfill")
        expected[:3] = np.nan
        assert_series_equal(result, expected)


@pytest.fixture(
    params=[
        "linear",
        "index",
        "values",
        "nearest",
        "slinear",
        "zero",
        "quadratic",
        "cubic",
        "barycentric",
        "krogh",
        "polynomial",
        "spline",
        "piecewise_polynomial",
        "from_derivatives",
        "pchip",
        "akima",
    ]
)
def nontemporal_method(request):
    """ Fixture that returns an (method name, required kwargs) pair.

    This fixture does not include method 'time' as a parameterization; that
    method requires a Series with a DatetimeIndex, and is generally tested
    separately from these non-temporal methods.
    """
    method = request.param
    kwargs = dict(order=1) if method in ("spline", "polynomial") else dict()
    return method, kwargs


@pytest.fixture(
    params=[
        "linear",
        "slinear",
        "zero",
        "quadratic",
        "cubic",
        "barycentric",
        "krogh",
        "polynomial",
        "spline",
        "piecewise_polynomial",
        "from_derivatives",
        "pchip",
        "akima",
    ]
)
def interp_methods_ind(request):
    """ Fixture that returns a (method name, required kwargs) pair to
    be tested for various Index types.

    This fixture does not include methods - 'time', 'index', 'nearest',
    'values' as a parameterization
    """
    method = request.param
    kwargs = dict(order=1) if method in ("spline", "polynomial") else dict()
    return method, kwargs


class TestSeriesInterpolateData:
    def test_interpolate(self, datetime_series, string_series):
        ts = Series(np.arange(len(datetime_series), dtype=float), datetime_series.index)

        ts_copy = ts.copy()
        ts_copy[5:10] = np.NaN

        linear_interp = ts_copy.interpolate(method="linear")
        tm.assert_series_equal(linear_interp, ts)

        ord_ts = Series(
            [d.toordinal() for d in datetime_series.index], index=datetime_series.index
        ).astype(float)

        ord_ts_copy = ord_ts.copy()
        ord_ts_copy[5:10] = np.NaN

        time_interp = ord_ts_copy.interpolate(method="time")
        tm.assert_series_equal(time_interp, ord_ts)

    def test_interpolate_time_raises_for_non_timeseries(self):
        # When method='time' is used on a non-TimeSeries that contains a null
        # value, a ValueError should be raised.
        non_ts = Series([0, 1, 2, np.NaN])
        msg = "time-weighted interpolation only works on Series.* with a DatetimeIndex"
        with pytest.raises(ValueError, match=msg):
            non_ts.interpolate(method="time")

    @td.skip_if_no_scipy
    def test_interpolate_pchip(self):
        _skip_if_no_pchip()

        ser = Series(np.sort(np.random.uniform(size=100)))

        # interpolate at new_index
        new_index = ser.index.union(
            Index([49.25, 49.5, 49.75, 50.25, 50.5, 50.75])
        ).astype(float)
        interp_s = ser.reindex(new_index).interpolate(method="pchip")
        # does not blow up, GH5977
        interp_s[49:51]

    @td.skip_if_no_scipy
    def test_interpolate_akima(self):
        _skip_if_no_akima()

        ser = Series([10, 11, 12, 13])

        expected = Series(
            [11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00],
            index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]),
        )
        # interpolate at new_index
        new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype(
            float
        )
        interp_s = ser.reindex(new_index).interpolate(method="akima")
        assert_series_equal(interp_s[1:3], expected)

    @td.skip_if_no_scipy
    def test_interpolate_piecewise_polynomial(self):
        ser = Series([10, 11, 12, 13])

        expected = Series(
            [11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00],
            index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]),
        )
        # interpolate at new_index
        new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype(
            float
        )
        interp_s = ser.reindex(new_index).interpolate(method="piecewise_polynomial")
        assert_series_equal(interp_s[1:3], expected)

