Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

aaronreidsmith / pandas   python

Repository URL to install this package:

Version: 0.25.3 

/ tests / series / test_quantile.py

import numpy as np
import pytest

from pandas.core.dtypes.common import is_integer

import pandas as pd
from pandas import Index, Series
from pandas.core.indexes.datetimes import Timestamp
import pandas.util.testing as tm

from .common import TestData


class TestSeriesQuantile(TestData):
    def test_quantile(self):

        q = self.ts.quantile(0.1)
        assert q == np.percentile(self.ts.dropna(), 10)

        q = self.ts.quantile(0.9)
        assert q == np.percentile(self.ts.dropna(), 90)

        # object dtype
        q = Series(self.ts, dtype=object).quantile(0.9)
        assert q == np.percentile(self.ts.dropna(), 90)

        # datetime64[ns] dtype
        dts = self.ts.index.to_series()
        q = dts.quantile(0.2)
        assert q == Timestamp("2000-01-10 19:12:00")

        # timedelta64[ns] dtype
        tds = dts.diff()
        q = tds.quantile(0.25)
        assert q == pd.to_timedelta("24:00:00")

        # GH7661
        result = Series([np.timedelta64("NaT")]).sum()
        assert result == pd.Timedelta(0)

        msg = "percentiles should all be in the interval \\[0, 1\\]"
        for invalid in [-1, 2, [0.5, -1], [0.5, 2]]:
            with pytest.raises(ValueError, match=msg):
                self.ts.quantile(invalid)

    def test_quantile_multi(self):

        qs = [0.1, 0.9]
        result = self.ts.quantile(qs)
        expected = pd.Series(
            [np.percentile(self.ts.dropna(), 10), np.percentile(self.ts.dropna(), 90)],
            index=qs,
            name=self.ts.name,
        )
        tm.assert_series_equal(result, expected)

        dts = self.ts.index.to_series()
        dts.name = "xxx"
        result = dts.quantile((0.2, 0.2))
        expected = Series(
            [Timestamp("2000-01-10 19:12:00"), Timestamp("2000-01-10 19:12:00")],
            index=[0.2, 0.2],
            name="xxx",
        )
        tm.assert_series_equal(result, expected)

        result = self.ts.quantile([])
        expected = pd.Series([], name=self.ts.name, index=Index([], dtype=float))
        tm.assert_series_equal(result, expected)

    def test_quantile_interpolation(self):
        # see gh-10174

        # interpolation = linear (default case)
        q = self.ts.quantile(0.1, interpolation="linear")
        assert q == np.percentile(self.ts.dropna(), 10)
        q1 = self.ts.quantile(0.1)
        assert q1 == np.percentile(self.ts.dropna(), 10)

        # test with and without interpolation keyword
        assert q == q1

    def test_quantile_interpolation_dtype(self):
        # GH #10174

        # interpolation = linear (default case)
        q = pd.Series([1, 3, 4]).quantile(0.5, interpolation="lower")
        assert q == np.percentile(np.array([1, 3, 4]), 50)
        assert is_integer(q)

        q = pd.Series([1, 3, 4]).quantile(0.5, interpolation="higher")
        assert q == np.percentile(np.array([1, 3, 4]), 50)
        assert is_integer(q)

    def test_quantile_nan(self):

        # GH 13098
        s = pd.Series([1, 2, 3, 4, np.nan])
        result = s.quantile(0.5)
        expected = 2.5
        assert result == expected

        # all nan/empty
        cases = [Series([]), Series([np.nan, np.nan])]

        for s in cases:
            res = s.quantile(0.5)
            assert np.isnan(res)

            res = s.quantile([0.5])
            tm.assert_series_equal(res, pd.Series([np.nan], index=[0.5]))

            res = s.quantile([0.2, 0.3])
            tm.assert_series_equal(res, pd.Series([np.nan, np.nan], index=[0.2, 0.3]))

    @pytest.mark.parametrize(
        "case",
        [
            [
                pd.Timestamp("2011-01-01"),
                pd.Timestamp("2011-01-02"),
                pd.Timestamp("2011-01-03"),
            ],
            [
                pd.Timestamp("2011-01-01", tz="US/Eastern"),
                pd.Timestamp("2011-01-02", tz="US/Eastern"),
                pd.Timestamp("2011-01-03", tz="US/Eastern"),
            ],
            [pd.Timedelta("1 days"), pd.Timedelta("2 days"), pd.Timedelta("3 days")],
            # NaT
            [
                pd.Timestamp("2011-01-01"),
                pd.Timestamp("2011-01-02"),
                pd.Timestamp("2011-01-03"),
                pd.NaT,
            ],
            [
                pd.Timestamp("2011-01-01", tz="US/Eastern"),
                pd.Timestamp("2011-01-02", tz="US/Eastern"),
                pd.Timestamp("2011-01-03", tz="US/Eastern"),
                pd.NaT,
            ],
            [
                pd.Timedelta("1 days"),
                pd.Timedelta("2 days"),
                pd.Timedelta("3 days"),
                pd.NaT,
            ],
        ],
    )
    def test_quantile_box(self, case):
        s = pd.Series(case, name="XXX")
        res = s.quantile(0.5)
        assert res == case[1]

        res = s.quantile([0.5])
        exp = pd.Series([case[1]], index=[0.5], name="XXX")
        tm.assert_series_equal(res, exp)

    def test_datetime_timedelta_quantiles(self):
        # covers #9694
        assert pd.isna(Series([], dtype="M8[ns]").quantile(0.5))
        assert pd.isna(Series([], dtype="m8[ns]").quantile(0.5))

    def test_quantile_nat(self):
        res = Series([pd.NaT, pd.NaT]).quantile(0.5)
        assert res is pd.NaT

        res = Series([pd.NaT, pd.NaT]).quantile([0.5])
        tm.assert_series_equal(res, pd.Series([pd.NaT], index=[0.5]))

    @pytest.mark.parametrize(
        "values, dtype",
        [([0, 0, 0, 1, 2, 3], "Sparse[int]"), ([0.0, None, 1.0, 2.0], "Sparse[float]")],
    )
    def test_quantile_sparse(self, values, dtype):
        ser = pd.Series(values, dtype=dtype)
        result = ser.quantile([0.5])
        expected = pd.Series(np.asarray(ser)).quantile([0.5])
        tm.assert_series_equal(result, expected)

    def test_quantile_empty(self):

        # floats
        s = Series([], dtype="float64")

        res = s.quantile(0.5)
        assert np.isnan(res)

        res = s.quantile([0.5])
        exp = Series([np.nan], index=[0.5])
        tm.assert_series_equal(res, exp)

        # int
        s = Series([], dtype="int64")

        res = s.quantile(0.5)
        assert np.isnan(res)

        res = s.quantile([0.5])
        exp = Series([np.nan], index=[0.5])
        tm.assert_series_equal(res, exp)

        # datetime
        s = Series([], dtype="datetime64[ns]")

        res = s.quantile(0.5)
        assert res is pd.NaT

        res = s.quantile([0.5])
        exp = Series([pd.NaT], index=[0.5])
        tm.assert_series_equal(res, exp)