    @td.skip_if_no_scipy
    def test_interpolate_from_derivatives(self):
        ser = Series([10, 11, 12, 13])

        expected = Series(
            [11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00],
            index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]),
        )
        # interpolate at new_index
        new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype(
            float
        )
        interp_s = ser.reindex(new_index).interpolate(method="from_derivatives")
        assert_series_equal(interp_s[1:3], expected)

    @pytest.mark.parametrize(
        "kwargs",
        [
            {},
            pytest.param(
                {"method": "polynomial", "order": 1}, marks=td.skip_if_no_scipy
            ),
        ],
    )
    def test_interpolate_corners(self, kwargs):
        s = Series([np.nan, np.nan])
        assert_series_equal(s.interpolate(**kwargs), s)

        s = Series([]).interpolate()
        assert_series_equal(s.interpolate(**kwargs), s)

    def test_interpolate_index_values(self):
        s = Series(np.nan, index=np.sort(np.random.rand(30)))
        s[::3] = np.random.randn(10)

        vals = s.index.values.astype(float)

        result = s.interpolate(method="index")

        expected = s.copy()
        bad = isna(expected.values)
        good = ~bad
        expected = Series(
            np.interp(vals[bad], vals[good], s.values[good]), index=s.index[bad]
        )

        assert_series_equal(result[bad], expected)

        # 'values' is synonymous with 'index' for the method kwarg
        other_result = s.interpolate(method="values")

        assert_series_equal(other_result, result)
        assert_series_equal(other_result[bad], expected)

    def test_interpolate_non_ts(self):
        s = Series([1, 3, np.nan, np.nan, np.nan, 11])
        msg = (
            "time-weighted interpolation only works on Series or DataFrames"
            " with a DatetimeIndex"
        )
        with pytest.raises(ValueError, match=msg):
            s.interpolate(method="time")

    @pytest.mark.parametrize(
        "kwargs",
        [
            {},
            pytest.param(
                {"method": "polynomial", "order": 1}, marks=td.skip_if_no_scipy
            ),
        ],
    )
    def test_nan_interpolate(self, kwargs):
        s = Series([0, 1, np.nan, 3])
        result = s.interpolate(**kwargs)
        expected = Series([0.0, 1.0, 2.0, 3.0])
        assert_series_equal(result, expected)

    def test_nan_irregular_index(self):
        s = Series([1, 2, np.nan, 4], index=[1, 3, 5, 9])
        result = s.interpolate()
        expected = Series([1.0, 2.0, 3.0, 4.0], index=[1, 3, 5, 9])
        assert_series_equal(result, expected)

    def test_nan_str_index(self):
        s = Series([0, 1, 2, np.nan], index=list("abcd"))
        result = s.interpolate()
        expected = Series([0.0, 1.0, 2.0, 2.0], index=list("abcd"))
        assert_series_equal(result, expected)

    @td.skip_if_no_scipy
    def test_interp_quad(self):
        sq = Series([1, 4, np.nan, 16], index=[1, 2, 3, 4])
        result = sq.interpolate(method="quadratic")
        expected = Series([1.0, 4.0, 9.0, 16.0], index=[1, 2, 3, 4])
        assert_series_equal(result, expected)

    @td.skip_if_no_scipy
    def test_interp_scipy_basic(self):
        s = Series([1, 3, np.nan, 12, np.nan, 25])
        # slinear
        expected = Series([1.0, 3.0, 7.5, 12.0, 18.5, 25.0])
        result = s.interpolate(method="slinear")
        assert_series_equal(result, expected)

        result = s.interpolate(method="slinear", downcast="infer")
        assert_series_equal(result, expected)
        # nearest
        expected = Series([1, 3, 3, 12, 12, 25])
        result = s.interpolate(method="nearest")
        assert_series_equal(result, expected.astype("float"))

        result = s.interpolate(method="nearest", downcast="infer")
        assert_series_equal(result, expected)
        # zero
        expected = Series([1, 3, 3, 12, 12, 25])
        result = s.interpolate(method="zero")
        assert_series_equal(result, expected.astype("float"))

        result = s.interpolate(method="zero", downcast="infer")
        assert_series_equal(result, expected)
        # quadratic
        # GH #15662.
        expected = Series([1, 3.0, 6.823529, 12.0, 18.058824, 25.0])
        result = s.interpolate(method="quadratic")
        assert_series_equal(result, expected)

        result = s.interpolate(method="quadratic", downcast="infer")
        assert_series_equal(result, expected)
        # cubic
        expected = Series([1.0, 3.0, 6.8, 12.0, 18.2, 25.0])
        result = s.interpolate(method="cubic")
        assert_series_equal(result, expected)

    def test_interp_limit(self):
        s = Series([1, 3, np.nan, np.nan, np.nan, 11])

        expected = Series([1.0, 3.0, 5.0, 7.0, np.nan, 11.0])
        result = s.interpolate(method="linear", limit=2)
        assert_series_equal(result, expected)

    @pytest.mark.parametrize("limit", [-1, 0])
    def test_interpolate_invalid_nonpositive_limit(self, nontemporal_method, limit):
        # GH 9217: make sure limit is greater than zero.
        s = pd.Series([1, 2, np.nan, 4])
        method, kwargs = nontemporal_method
        with pytest.raises(ValueError, match="Limit must be greater than 0"):
            s.interpolate(limit=limit, method=method, **kwargs)

    def test_interpolate_invalid_float_limit(self, nontemporal_method):
        # GH 9217: make sure limit is an integer.
        s = pd.Series([1, 2, np.nan, 4])
        method, kwargs = nontemporal_method
        limit = 2.0
        with pytest.raises(ValueError, match="Limit must be an integer"):
            s.interpolate(limit=limit, method=method, **kwargs)

    @pytest.mark.parametrize("invalid_method", [None, "nonexistent_method"])
    def test_interp_invalid_method(self, invalid_method):
        s = Series([1, 3, np.nan, 12, np.nan, 25])

        msg = "method must be one of.* Got '{}' instead".format(invalid_method)
        with pytest.raises(ValueError, match=msg):
            s.interpolate(method=invalid_method)

        # When an invalid method and invalid limit (such as -1) are
        # provided, the error message reflects the invalid method.
        with pytest.raises(ValueError, match=msg):
            s.interpolate(method=invalid_method, limit=-1)

    def test_interp_limit_forward(self):
        s = Series([1, 3, np.nan, np.nan, np.nan, 11])

        # Provide 'forward' (the default) explicitly here.
        expected = Series([1.0, 3.0, 5.0, 7.0, np.nan, 11.0])

        result = s.interpolate(method="linear", limit=2, limit_direction="forward")
        assert_series_equal(result, expected)

        result = s.interpolate(method="linear", limit=2, limit_direction="FORWARD")
        assert_series_equal(result, expected)

    def test_interp_unlimited(self):
        # these test are for issue #16282 default Limit=None is unlimited
        s = Series([np.nan, 1.0, 3.0, np.nan, np.nan, np.nan, 11.0, np.nan])
        expected = Series([1.0, 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 11.0])
        result = s.interpolate(method="linear", limit_direction="both")
        assert_series_equal(result, expected)

        expected = Series([np.nan, 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 11.0])
        result = s.interpolate(method="linear", limit_direction="forward")
        assert_series_equal(result, expected)

        expected = Series([1.0, 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, np.nan])
        result = s.interpolate(method="linear", limit_direction="backward")
        assert_series_equal(result, expected)

    def test_interp_limit_bad_direction(self):
        s = Series([1, 3, np.nan, np.nan, np.nan, 11])

        msg = (
            r"Invalid limit_direction: expecting one of \['forward',"
            r" 'backward', 'both'\], got 'abc'"
        )
        with pytest.raises(ValueError, match=msg):
            s.interpolate(method="linear", limit=2, limit_direction="abc")

        # raises an error even if no limit is specified.
        with pytest.raises(ValueError, match=msg):
            s.interpolate(method="linear", limit_direction="abc")

    # limit_area introduced GH #16284
    def test_interp_limit_area(self):
        # These tests are for issue #9218 -- fill NaNs in both directions.
        s = Series([nan, nan, 3, nan, nan, nan, 7, nan, nan])

        expected = Series([nan, nan, 3.0, 4.0, 5.0, 6.0, 7.0, nan, nan])
        result = s.interpolate(method="linear", limit_area="inside")
        assert_series_equal(result, expected)

        expected = Series([nan, nan, 3.0, 4.0, nan, nan, 7.0, nan, nan])
        result = s.interpolate(method="linear", limit_area="inside", limit=1)

        expected = Series([nan, nan, 3.0, 4.0, nan, 6.0, 7.0, nan, nan])
        result = s.interpolate(
            method="linear", limit_area="inside", limit_direction="both", limit=1
        )
        assert_series_equal(result, expected)

        expected = Series([nan, nan, 3.0, nan, nan, nan, 7.0, 7.0, 7.0])
        result = s.interpolate(method="linear", limit_area="outside")
        assert_series_equal(result, expected)

        expected = Series([nan, nan, 3.0, nan, nan, nan, 7.0, 7.0, nan])
        result = s.interpolate(method="linear", limit_area="outside", limit=1)

        expected = Series([nan, 3.0, 3.0, nan, nan, nan, 7.0, 7.0, nan])
        result = s.interpolate(
            method="linear", limit_area="outside", limit_direction="both", limit=1
        )
        assert_series_equal(result, expected)

        expected = Series([3.0, 3.0, 3.0, nan, nan, nan, 7.0, nan, nan])
        result = s.interpolate(
            method="linear", limit_area="outside", direction="backward"
        )

        # raises an error even if limit type is wrong.
        msg = r"Invalid limit_area: expecting one of \['inside', 'outside'\], got abc"
        with pytest.raises(ValueError, match=msg):
            s.interpolate(method="linear", limit_area="abc")

    def test_interp_limit_direction(self):
        # These tests are for issue #9218 -- fill NaNs in both directions.
        s = Series([1, 3, np.nan, np.nan, np.nan, 11])

        expected = Series([1.0, 3.0, np.nan, 7.0, 9.0, 11.0])
        result = s.interpolate(method="linear", limit=2, limit_direction="backward")
        assert_series_equal(result, expected)

        expected = Series([1.0, 3.0, 5.0, np.nan, 9.0, 11.0])
        result = s.interpolate(method="linear", limit=1, limit_direction="both")
        assert_series_equal(result, expected)

        # Check that this works on a longer series of nans.
        s = Series([1, 3, np.nan, np.nan, np.nan, 7, 9, np.nan, np.nan, 12, np.nan])

        expected = Series([1.0, 3.0, 4.0, 5.0, 6.0, 7.0, 9.0, 10.0, 11.0, 12.0, 12.0])
        result = s.interpolate(method="linear", limit=2, limit_direction="both")
        assert_series_equal(result, expected)

        expected = Series(
            [1.0, 3.0, 4.0, np.nan, 6.0, 7.0, 9.0, 10.0, 11.0, 12.0, 12.0]
        )
        result = s.interpolate(method="linear", limit=1, limit_direction="both")
        assert_series_equal(result, expected)

    def test_interp_limit_to_ends(self):
        # These test are for issue #10420 -- flow back to beginning.
        s = Series([np.nan, np.nan, 5, 7, 9, np.nan])

        expected = Series([5.0, 5.0, 5.0, 7.0, 9.0, np.nan])
        result = s.interpolate(method="linear", limit=2, limit_direction="backward")
        assert_series_equal(result, expected)

        expected = Series([5.0, 5.0, 5.0, 7.0, 9.0, 9.0])
        result = s.interpolate(method="linear", limit=2, limit_direction="both")
        assert_series_equal(result, expected)

    def test_interp_limit_before_ends(self):
        # These test are for issue #11115 -- limit ends properly.
        s = Series([np.nan, np.nan, 5, 7, np.nan, np.nan])

        expected = Series([np.nan, np.nan, 5.0, 7.0, 7.0, np.nan])
        result = s.interpolate(method="linear", limit=1, limit_direction="forward")
        assert_series_equal(result, expected)

        expected = Series([np.nan, 5.0, 5.0, 7.0, np.nan, np.nan])
        result = s.interpolate(method="linear", limit=1, limit_direction="backward")
        assert_series_equal(result, expected)

        expected = Series([np.nan, 5.0, 5.0, 7.0, 7.0, np.nan])
        result = s.interpolate(method="linear", limit=1, limit_direction="both")
        assert_series_equal(result, expected)

    @td.skip_if_no_scipy
    def test_interp_all_good(self):
        s = Series([1, 2, 3])
        result = s.interpolate(method="polynomial", order=1)
        assert_series_equal(result, s)

        # non-scipy
        result = s.interpolate()
        assert_series_equal(result, s)

    @pytest.mark.parametrize(
        "check_scipy", [False, pytest.param(True, marks=td.skip_if_no_scipy)]
    )
    def test_interp_multiIndex(self, check_scipy):
        idx = MultiIndex.from_tuples([(0, "a"), (1, "b"), (2, "c")])
        s = Series([1, 2, np.nan], index=idx)

        expected = s.copy()
        expected.loc[2] = 2
        result = s.interpolate()
        assert_series_equal(result, expected)

        msg = "Only `method=linear` interpolation is supported on MultiIndexes"
        if check_scipy:
            with pytest.raises(ValueError, match=msg):
                s.interpolate(method="polynomial", order=1)

    @td.skip_if_no_scipy
    def test_interp_nonmono_raise(self):
        s = Series([1, np.nan, 3], index=[0, 2, 1])
        msg = "krogh interpolation requires that the index be monotonic"
        with pytest.raises(ValueError, match=msg):
            s.interpolate(method="krogh")

    @td.skip_if_no_scipy
    @pytest.mark.parametrize("method", ["nearest", "pad"])
    def test_interp_datetime64(self, method, tz_naive_fixture):
        df = Series(
            [1, np.nan, 3], index=date_range("1/1/2000", periods=3, tz=tz_naive_fixture)
        )
        result = df.interpolate(method=method)
        expected = Series(
            [1.0, 1.0, 3.0],
            index=date_range("1/1/2000", periods=3, tz=tz_naive_fixture),
        )
        assert_series_equal(result, expected)

    def test_interp_limit_no_nans(self):
        # GH 7173
        s = pd.Series([1.0, 2.0, 3.0])
        result = s.interpolate(limit=1)
        expected = s
        assert_series_equal(result, expected)

    @td.skip_if_no_scipy
    @pytest.mark.parametrize("method", ["polynomial", "spline"])
    def test_no_order(self, method):
        # see GH-10633, GH-24014
        s = Series([0, 1, np.nan, 3])
        msg = "You must specify the order of the spline or polynomial"
        with pytest.raises(ValueError, match=msg):
            s.interpolate(method=method)

    @td.skip_if_no_scipy
    @pytest.mark.parametrize("order", [-1, -1.0, 0, 0.0, np.nan])
    def test_interpolate_spline_invalid_order(self, order):
        s = Series([0, 1, np.nan, 3])
        msg = "order needs to be specified and greater than 0"
        with pytest.raises(ValueError, match=msg):
            s.interpolate(method="spline", order=order)

    @td.skip_if_no_scipy
    def test_spline(self):
        s = Series([1, 2, np.nan, 4, 5, np.nan, 7])
        result = s.interpolate(method="spline", order=1)
        expected = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0])
        assert_series_equal(result, expected)

    @td.skip_if_no_scipy
    def test_spline_extrapolate(self):
        s = Series([1, 2, 3, 4, np.nan, 6, np.nan])
        result3 = s.interpolate(method="spline", order=1, ext=3)
        expected3 = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 6.0])
        assert_series_equal(result3, expected3)

        result1 = s.interpolate(method="spline", order=1, ext=0)
        expected1 = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0])
        assert_series_equal(result1, expected1)

    @td.skip_if_no_scipy
    def test_spline_smooth(self):
        s = Series([1, 2, np.nan, 4, 5.1, np.nan, 7])
        assert (
            s.interpolate(method="spline", order=3, s=0)[5]
            != s.interpolate(method="spline", order=3)[5]
        )

    @td.skip_if_no_scipy
    def test_spline_interpolation(self):
        s = Series(np.arange(10) ** 2)
        s[np.random.randint(0, 9, 3)] = np.nan
        result1 = s.interpolate(method="spline", order=1)
        expected1 = s.interpolate(method="spline", order=1)
        assert_series_equal(result1, expected1)

    def test_interp_timedelta64(self):
        # GH 6424
        df = Series([1, np.nan, 3], index=pd.to_timedelta([1, 2, 3]))
        result = df.interpolate(method="time")
        expected = Series([1.0, 2.0, 3.0], index=pd.to_timedelta([1, 2, 3]))
        assert_series_equal(result, expected)

        # test for non uniform spacing
        df = Series([1, np.nan, 3], index=pd.to_timedelta([1, 2, 4]))
        result = df.interpolate(method="time")
        expected = Series([1.0, 1.666667, 3.0], index=pd.to_timedelta([1, 2, 4]))
        assert_series_equal(result, expected)

    def test_series_interpolate_method_values(self):
        # #1646
        ts = _simple_ts("1/1/2000", "1/20/2000")
        ts[::2] = np.nan

        result = ts.interpolate(method="values")
        exp = ts.interpolate()
        assert_series_equal(result, exp)

    def test_series_interpolate_intraday(self):
        # #1698
        index = pd.date_range("1/1/2012", periods=4, freq="12D")
        ts = pd.Series([0, 12, 24, 36], index)
        new_index = index.append(index + pd.DateOffset(days=1)).sort_values()

        exp = ts.reindex(new_index).interpolate(method="time")

        index = pd.date_range("1/1/2012", periods=4, freq="12H")
        ts = pd.Series([0, 12, 24, 36], index)
        new_index = index.append(index + pd.DateOffset(hours=1)).sort_values()
        result = ts.reindex(new_index).interpolate(method="time")

        tm.assert_numpy_array_equal(result.values, exp.values)

    def test_nonzero_warning(self):
        # GH 24048
        ser = pd.Series([1, 0, 3, 4])
        with tm.assert_produces_warning(FutureWarning):
            ser.nonzero()

    @pytest.mark.parametrize(
        "ind",
        [
            ["a", "b", "c", "d"],
            pd.period_range(start="2019-01-01", periods=4),
            pd.interval_range(start=0, end=4),
        ],
    )
    def test_interp_non_timedelta_index(self, interp_methods_ind, ind):
        # gh 21662
        df = pd.DataFrame([0, 1, np.nan, 3], index=ind)

        method, kwargs = interp_methods_ind
        if method == "pchip":
            _skip_if_no_pchip()

        if method == "linear":
            result = df[0].interpolate(**kwargs)
            expected = pd.Series([0.0, 1.0, 2.0, 3.0], name=0, index=ind)
            assert_series_equal(result, expected)
        else:
            expected_error = (
                "Index column must be numeric or datetime type when "
                "using {method} method other than linear. "
                "Try setting a numeric or datetime index column before "
                "interpolating.".format(method=method)
            )
            with pytest.raises(ValueError, match=expected_error):
                df[0].interpolate(method=method, **kwargs)

    def test_interpolate_timedelta_index(self, interp_methods_ind):
        """
        Tests for non numerical index types  - object, period, timedelta
        Note that all methods except time, index, nearest and values
        are tested here.
        """
        # gh 21662
        ind = pd.timedelta_range(start=1, periods=4)
        df = pd.DataFrame([0, 1, np.nan, 3], index=ind)

        method, kwargs = interp_methods_ind
        if method == "pchip":
            _skip_if_no_pchip()

        if method in {"linear", "pchip"}:
            result = df[0].interpolate(method=method, **kwargs)
            expected = pd.Series([0.0, 1.0, 2.0, 3.0], name=0, index=ind)
            assert_series_equal(result, expected)
        else:
            pytest.skip(
                "This interpolation method is not supported for Timedelta Index yet."
            )